Synthesis of Indenoporphyrins, Highly Modified Porphyrins with

May 20, 2011 - ... indicted for chemical releases. A grand jury in Houston indicted Arkema and two of its executives on criminal charges that they ...
0 downloads 0 Views 1MB Size
ARTICLE pubs.acs.org/joc

Synthesis of Indenoporphyrins, Highly Modified Porphyrins with Reduced Diatropic Characteristics† Timothy D. Lash,* Breland E. Smith, Michael J. Melquist, and Bradley A. Godfrey Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States

bS Supporting Information ABSTRACT: Indene-fused porphyrins have been synthesized starting from 2-indanone. Knorr-type reaction of oximes derived from benzyl or tert-butyl acetoacetate with 2-indanone and zinc dust in propionic acid gave good yields of indenopyrroles. Treatment with N-chlorosuccinimide then gave 8-chloro derivatives, and these reacted with 5-unsubstituted pyrroles to give dipyrroles incorporating the fused indene unit. Hydrogenolysis of the benzyl ester protective groups afforded the related dicarboxylic acids, but condensation with a dipyrrylmethane dialdehyde under MacDonald “2 þ 2” reaction conditions gave poor yields of the targeted indenoporphyrins. However, when an indene-fused dipyrrole was converted into the corresponding dialdehyde with TFAtrimethyl orthoformate and then reacted with a dipyrrylmethane dicarboxylic acid, an indenoporphyrin was isolated in 26% yield. The porphyrin gave a highly modified UVvis absorption spectrum with three strong bands showing up in the Soret region and a series of Q bands that extended beyond 700 nm. The proton NMR spectrum also showed a significantly reduced diamagnetic ring current where the meso-protons gave resonances near 9.3 ppm instead of typical porphyrin values of 10 ppm. Nickel(II), copper(II), and zinc complexes were also prepared, and these exhibited unusual UVvis absorption spectra with bathochromically shifted Soret and Q absorptions. The diamagnetic nickel(II) and zinc complexes also showed reduced diatropic character compared to typical nickel(II) and zinc porphyrins.

’ INTRODUCTION

Extended porphyrinoid chromophores have been widely investigated1,2 because of their potential to produce long wavelength absorptions that could make them suitable for applications as photosensitizers in photodynamic therapy,3 as biological sensors,4 or in the development of novel optical materials.5 r 2011 American Chemical Society

Fusion of aromatic units to the pyrrole rings in porphyrins can give rise to highly red-shifted chromophores,1,2,613 but this is not always the case. For instance, phenanthroporphyrins (e.g., 1) only show minor bathochromic shifts due to the presence of the fused tricyclic unit,9 whereas structurally similar acenaphthylenefused porphyrins 2 have considerably modified absorption bands.11,14 Modification of the porphyrin system by cyclization onto the meso-positions can also produce unusual porphyrinoid chromophores.15,16 Substantial efforts have been put into the synthesis of this type of system from tetraarylporphyrins, and these investigations commonly afford six-membered ring systems such as 3.15,16 The formation of fused five-membered ring structures such as 4 has also been noted, initially as minor byproducts.15 These types of indene-fused systems are intriguing as they show highly modified UVvis absorptions. Fox and Boyle reported a synthesis of metalated indenoporphyrins 5 by reacting nickel(II) or copper(II) 2-iodophenylporphyrins 6 with Pd(PPh3)4 and potassium phosphate (Scheme 1).17 An alternative route was subsequently developed where nickel(II), copper(II), zinc, or free base 2-bromo tetraphenylporphyrins 8 were cyclized using Pd2(dba)3 and potassium carbonate (Scheme 1).18 This ring closure can also be accomplished by the zinc-mediated cyclization of tetrarylporphyrin radicals.19 The Received: April 1, 2011 Published: May 20, 2011 5335

dx.doi.org/10.1021/jo2006895 | J. Org. Chem. 2011, 76, 5335–5345

The Journal of Organic Chemistry Scheme 1

ARTICLE

Scheme 3

Scheme 4

Scheme 2

formation of 5 by the intramolecular Heck reaction of a tetraphenylporphyrin boronic ester has been noted,2022 and the preparation of more complex porphyrin systems that incorporate a fused indene unit have also been described.23 We have developed versatile routes to cycloalkanoporphyrins (CAPs), including the porphyrin molecular fossils deoxophylloerythroetioporphyrin (DPEP, 8) and butanoporphyrin 9, starting from cyclic ketones.2426 CAPs are commonly found in petroleum and oil shales as their nickel(II) or vanadyl complexes,27 and synthetic samples have been used to develop spectroscopic,28 mass spectrometric,29 and chromatographic methods30 for the analysis of these materials. Cyclic ketones 10 were shown to react with oximes 11 or phenylhydrazones 12 in the presence of zinc dust and acetic or propionic acid to give the cycloalka[b]pyrroles 13 in good yields (Scheme 2).2426,31 In this variation on the Knorr pyrrole reaction,32 an R-amino ketone is generated in situ and reacts with ketones 10 to afford pyrroles 13 (Scheme 2). Optimal yields are somewhat temperature-dependent, and syntheses using large ring ketones such as cyclododecanone or

