Synthesis of phenylethoxycarbene tungsten pentacarbonyl and

One of the most interesting developments in transition organometallic chemistly and catalysis during the last de- cade has been the recognition that ...
1 downloads 0 Views 3MB Size
An Undergraduate Experiment in Homogeneous Catalysis Synthesis of Phenylethoxycarbene Tungsten Pentacarbonyl and Polymerization of Norbornene and Phenylacetylene Dider Villemin Unite Associee 403 C.N.R.S., Ecole Nationale Superieure de Chimie de Paris. 11 rue P. et M.%urie, 75231 Paris Cedex 05-France One of the most interesting developments in transition organometallic chemistly and catalysis during the last decade has been the recognition that metal-carbene complexes ( I ) play an important role in a large variety of different major catalytic processes such as olefin metathesis, cycloolefin ring opening polymerization, the Fischer-Tropsch process, alkyne polymerization to polyenes, alkane metal reactions, and alkane oxidations. Metal carbenes are highly reactive species. However, with a good choice of metal and ligands, and with heteroatoms bound to the carbene, they become less reactive. The first metal-earbene complex was isolated by E. 0. Fischer and A. Maashol(2) in 1964 with the preparation of phenylmethoxycarbene chromium pentacarbonvl. Manv other carhenes of chronium, molybdenum, munganese,and rungsten wrre thereafter prepared using the same methodology 111. The novelty and the relatively common occurrence of these species crrtainly justify a mention ~ in an undergraduate course. However, the designing I I lib oratory experiments to illustrate the chemistry of metal carbenes represents a challenging problem. We have chosen the nhenvlethoxvcarbene tunesten ~entacarbonvl.a Fischertype carhene. Tungsten ht:xucarhonyl was preferred to other metals for its price, toxicity, srahility, and catalytic activity.

metal complexes (e.g., Cr, Mo, Mn) and other organolithium compounds. From an organic point of view the synthesis can be considered as a nucleophilic addition of the phenylcarhahion to the complexed carhonyl carbon. The resulting acylate is very close to a pseudoenolate. I t can he alkylated wit. a hard electrophile (oxonium fluoroborate or diazomethane) at the hard nucleophile site (oxygen) (3).

Synthesis of the Phenylethoxycarbene Tungsten Pentacarbonyl Tungsten hexacarbonyl is transformed into acylate with phenyllithium ( I ) , and the acylate is then alkylated with triethyloxonium fluoroborate (2). This type of synthesis, discovered by Fischer f2), can he extended to other carhonyl

enolate:

. -

-

hard

soft

hard

soft

pseudoenolate

'I't~ngsten hexncarbonyl'.- phenyllithitun.' and triethyluxmitun f l u u r ~ h o r a t e : ~ ~commercinllv arr avuilnhle. hut the latter two are expensive. Phenyllithium ib prepared'in ether from bromobenzene and lithium under argon (3). Phenyllithium (1mL of solution) is titrated with a 0.1 N solution of benzhydrol(18.424 g/L) in toluene with 2,2'-biquinoleineaor 1,3-diphenylacetone p tosylhydrazonebs indicator (4). Triethyloxonium fluoroborate is prepared from epichlorhy-

'

0

.&-magnetic stlrrer Figure 1. Preparation of phenylethoxycarbene tungsten psntacarbanyl.

Caution: All these compounds are toxic and must be manipulated under a hood. Alkylating agents in general are extremely toxic. Et30 + BF,- is poorly volatile and less dangerous than classical alkylating agents. Gloves should be worn when handling Et30+BF,-. The latter is also extremely hygroscopic. Available from Merck. Fluka. Available from Aldrich. Volume 64

Number 2

February 1987

183

-!J a[qEls e auauroqrou aagwar Kraa aql q q ! ~'(sap!rpKq 'sp!ae s p a ? '[qamlhyp) lshpqeaoa pue (xaldrnoa lelam) pK1qeaj0 arn?x!m e moij (&I)suo!year xa~dmoaLq pamroj s! y Kllaraua4 'Lressaaau s! xaldmoa auaqaea-pqam Krearpd ' ( ~ 1 )pasodord paq Lase3 sa auelnqolahaolleqam e e!a aaeld sayel xaldmoa auaqrea aql pue su!ja[o uaamqaq a8ueqa s!saqle?arn u!jaTo jo mroj le!aads e s! uoy -xa~aqA.([I -ez!radlod Bu!uado-Bu!r ayq hlpanbasuoa pue pamloj are qanpord s!saq$qarn s s o ~ a'su!jaro 3![3.tae 30 aauasard aql u~

'6)

:(IOrnN) 81 '0861 S ' LOZ :(9) .%!I),-m3 s 9P6I 's 8861 'S 6802 ,pa$srodanapue $day s! uaqrod pax aql hluo .(auaqleJJO lrsd 1 4 m!p-jo @aM Lq fgmdog) uaao~l!uq$!m paqsnu 13.2 ve!l:s~o umn -103 lroqs B uo paqdazaolemo~q3s! uqnlos aql pus al!p qanolql h[p!dar palallg 'aumuad pa?sua'dicxoap u! paA[oss!p s! pgos aq? :s~o[[ojse pagynd aq hpna ua3 auaqre3 paz!p!xo icp!lred aq& '(Molaq aas) auaqrw pgos morj as" aaojaq lsnr r!e u! parsdard aq ue3 saldmes ~ W puE N 81 ' a q s u a s qs hp$srapoms! ~huoqraawuaduqsSun$ auaqrea ~icuaqd

. . .

