Synthesis of Size-Tunable Polymer-Protected Gold Nanoparticles by

May 8, 2009 - Those seeds are then irradiated by a femtosecond laser-induced white-light supercontinuum to initiate a controlled growth of larger ...
0 downloads 0 Views 3MB Size
9526

J. Phys. Chem. C 2009, 113, 9526–9531

Synthesis of Size-Tunable Polymer-Protected Gold Nanoparticles by Femtosecond Laser-Based Ablation and Seed Growth Se´bastien Besner, Andrei V. Kabashin, Franc¸oise M. Winnik,† and Michel Meunier* Laser Processing Laboratory, Department of Engineering Physics, E´cole Polytechnique de Montre´al, CP6079, Succ. Centre-Ville, Montre´al, QC, Canada, H3C 3A7 ReceiVed: October 20, 2008; ReVised Manuscript ReceiVed: March 25, 2009

A femtosecond laser-assisted method has been developed to produce stable, size-tunable (3 to ∼80 nm) and low dispersed gold nanoparticles. The method implies the formation of initial nanosized seeds (5 µΜ) resulted in a sedimendation of the nanoparticles over several hours, yielding a pinkish powder on the bottom of the vial. Nevertheless, the particles were readily redispersed by sonication. This result is very encouraging as it indicates that the polymer is strongly

9530

J. Phys. Chem. C, Vol. 113, No. 22, 2009

bound to the gold surface, even though the gold/polymer interaction involves rather weak individual hydrogen bounds. In particular, bare gold-gold aggregation usually results in the formation of black sediment, which was never observed in the case of polymer-stabilized NPs. Polymer Degradation Study. An experimental study of the fate of the polymers upon laser irradiation of their aqueous solution in the presence of gold (Supporting Information for details) revealed that the laser treatment triggers some low level of polymer degradation in all cases except PNIPAM, which proved to be inert to the conditions employed. For all other polymers, laser irradiation resulted in some level of degradation, presumably via oxidative processes as evidenced by the formation of carbonyls functionalities recognized by their signatures in infrared spectra (bands in the 1720 to 1740 cm-1 range). Oxidation may be induced by free electrons generated during the conversion of the 800 nm radiation into white-light pulses. Our calculations (not shown) also demonstrated a net increase of the free electron density in the surrounding of the gold nanoparticles due to local field amplification and thermionic effects. This effect could explain the enhancement of the degradation by the laser irradiation in the presence of the gold nanoparticles as seen in our case and by other authors.48 Femtosecond laser interaction with gold nanoparticles might also lead to explosive boiling of the surrounding water layer and to some cavitation effects,49 resulting in the production of free radicals (e.g., H• and OH•).50 These radicals could also participate in the degradation process. However, all of those degradation pathways were small in our experimental conditions, but should be enhanced by an increase of either the laser energy or the numerical aperture, both leading to higher electron and plasma densities in the solvent and in the surrounding of the nanoparticles. The effect of laser energy, numerical aperture, and solution oxygen degassing on polymers’ degradation is currently investigated and will be published elsewhere. Conclusion In summary, we proposed a two-step laser based technique that makes possible the formation of size-controlled, low dispersed (∼20%), and functionalized spherical nanoparticles in aqueous solution in the size range of 2 to ∼80 nm. Unlike the previous seeded growth approaches, this technique does not require multiple growth-reshaping stages36 or centrifugation-based purification51 to remove unwanted anisotropic nanostructures. In addition, it does not require an intermediate capping agent such as citrate or cetyl trimethylammonium bromide. Efficient size control was achieved by fixing the polymer-to-gold molar ratio of the solution before the second white-light irradiating procedure. Various bioconjugates were produced using this approach and we expect that such products will provide a new entry to families of nontoxic and functional gold NPs, which are crucial for many biomedical applications. Acknowledgment. The authors acknowledge the financial contribution from the Natural Sciences and Engineering Research Council of Canada, the Fonds que´be´cois de la recherche sur la nature et les technologies, and Canadian Institute for Photonics Innovations. Supporting Information Available: Polymers’ degradation induced by the laser process is addressed. Polymers’ chemical information (GPC, NMR, and FTIR) before and after the laser