cyclohexadecanone worked well only at temperatures >140 °C in propionic acid.26i Cyclopentanone gave good yields of cyclopenta[b]pyrroles only when the temperature was maintained at >150 °C in a mixture of sodium propionate and propionic acid.25b Multigram quantities of cycloalka[b]pyrroles are easily prepared by this approach, and these heterocycles are the key intermediates in the synthesis of cycloalkanoporphyrins like 8 and 9.2426 In principle, the synthesis of indenoporphyrins 14 could be approached in a similar fashion. A retrosynthetic analysis of 14 shows that this system could be obtained by using the MacDonald “2 þ 2” methodology33,34 from dipyrrylmethane dialdehyde 15 and the indene fused dipyrrole 16 (Scheme 3). Dipyrrole 16, in turn, could be prepared from the indenopyrrole 17. The successful application of this strategy and the spectroscopic properties of the resulting indenoporphyrins are presented below.35

’ RESULTS AND DISCUSSION The synthesis of indenoporphyrins 14 required the availability of indenopyrroles 17. In fact, an example of an indenopyrrole 17a had been reported previously.25b Reaction of the oxime 11a derived from ethyl acetoacetate with 2-indanone in propionic acid containing sodium propionate at 150 °C gave the indenopyrrole in 34% yield (Scheme 4).25b The corresponding benzyl ester 17b was prepared similarly from oxime 11b and 2-indanone in 47% yield. However, the related tert-butyl ester 17c was obtained in very low yields under these conditions. Following a series of attempts, the yield was raised to 33% when the oxime and zinc dust were added to 2-indanone and sodium propionate in propionic acid at 140 °C and the reaction was stopped after 5 min once the addition had been completed. The same approach 5336

dx.doi.org/10.1021/jo2006895 |J. Org. Chem. 2011, 76, 5335–5345

The Journal of Organic Chemistry Scheme 5

Scheme 6

was also used to prepare dihydrobenzo[e]indoles 18a and 18b from 2-tetralone, although in this case phenylhydrazones 12 gave better results than oximes 11 (Scheme 5). Again, high temperature conditions (>150 °C) were required to get the best results, and 8,9-dihydrobenzo[e]indoles 18 were formed in up to 65% yield. In order to generate dipyrrolic intermediates from indenopyrroles 17, it was necessary to introduce a suitable leaving group onto the five-membered carbocyclic ring. This had been accomplished for cycloalka[b]pyrroles 13 using lead tetraacetate,2426,31 but no stable product could be isolated from the reaction of pyrroles 17

ARTICLE

Scheme 7

with this reagent. Dihydrobenzoindoles 18 were also reacted with lead tetraacetate, but in this case the corresponding benzo[e]indoles 19 were formed (Scheme 5). Reaction of 18 with Pb(OAc)4 would be expected to give the acetoxy-derivatives 20, but these spontaneously eliminate acetic acid to give the fully conjugated tricycles 19. This chemistry provides a useful route to benzo[e]indoles but cannot be applied to porphyrin synthesis. In an alternative strategy, 17b was reacted with N-chlorosuccinimide (NCS) in carbon tetrachloride (Scheme 6). Under these conditions, benzyl ester 17b underwent selective chlorination to give the 8-chloroindenopyrrole 21a, and following recrystallization from toluene the derivative was isolated in 63% yield. The formation of dipyrrolic products from 21a required the availability of R-unsubstituted pyrroles 22ac. Pyrroles 22a and 22c are known compounds and may be prepared by modification of the related 5-methylpyrroles36 or by using the Barton-Zard reaction.37,38 The necessary nitroalkane precursor to 4-butylpyrrole 22b using the latter methodology is not readily available, and so this R-unsubstituted pyrrole was prepared from 5-methylpyrrole 23 (Scheme 7). Reaction with 3.3 equiv of sulfuryl chloride, followed by hydrolysis with sodium acetate in aqueous dioxane, gave carboxylic acid 24 in 40% yield. Iodinative decarboxylation with I2/KI gave iodopyrrole 25 and subsequent hydrogenolysis over Adam’s catalyst then gave the required R-free pyrrole 22b. Chlorinated indenopyrrole 21a was reacted with R-unsubstituted pyrroles 22ac in acetic acid at room temperature, using p-toluenesulfonic acid as a catalyst, to give dipyrroles 26ac in 4066% yield (Scheme 6). A mixed ester dipyrrole 26d was also prepared. Reaction of NCS with indenopyrrole tert-butyl ester 17c gave poor results due to the instability of the chlorinated product 21b. The crude product from this reaction was immediately reacted with 22a in the presence of p-toluenesulfonic acid in acetic acid, but dipyrrole 26d could only be isolated in 21% yield. Due to these low yields, the mixed ester dipyrrole 26d was not further investigated. The 1H NMR spectra for indenodipyrrole 26a in CDCl3 and DMSO-d6 indicate that solvent interactions can cause significant conformational changes. In CDCl3, the ethyl substituent gives rise to a quartet and a triplet at 2.49 and 1.10 ppm, respectively, which fall into the expected range of a typical pyrrolic ethyl group. This coupling indicates that free rotation of the ethyl substituent occurs and that both protons for the potentially diastereotopic CH2 unit have identical chemical shift values. However, in DMSO-d6 the peaks associated with this CH2 group give rise to two 1H multiplets centered on 1.47 and 1.56 ppm. Furthermore, the CH3 group for the ethyl moiety is shifted upfield to 0.27 ppm (Figure 1). These signals suggest that a single 5337