.xaldmoa auaqiea pue ugalo uaamlaq a8ueqaxa u s sem dals uo!p8wdord aql leqq pasodord u!nneqn .- (alqeq) . . . . m s.~ u -eqaam umouy aqq iq!m uo$redmoa K g .uo!punoj u! q e q a uoqrsa aqq oq palaauuoa sem days uo!le8edord aqq %u!mp o~ raquaa aa!lae aqq leql paanpap LaqL ' K ~ p ! d e ~ p a m raram ssem repaalom q%!q jo srarnL1od 789%punoj ( 6 ) l a u!a -neq3 auauroqrou pue aualuadopLa jo Bu!uado 8u!r aq? UI .syooq -qxa% u! palearl K1rood L[1eraua8 'uo!laz!ramKlod sugalo jo adLq mau 8 s! su!ja[oopLa jo ramKlod Bu!uado B U ! ~ ' ( a p l aql aas) sale!pamra'+u! se sa![plamoue8rolKqe ro suo!qea 'suo!ue 'simper saqnbar suo!lezpaurKlod asaqljo ms!ueqaam aql 'dals no!le8~dord aql UI ~ ~ m o uare q uoqezt

.

,

. .Jwoai. 'lkuooisa

'11.n

aqx os uoqnlos snoasy a saa!8 pue 1Ia.u Lraa sllams auauioq -rouK[od ,auauroqrouKlod o l uo!pz!ramh[od Bu!uado 8 u p

sumysar aql IN '(9) TJOM s,amoqsuama jo uo!lsldep-e ua s! [icuoq -ra~quaduawZunl auaqlsqhuaqdhxoq~eaql JO u m p ~ e d a ~aqL d ~Auoq~ewwed uals6unl auaqJeafxoylalAueqdl o uo!~e~eda~,j 8 U!

parqs

PUB

(9) ,a$eraqqa ap!ronu!q

.roleraB!rjar uoroq pus ,u!rp

scher carhene like nhenvlethoxvcarbene tunesten ~ e n t a c a r . . bony1 could be used as catalyst (14). Aluminum trichloride rreatlv.enhances the electro~hilicitvof t h e carhene and its activity, h u t i t is not necessary. ~

~

Polymerization of Norbornene

Experimental With Aluminum Trichloride Activator Under a hood, narbornene (1.88 g, 20 mmol), the carbene (21 mg, 0.1 mmol), and a magnetic bar were placed in a round-bottom flask (50 mL) closed by a septum. Nitrogen is introduced by one needle connected with a Tygon-tube from a nitrogen bottle, and a second needle is connected to a bubbler filled with paraffin oil (Fig. 2) (gas flow 1-2 bubbles per second). A slow flow or nitrogen was passed in dichloromethane for 5 min before use. After 10 min of nitrogen purging, dichloromethane (40 mL) is introduced with a syringe into the septum. After complete dissolution, pulverized aluminium triehloride (20 mg, 1.5 mmol) is quickly introduced. After 2 min the mixture is stirred under nitrogen in a water bath (30 'C). The viscosity increases rapidly, and after 5 min the mixture is jelled. After 30 min, the gel is drawn out with a spatula and extracted with THF in a soxhlet giving a yellowish elastic gel. The gel is dried under vaeeum (10Fmin-24 h) to give a dry elastomer (1.70 g, yield 90%) suitable for ohvsical analvsis or swelling demonstration. The rourk-hottom flaiksi: cleaned with a sulfoeh6mic mixture I R r f i l m , ,,. I ll5cm-I and685cm-I Goiefin); 12'J>cm-' and975 cm-! . ~ l t . t i n ) 111 NhlR (('DC'I:,,'I'MS) 6 5 4 ppm multrplet. Frvm the IH udl.a mirture d Z and E ole fin^. the pt,lym~ris nractic. ~