Besner et al. treatment are given. This material is available free of charge via the Internet at http://pubs.acs.org. References and Notes (1) Daniel, M. C.; Astruc, D. Chem. ReV. 2004, 104, 293. (2) Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003, 125, 4700. (3) Jain, K. K. Clin. Chim. Acta 2005, 358, 37. (4) Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Chem. Eng. Sci. 2006, 61, 1027. (5) Maxwell, D. J.; Taylor, J. R.; Nie, S. M. J. Am. Chem. Soc. 2002, 124, 9606. (6) Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115. (7) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 7, 801. (8) Frens, G. Nature: Phys. Sci. 1973, 241, 20. (9) Kumar, S.; Gandhi, K. S.; Kumar, R. Ind. Eng. Chem. Res. 2007, 46, 3128. (10) Ackerson, C. J.; Jadzinsky, P. D.; Kornberg, R. D. J. Am. Chem. Soc. 2005, 127, 6550. (11) Zhu, T.; Vasilev, K.; Kreiter, M.; Mittler, S.; Knoll, W. Langmuir 2003, 19, 9518. (12) Aslan, K.; Perez-Luna, V. H. Langmuir 2002, 18, 6059. (13) Sweeney, S. F.; Woehrle, G. H.; Hutchison, J. E. J. Am. Chem. Soc. 2006, 128, 3190. (14) Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. ReV. 2007, 107, 2228. (15) Yang, G. W. Prog. Mater. Sci. 2007, 52, 648. (16) Neddersen, J.; Chumanov, G.; Cotton, T. M. Appl. Spectrosc. 1993, 47, 1959. (17) Mafune, F.; Kohno, J. y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2002, 106, 7575. (18) Nichols, W. T.; Sasaki, T.; Koshizaki, N. J. Appl. Phys. 2006, 100, 114912. (19) Sylvestre, J. P.; Kabashin, A. V.; Sacher, E.; Meunier, M. Appl. Phys. A: Mater. Sci. Process. 2005, 80, 753. (20) Pyatenko, A.; Shimokawa, K.; Yamaguchi, M.; Nishimura, O.; Suzuki, M. Appl. Phys. A: Mater. Sci. Process. 2004, 79, 803. (21) Tsuji, T.; Kakita, T.; Tsuji, M. Appl. Surf. Sci. 2003, 206, 314. (22) Kabashin, A. V.; Meunier, M. J. Appl. Phys. 2003, 94, 7941. (23) Chen, Y. H.; Yeh, C. S. Colloids Surf., A 2002, 197, 133. (24) Haibo, Z.; Weiping, C.; Yue, L.; Jinlian, H.; Peisheng, L. J. Phys. Chem. B 2005, 109, 18260. (25) Liang, C. H.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Appl. Phys. A: Mater. Sci. Process. 2005, 80, 819. (26) Mafune, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H. J. Phys. Chem. B 2000, 104, 9111. (27) Kabashin, A. V.; Meunier, M.; Kingston, C.; Luong, J. H. T. J. Phys. Chem. B 2003, 107, 4527. (28) Qiu, X. P.; Winnik, F. M. Macromolecules 2007, 40, 872. (29) Tiera, M. J.; Qiu, X. P.; Bechaouch, S.; Shi, Q.; Fernandes, J. C.; Winnik, F. M. Biomacromolecules 2006, 7, 3151. (30) Kandidov, V. P.; Kosareva, O. G.; Golubtsov, I. S.; Liu, W.; Becker, A.; Akozbek, N.; Bowden, C. M.; Chin, S. L. Appl. Phys. B: Lasers Opt. 2003, 77, 149. (31) Besner, S.; Kabashin, A. V.; Meunier, M. Appl. Phys. Lett. 2006, 89, 233122. (32) Liu, Y. L.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L. Anal. Chem. 2007, 79, 2221. (33) Bhumkar, D. R.; Joshi, H. M.; Sastry, M.; Pokharkar, V. B. Pharm. Res. 2007, 24, 1415. (34) Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. J. Phys. Chem. B 2005, 109, 9404. (35) Yamada, K.; Tokumoto, Y.; Nagata, T.; Mafune, F. J. Phys. Chem. B 2006, 110, 11751. (36) Pyatenko, A.; Yamaguchi, M.; Suzuki, M. J. Phys. Chem. C 2007, 111, 7910. (37) Aguirre, C. M.; Moran, C. E.; Young, J. F.; Halas, N. J. J. Phys. Chem. B 2004, 108, 7040. (38) Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 6152. (39) Zhang, J.; Worley, J.; Denommee, S.; Kingston, C.; Jakubek, Z. J.; Deslandes, Y.; Post, M.; Simard, B.; Braidy, N.; Botton, G. A. J. Phys. Chem. B 2003, 107, 6920. (40) Chen, Y. H.; Tseng, Y. H.; Yeh, C. C. J. Mater. Chem. 2002, 12, 1419. (41) Kamat, P. V.; Flumiani, M.; Hartland, G. V. J. Phys. Chem. B 1998, 102, 3123.

Polymer-Protected Gold Nanoparticles (42) Takami, A.; Kurita, H.; Koda, S. J. Phys. Chem. B 1999, 103, 1226. (43) Mie, G. Ann. Phys. Leipzig 1908, 25, 377. (44) Sylvestre, J. P.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Am. Chem. Soc. 2004, 126, 7176. (45) Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935. (46) Adams, G. G.; Cui, Y. X.; Mitchell, J. H.; Taylor, M. J. Rheol. Acta 2006, 45, 611. (47) Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Anal. Chim. Acta 2004, 517, 139.

J. Phys. Chem. C, Vol. 113, No. 22, 2009 9531 (48) Takeda, Y.; Kondow, T.; Mafune, F. J. Phys. Chem. B 2006, 110, 2393. (49) Kotaidis, V.; Plech, A. Appl. Phys. Lett. 2005, 87, 3. (50) Wang, X. K.; Yao, Z. Y.; Wang, J. A.; Guo, W. L.; Li, G. L. Ultrason. Sonochem. 2008, 15, 43. (51) Rodriguez-Fernandez, J.; Perez-Juste, J.; de Abajo, F. J. G.; LizMarzan, L. M. Langmuir 2006, 22, 7007.

JP809275V