dx.doi.org/10.1021/jo2006895 |J. Org. Chem. 2011, 76, 5335–5345

The Journal of Organic Chemistry

ARTICLE

Scheme 8

Figure 1. Partial 500 MHz proton NMR spectrum of dipyrrole 26a in DMSO-d6 showing the atypically upfield shifted resonances for the ethyl unit.

Figure 2. Proposed conformation for dipyrroles 16, 26, and 27 in DMSO-d6.

conformation is favored in DMSO that results in restricted rotation of the ethyl substituent (Figure 2). It is postulated that DMSO is able to stabilize this conformation by hydrogen bonding to both pyrrolic NHs and that the pyrrole ring is oriented so that it causes the CH3 of the ethyl group to be located over the benzene ring thereby leading to the observed shielding effect. This also causes an upfield shift to the CH2 resonances and provides an environment that strongly differentiates between the diastereotopic protons. Conformational factors of this type can have a significant impact on macrocyclic ring formation.26j,39 Dipyrrole 26c was poorly soluble in organic solvents and could not be deprotected. However, dipyrrole dibenzyl esters 26a and 26b were converted in quantitative yields into the related dicarboxylic acid 16 by hydrogenolysis over 10% palladium charcoal. Dipyrroles 16a and 16b were reacted with dipyrrylmethane dialdehyde 15 in the presence of p-toluenesulfonic acid, followed by the addition of excess zinc acetate and air oxidation, but no more than trace amounts of porphyrins 14 were generated (Scheme 8). The reactions were repeated by adding a mixture of 15 and 16 to a solution of p-toluenesulfonic acid in methanoldichloromethane over a period of 2 h. This method allows the concentration of reactants at any given moment to approximate to high dilution conditions that should aid in macrocycle formation,40 but the targeted porphyrins could still only be isolated in 67% yield. An alternative “2 þ 2” condensation can be carried out with a dialdehyde 27 derived from the indene-fused dipyrrole and