With Thermal Activation Narbornene (4.42 g, 50 mmoi) dissolved in toluene (25 mL) is passed through a short column of basic alumina (dia = 15 mm, h = 60 mm). The carbene (63 mg,0.15mmol) is placed under nitrogen in a round-bottom flask (50 mL) closed by a septum, and the norhornene solution is added (Fig. 3). The stirred solution is heated with a water bath under a very slow current of nitrogen for 4 days a t 50 'C. The gel is treated as above and gives the same spectroscopic results. Alkyne Polymerization to Polyenes T h e second example is t h e phenylacetylene polymerization. T h e polyacetylenes doped with electron donors o r acceptors exhibit a high electrical conductivity, a n d a r e therefore a n important a n d active research area (15).T h e polymerization of acetyelenes into polyenes was first discovered by G. N a t t a in 1958, and, like t h e ring-opening polymerization, t h e mechanism in t h e propagation step involves a metal-carhene complex intermediate (14). Acetylene Polymerization to Polyenes 2n R-C=C-H

-

(-(R)C=CH-(R)C=CH

-1,

propagation s t e p of acetylene polymerization:

~

-

stirrer

5

2. polymerizationof norbarnene (with A I C I activator). ~ (1) Carbene inmduction. (2) nitrogen purging, (3)solvent preparation. (4) solvent inhoduction, (5) addition of AICI3. (6) polymerization. ~i~~~~

Volume 64

Number 2

February 1987

185

Polymerization of Phenylacetylene

Phenylacetylene (3 mL, 2.79 g, 27.3 mmol) in heptane (20 mL) is passed through a short column of basic alumina (dia = 15 min, 60 mm). The carbene (43 mg, 0.1 mmal) is placed under nitrogen in a round-bottom flask (50 mL) with a reflux condenser closed by a septum. The heptane solution is injected into the septum (threeneedles technique) (Fig. 3). The mixture is stirred and refluxed under a slow current of nitrogen for 18 h. T h i colloidal polymer is precipitated with methanol (15 mL) of the suspension centrifuged (3000 rpm, 10 min). The solid is suspended in deoxygenated acetone, centrifuged (3000 rpm, 10 min), and then dried in vacuum (10F mm, 10 h). The hlaek polymer (1.53 g, yield 55%) like other polyacetylenes is air sensitive and turns to a red-orange oxidized polymer in the presence of oxygen.

Physical Data ( 7 ) = 0.06 dllg (toluene) (19)Mw = 24.5 X 1W3andMn = 10.4 X 10-Vrom GPC in THF (weights are those of polystyrene references). The t-butylacetylene is polymerized under the same conditions, and physicoehemical and spectral data are described (18).

Literature Cited

Figure 3 . Polymerization w i t h t h e r m a l

. (1) Carbene intraduction. (2)

a

nitrogen purging. (3) s o l v e n t inlroduclion.'~~popolymeri~ation.

4

We chose phenylacetylene becauseit is t h e most easily available liquid acetylene. However other acetylenes, which like t-butylacetylene can easily he prepared b y a n y s t u d e n t i n organic chemistry from acetone b y pinacolization, pinacolpinacolone rearrangement, halogenation, a n d dehalogenation ( 1 7 ) ,could b e used i n t h e place of t h e phenylacetylene

(19).

1A 6

.lo~~rnal of Chemical Education

6. Moorwein. H. Ow. Synth. 1966,16,120. 6. Darensbnure. M . Y.: Darenshourg, D. J. fnorg, Chrm. 1970, 9, 33: Lam, C. T.;?&Ik i e w i c h . ~ .D.:Sonoff.C.V. lnorg. Synfh. 1977.17,97. 7. Shrive,, D. F. The Manipulation of AirSensiliue Compounds: McGiaw-Hill: New Ynrk. 1969. 8. Ross.J. H. J. Chem. Educ. 1983.60, 169. 9. H P ~ J. ~L.:Cheuvin, ~ ~ ~ Y. ~Mahrom. , Chrm., 1910,141,161: Soumet, J. P.;Commereuc. D.:Chauvin. Y. C.R.Arad. Sci. ISer C) 1973,276. 169. 10. lavisailes. J.; Rudle?, H.; Villemin. D. J. O~#onomdol.Chem. 1978, 116, 259; Leviralle~..J.:Rudler,H.;Villemin, D.: Daran, J.;Jeannin.Y.: Martin, L.J. Orgonomeid Chrm. 1978,156.Cl. 11. Bennett. D. W. J. Chem. Educ. 1980.57.672.

, ~,

~~~~~

mid.A. G . ~ h s m . ' ~ h y a1978,69,5Ck.' : 16. DBI.. K. H.: Keite1.C. G.J. Ormnomeml. Cham. 1975.99.309;Chem.Rer. 1976,109, 2026. 17. Adam&. R.: Adamr. E. W. Or#. Synth. 1932. 1, 438: Hill, G. A,: Flosdorf, E. W.Or#. Synlh. 1932. I , 451:Bahlett.P.D.:Roson, L. J. J.Am.Chem.Soc. 1942.64.343. iR. Katz,'P. J.: 1.re.S. J. J.Am Chrm.Soc. 1980,102,122. 19. Katr.T..I.:Acton. N. TelrohrdronLrft. 1916,1251.