dipyrrylmethane 28.41 Dicarboxylic acid 16a was decarboxylated with trifluoroacetic acid and then treated with trimethyl orthoformate to produce dialdehyde 27 (Scheme 6). Initially, trimethyl orthoformate was added at temperatures 300 °C; UVvis (CHCl3) λmax (log ε) 346 (4.34), 430 (4.78), 451 (4.83), 492 (3.85), 571 (3.70), 618 (3.65), 662 (3.55), 725 nm (3.33); HR MS (EI) calcd for C36H34N4Cu: 585.2079, found 585.2072. Zinc Complex 30c. A solution of saturated zinc acetate in methanol (5 mL) was added to a solution of indenoporphyrin 14a (10 mg, 0.019 mmol) in chloroform (10 mL), and the resulting mixture was allowed to reflux for 1 h. The reaction mixture was then diluted with chloroform (30 mL) and washed with water, and the chloroform layer evaporated under reduced pressure. The residue was purified on a grade 3 neutral alumina column, eluting with dichloromethane. However, due to low solubility, the crude product had to be loaded on to the column with a few drops of pyrrolidine in dichloromethane due to its ability to increase the solubility of zinc porphyrins in chlorinated solvents. The product fractions were combined and recrystallized from chloroform hexanes to give the zinc complex (8.2 mg, 0.014 mmol, 73%) as a very dark blue solid, mp >300 °C; UVvis (CHCl3) λmax (log ε) 347 (4.53), 389 (4.56), 436 (4.89), 459 (5.00), 498 (3.86), 580 (3.79), 624 (2.67), 674 (3.51), 737 nm (3.27); UVvis (1% Pyrrolidine-CHCl3) λmax (log ε) 348 (4.54), 385 (4.56), 446 (4.83), 470 (5.06), 505 (4.01), 594 (3.85), 641 (3.71), 768 nm (3.18); 1H NMR (500 MHz, CDCl3) δ 1.701.80 (9H, m), 3.31 (3H, s), 3.35 (3H, s), 3.37 (3H, s), 3.39 (3H, s), 3.79 (2H, q, J = 7.7 Hz), 3.823.89 (4H, m), 7.00 (1H, t, J = 7.2 Hz), 7.06 (1H, t, J = 7.5 Hz), 7.47 (1H, d, J = 7.2 Hz), 8.08 (1H, d, J = 7.5 Hz), 9.24 (1H, s), 9.36 (1H, s), 9.42 (1H, s); 1H NMR (500 MHz, pyrrolidine-CDCl3) δ 1.681.74 (6H, m), 1.76 (3H, t, J = 7.6 Hz), 3.30 (3H, s), 3.34 (3H, s), 3.35 (3H, s), 3.36 (3H, s), 3.77 (2H, q, J = 7.7 Hz), 3.81 (2H, q, J = 7.6 Hz), 3.84 (2H, q, J = 7.5 Hz), 6.89 (1H, t, J = 7.3 Hz), 6.97 (1H, td, J = 1.0, 7.5 Hz), 7.39 (1H, dd, J = 0.8, 7.0 Hz), 8.03 (1H, d, J = 7.5 Hz), 9.21 (1H, s), 9.31 (1H, s), 9.34 (1H, s); 13C NMR (pyrrolidine-CDCl3) δ 11.3, 11.4, 11.9, 12.4, 16.9, 17.77, 17.78, 19.7, 19.8, 21.8, 97.3, 99.6, 101.6, 112.8, 122.8, 126.5, 127.0, 128.0, 131.7, 134.8, 135.0, 139.7, 140.1, 140.8, 141.9, 142.9, 143.5, 147.7, 148.7, 149.2, 150.2, 150.3, 152.0, 153.2, 160.4, 167.1; HR MS (EI) calcd for C36H34N4Zn: 586.2075, found 586.2073. 5343

dx.doi.org/10.1021/jo2006895 |J. Org. Chem. 2011, 76, 5335–5345

The Journal of Organic Chemistry

’ ASSOCIATED CONTENT

bS

Supporting Information. Selected 1H NMR, 1H1H

COSY, HMQC, 13C NMR, MS, and UVvis spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

’ AUTHOR INFORMATION Corresponding Author

*E-mail: [email protected]. Notes †

Porphyrins with Exocyclic Rings. Part 27. For Part 26 of this series, see ref 13e.

’ ACKNOWLEDGMENT This work was supported by the National Science Foundation under grant nos. CHE-0616555 and CHE-0911699 and the Petroleum Research Fund, administered by the American Chemical Society. B.E.S. also acknowledges a summer research scholarship funded by M. E. Kurz. Funding for a 500 MHz NMR spectrometer was provided by the National Science Foundation under grant no. CHE-0722385. ’ REFERENCES (1) Lash, T. D. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 2, pp 125199. (2) Lash, T. D. J. Porphyrins Phthalocyanines 2001, 5, 267–288. (3) (a) Bonnett, R. Chem. Soc. Rev. 1995, 19–33.(b) Pandey, R. K.; Zheng, G. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 6, pp 157230. (c) Friedberg, J. S.; Skema, C.; Baum, E. D.; Burdick, J.; Vinogradov, S. A.; Wilson, D. F.; Horan, A. D.; Nachamkin, I. J. Antimicrob. Chemother. 2001, 48, 105–107. (4) (a) Vinogradov, S. A.; Wilson, D. F. J. Chem. Soc., Perkin Trans. 2 1995, 103–111. (b) Rietveld, I. B.; Kim, E.; Vinogradov, S. A. Tetrahedron 2003, 59, 3821–3831. (c) Finikova, O.; Galkin, A.; Rozhkov, V.; Cordero, M.; H€agerh€all, C.; Vinogradov, S. A. J. Am. Chem. Soc. 2003, 125, 4882–4893. (d) Lebedev, A. Y.; Cheprakov, A. V.; Sakadi, S.; Boas, D. A.; Wilson, D. F.; Vinogradov, S. A. ACS Appl. Mater. Interfaces 2009, 1, 1292–1304. (5) (a) Brunel, M.; Chaput, F.; Vinogradov, S. A.; Campagne, B.; Canva, M.; Boilot, J. P. Chem. Phys. 1997, 218, 301–307. (b) Ono, N.; Ito, S.; Wu, C. H.; Chen, C. H.; Wen, T. C. Chem. Phys. 2000, 262, 467–473. (c) Rogers, J. E.; Nguyen, K. A.; Hufnagle, D. C.; McLean, D. G.; Su, W. J.; Gossett, K. M.; Burke, A. R.; Vinogradov, S. A.; Pachter, R.; Fleitz, P. A. J. Phys. Chem. A 2003, 107, 11331–11339. (6) Benzoporphyrins: (a) Clezy, P. S.; Fookes, C. J. R.; Mirza, A. H. Aust. J. Chem. 1977, 30, 1337–1347. (b) Clezy, P. S.; Mirza, A. H. Aust. J. Chem. 1982, 35, 197–209. (c) Clezy, P. S.; Leung, C. W. F. Aust. J. Chem. 1993, 46, 1705–1710. (d) Lash, T. D. Energy Fuels 1993, 7, 166–171. (e) Bonnett, R.; McManus, K. A. J. Chem. Soc., Perkin Trans. 1 1996, 2461–2466. (f) Vicente, M. G. H.; Tome, A. C.; Walter, A.; Cavaleiro, J. A. S. Tetrahedron Lett. 1997, 38, 3639–3642. (g) Ito, S.; Murashima, T.; Uno, H.; Ono, N. Chem. Commun. 1998, 1661–1662. (h) Vicente, M. G. H.; Jaquinod, L.; Khoury, R. G.; Madrona, A. Y.; Smith, K. M. Tetrahedron Lett. 1999, 40, 8763–8766. (i) Ito, S.; Ochi, N.; Murashima, T.; Uno, H.; Ono, N. Heterocycles 2000, 52, 399–411. (j) Finikova, O. S.; Cheprakov, A. V.; Beletskaya, I. P.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem. 2004, 69, 522–535. (k) Filatov, M. A.; Lebedev, A. Y.; Vinogradov, S. A.; Cheprakov, A. V. J. Org. Chem. 2008, 73, 4175–4185.

ARTICLE

(7) 1,2-Naphthoporphyrins: (a) Lash, T. D.; Denny, C. P. Tetrahedron 1995, 51, 59–66. (b) Lash, T. D.; Roper, T. J. Tetrahedron Lett. 1994, 35, 7715–7718. (c) Lash, T. D.; Wijesinghe, C.; Osuma, A. T.; Patel, J. R. Tetrahedron Lett. 1997, 38, 2031–2034. (d) Manley, J. M.; Roper, T. J.; Lash, T. D. J. Org. Chem. 2005, 70, 874–891. (8) 2,3-Naphthoporphyrins: (a) Kopranenkov, V. N.; Vorotnikov, A. M.; Luk’yanets, E. A. J. Gen. Chem. USSR 1979, 49, 2467. (b) Rein, M.; Hanack, M. Chem. Ber. 1988, 121, 1601–1608. (c) Ito, S.; Ochi, N.; Uno, H.; Murashima, T.; Ono, N. Chem. Commun. 2000, 893–894. (d) Finikova, O. S.; Cheprakov, A. V.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem. 2003, 68, 7517–7520. (e) Finikova, O. S.; Aleshchenkov, S. E.; Bri~ nas, R. P.; Cheprakov, A. V.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem. 2005, 70, 4617–4628. (f) Finikova, O. S.; Cheprakov, A. V.; Vinogradov, S. A. J. Org. Chem. 2005, 70, 9562–9572. (9) Phenanthroporphyrins: (a) Lash, T. D.; Novak, B. H. Tetrahedron Lett. 1995, 36, 4381–4384. (b) Lash, T. D.; Novak, B. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 683–685. (c) Novak, B. H.; Lash, T. D. J. Org. Chem. 1998, 63, 3998–4010. (10) Phenanthrolinoporphyrins: (a) Lin, Y.; Lash, T. D. Tetrahedron Lett. 1995, 36, 9441–9444. (b) Lash, T. D.; Lin, Y.; Novak, B. H.; Parikh, M. D. Tetrahedron 2005, 61, 11601–11614. (11) Acenaphthoporphyrins: (a) Chandrasekar, P.; Lash, T. D. Tetrahedron Lett. 1996, 37, 4873–4876. (b) Lash, T. D.; Chandrasekar, P. J. Am. Chem. Soc. 1996, 118, 8767–8768. (c) Lash, T. D.; Chandrasekar, P.; Osuma, A. T.; Chaney, S. T.; Spence, J. D. J. Org. Chem. 1998, 63, 8455–8469. (d) Lash, T. D.; Chaney, S. T.; Richter, D. T. J. Org. Chem. 1998, 63, 9076–9088. (e) Spence, J. D.; Lash, T. D. J. Org. Chem. 2000, 65, 1530–1539. (f) Mack, J.; Asano, Y.; Kobayashi, N; Stillman, M. J. J. Am. Chem. Soc. 2005, 127, 17697– 17711. (12) Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.; Ueda, T.; Tsukamura, C.; Ogawa, T. J. Chem. Soc., Perkin Trans. 1 1996, 417–423. (13) (a) Lash, T. D.; Werner, T. M.; Thompson, M. L.; Manley, J. M. J. Org. Chem. 2001, 66, 3152–3159. (b) Lash, T. D.; Gandhi, V. J. Org. Chem. 2000, 65, 8020–8026. (c) Cillo, C. M.; Lash, T. D. Tetrahedron 2005, 61, 11615–11627. (d) Gandhi, V.; Thompson, M. L.; Lash, T. D. Tetrahedron 2010, 66, 1787–1799. (e) Boedigheimer, H.; Ferrence, G. M.; Lash, T. D. J. Org. Chem. 2010, 75, 2518–2527. (14) Acenaphthoporphyrins show promise in the photodynamic treatment of leishmaniasis: Gardner, D. M.; Taylor, V. M.; Cede~ no, D. L.; Padhee, S.; Robledo, S. M.; Jones, M. A.; Lash, T. D.; Velez, I. D. Photochem. Photobiol. 2010, 86, 645–652. (15) Barloy, L.; Dolphin., D.; Dupre, D.; Wijesekera, T. P. J. Org. Chem. 1994, 59, 7976–7985. (16) (a) Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Ruppert, R.; Callot, H. J. J. Am. Chem. Soc. 2002, 124, 6168–6179. (b) Richeter, S.; Jeandon, C.; Kyritsakas, N.; Ruppert, R.; Callot, H. J. J. Org. Chem. 2003, 68, 9200–9208. (c) Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Graff, R.; Ruppert, R.; Callot, H. J. Inorg. Chem. 2004, 43, 251–263. (17) Fox, S.; Boyle, R. W. Chem. Commun. 2004, 1322–1323. (18) Shen, D.-M.; Liu, C.; Chen, Q.-Y. J. Org. Chem. 2006, 71, 6508–6511. See also:Hayashi, S.; Matsubara, Y.; Eu, S.; Hayashi, H.; Umeyama, T.; Matano, Y.; Imahori, H. Chem. Lett. 2008, 37, 846–847. (19) Shen, D.-M.; Liu, C.; Chen, Q.-Y. Chem. Commun. 2005, 4982– 4984. For a photochemical synthesis of a b-hydroxyindenoporphyrin, see:K€opke, T.; Pink, M.; Zaleski, J. M. J. Am. Chem. Soc. 2008, 130, 15864–15871. (20) (a) Bringmann, G.; R€udenauer, S.; G€otz, D. C. G.; Gulder, T. A. M.; Reichert, M. Org. Lett. 2006, 8, 4743–4746. (b) Bringmann, G.; G€otz, D. C. G.; Gulder, T. A. M.; Gehrke, T. H.; Bruhn, T.; Kupfer, T.; Radacki, K.; Braunschweig, H.; Heckmann, A.; Lambert, C. J. Am. Chem. Soc. 2008, 130, 17812–17825. (21) Indaphyrins, secochlorins with two fused indene units, have been reported. (a) McCarthy, J. R.; Hyland, M. A.; Br€uckner, C. Chem. Commun. 2003, 1738–1739. (b) McCarthy, J. R.; Hyland, M. A.; Br€uckner, C. Org. Biomol. Chem. 2004, 2, 1484–1491. 5344

dx.doi.org/10.1021/jo2006895 |J. Org. Chem. 2011, 76, 5335–5345

The Journal of Organic Chemistry (22) Porphyrin analogues with one or more of the pyrrole rings replaced by indene units have also been reported. (a) Lash, T. D.; Hayes, M. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 840–842. (b) Lash, T. D.; Romanic, J. L.; Hayes, M. J.; Spence, J. D. Chem. Commun. 1999, 819–820. (c) Lash, T. D.; Hayes, M. J.; Spence, J. D.; Muckey, M. A.; Ferrence, G. M.; Szczepura, L. F. J. Org. Chem. 2002, 67, 4860–4874. (d) Liu, D.; Lash, T. D. J. Org. Chem. 2003, 68, 1755–1761. (e) Lash, T. D.; Colby, D. A.; Idate, A. S.; Davis, R. N. J. Am. Chem. Soc. 2007, 129, 13801–13802. (f) Jain, P.; Ferrence, G. M.; Lash, T. D. J. Org. Chem. 2010, 75, 6563–6573. (g) Peterson, G. R.; Bampos, N. Angew. Chem., Int. Ed. 2010, 49, 3930–3933. (23) (a) Gill, H. S.; Harmjanz, M; Santamaria, J.; Finger, I.; Scott, M. J. Angew. Chem., Int. Ed. 2004, 43, 485–490. (b) Osawa, K.; Aratani, N.; Osuka, A. Tetrahedron Lett. 2009, 50, 3333–3337. (c) Heo, J. H.; Ikeda, T.; Lim, J. M.; Aratani, N.; Osuka, A.; Kim, D. J. Phys. Chem. B 2010, 114, 14528–14536. (24) (a) Lash, T. D. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; JAI Press: Greenwich, CT, 1995; Vol. 1, pp 1951. (b) Lash, T. D. Org. Geochem. 1989, 14, 213–225. (c) Lash, T. D.; Balasubramaniam, R. P.; Catarello, J. J.; Johnson, M. C.; May, D. A., Jr.; Bladel, K. A.; Feeley, J. M.; Hoehner, M. C.; Marron, T. G.; Nguyen, T. H.; Perun, T. J., Jr.; Quizon, D. M.; Shiner, C. M.; Watson, A. Energy Fuels 1990, 4, 668–674. (25) (a) Lash, T. D.; Catarello, J. J. Tetrahedron 1993, 49, 4159–4172. (b) Quizon-Colquitt, D. M.; Lash, T. D. J. Heterocycl. Chem. 1993, 30, 477–482. (c) Li, W.; Lash, T. D. Tetrahedron Lett. 1998, 39, 8571–8574. (d) Lash, T. D.; Quizon-Colquitt, D. M.; Shiner, C. M.; Nguyen, T. H.; Hu, Z. Energy Fuels 1993, 4, 172–178. (e) Zhang, B.; Lash, T. D. Tetrahedron Lett. 2003, 44, 7253–7256. (f) Lash, T. D.; Li, W.; Quizon-Colquitt, D. M. Tetrahedron 2007, 63, 12324– 12342. (26) (a) Lash, T. D.; Perun, T. J., Jr. Tetrahedron Lett. 1987, 28, 6265–6268. (b) Lash, T. D. Tetrahedron Lett. 1988, 29, 6877–6880. (c) Lash, T. D.; Johnson, M. C. Tetrahedron Lett. 1989, 30, 5697–5698. (d) Lash, T. D.; Balasubramaniam, R. P. Tetrahedron Lett. 1990, 31, 7545–7548. (e) Hu, Z.; Lash, T. D. Synlett 1994, 909–910. (f) Lash, T. D. Tetrahedron 1998, 54, 359–374. (g) Bastian, J. A.; Lash, T. D. Tetrahedron 1998, 54, 6299–6310. (h) Shiner, C. M.; Lash, T. D. Tetrahedron 2005, 61, 11628–11640. (i) Lash, T. D.; Marron, T. G.; Bastian, J. A. Tetrahedron 2007, 63, 12343–12351. (j) Smith, B. E.; Lash, T. D. Tetrahedron 2010, 66, 4413–4422. (27) (a) Baker, E. W.; Palmer, S. E. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. 1, pp 486552. (b) Filby, R. H.; Van Berkel, G. J. In Metal Complexes in Fossil Fuels. Geochemistry, Characterization, and Processing; Filby, R. H., Branthaver, J. F., Eds.; American Chemical Society: Washington DC, 1987; pp 237. (c) Callot, H. J. In The Chlorophylls; Scheer, H., Ed.; CRC Press: Boca Raton, 1991; pp 339364. (d) Callot, H. J.; Ocampo, R. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 1, pp 349398. (e) Czernuszewicz, R. S. J. Porphyrins Phthalocyanines 2000, 4, 426–431. (28) (a) Czernuszewicz, R. S.; Maes, E. M.; Rankin, J. G. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 7, pp 293337. (b) Rankin, J. G.; Czernuszewicz, R. S.; Lash, T. D. Org. Geochem. 1995, 23, 419–427. (c) Rankin, J. G.; Czernuszewicz, R. S.; Lash, T. D. Inorg. Chem. 1995, 34, 3025–3037. (d) Czernuszewicz, R. S.; Rankin, J. G.; Lash, T. D. Inorg. Chem. 1996, 35, 199–209. (e) Rankin, J. G.; Cantu, R.; Czernuszewicz, R. S.; Lash, T. D. Org. Geochem. 1999, 30, 201–228. (f) Cantu, R.; Stencel, J. R.; Czernuszewicz, R. S.; Jaffe, P. R.; Lash, T. D. Environ. Sci. Technol. 2000, 34, 192–198. (g) Boggess, J. M.; Czernuszewicz, R. S.; Lash, T. D. Org. Geochem. 2002, 33, 1111–1126. (h) Czader, A.; Czernuszewicz, R. S. Org. Geochem. 2007, 38, 250–266. (29) Laycock, J. D.; Yost, R. A.; Wang, L.; Quirke, J. M. E. Energy Fuels 1995, 9, 1079–1085. (30) Freeman, D. H.; Saint Martin, D. C.; Boreham, C. J. Energy Fuels 1993, 7, 194–199. (31) Lash, T. D.; Bladel, K. A.; Shiner, C. M.; Zajeski, D. L.; Balasubramaniam, R. P. J. Org. Chem. 1992, 57, 4809–4820.

ARTICLE

(32) Gribble, G. W. Knorr and Paal-Knorr pyrrole syntheses. In Name Reactions in Heterocyclic Chemistry; Li, J. J., Ed.; Wiley: New York, 2005; pp 7988. (33) (a) Arsenault, G. P.; Bullock, E.; MacDonald, S. F. J. Am. Chem. Soc. 1960, 82, 4384–4389. (b) Tarlton, E. J.; MacDonald, S. F.; Baltazzi, E. J. Am. Chem. Soc. 1960, 82, 4389–4395. (c) Cavaleiro, J. A. S.; Rocha Gonsalves, A. M. d’A.; Kenner, G. W.; Smith, K. M. J. Chem. Soc., Perkin Trans. 1 1974, 1771–1781. (34) Lash, T. D. Chem.—Eur. J. 1996, 2, 1197–1200. (35) These results were presented, in part, at the following meetings: (a) 209th ACS National Meeting, Anaheim, CA, April 1995 (Melquist, M. J.; Lash, T. D. Book of Abstracts, CHED 279). (b) 236th ACS National Meeting, Philadelphia, PA, August 2008 (Smith, B. E.; Lash, T. D. Book of Abstracts, ORGN 168). (36) Kleinspehn, G. G.; Corwin, A. H. J. Am. Chem. Soc. 1954, 76, 5641–5646. (b) Jackson, A. H.; Kenner, G. W.; Warburton, D. J. Chem. Soc. 1965, 1328–1337. (c) Smith, K. M.; Minnetian, O. M. J. Org. Chem. 1985, 50, 2073–2080. (37) Gribble, G. W. Barton-Zard Reaction. In Name Reactions in Heterocyclic Chemistry; Li, J. J., Ed.; Wiley: New York, 2005; pp 7078. (38) (a) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46, 7587–7598. (b) Ono, N.; Kawamura, H.; Bougauchi, M.; Maruyama, K. Tetrahedron 1990, 46, 7483–7496. (c) Lash, T. D.; Bellettini, J. R.; Bastian, J. A.; Couch, K. B. Synthesis 1994, 170–172. (39) Jiao, W.; Lash, T. D. J. Org. Chem. 2003, 68, 3896–3901. (40) Some caution must be used when using high dilution conditions as the pyrrolic intermediates can undergo acidolytic fragmentation and recombination reactions that may lead to the formation of isomeric mixtures. See: Lash, T. D.; Chaney, S. T.; Richter, D. T. J. Org. Chem. 1998, 63, 9076–9088. (41) Lash, T. D.; Armiger, Y. L. S.-T. J. Heterocycl. Chem. 1991, 28, 965–970. (42) Medforth, C. J. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 5, pp 180. (43) (a) Cullen, D. L.; Meyer, E. F., Jr. J. Am. Chem. Soc. 1974, 96, 2095–2102. (b) Grigg, R.; Trocha-Grimshaw, J.; King, T. J. J. Chem. Soc., Chem. Commun. 1978, 571–572. (c) Brennan, T. D.; Scheidt, W. R.; Shelnutt, J. A. J. Am. Chem. Soc. 1988, 110, 3919–3924. (d) Alden, R. G.; Crawford, B. A.; Doolen, R.; Ondrias, M. R.; Shelnutt, J. A. J. Am. Chem. Soc. 1989, 111, 2070–2072. (44) Porphyrins and Metalloporphyrins; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; pp 871889. (45) Paine, J. B., III; Dolphin, D. J. Org. Chem. 1985, 50, 5598–5604. (46) Lecas-Nawrocka, A.; Levisalles, J.; Mariacher, C.; Renko, Z.; Rose, E. Can. J. Chem. 1984, 62, 2054–2058.

5345

dx.doi.org/10.1021/jo2006895 |J. Org. Chem. 2011, 76, 5335–5345