Synthesis of Tellurium Nanostructures by Physical Vapor Deposition and Their Growth Mechanism Shashwati Sen,† Umananda M. Bhatta,‡ Vivek Kumar,§ K. P. Muthe,† Shovit Bhattacharya,† S. K. Gupta,*,† and J. V. Yakhmi†
CRYSTAL GROWTH & DESIGN 2008 VOL. 8, NO. 1 238–242
Technical Physics & Prototype Engineering DiVision, Bhabha Atomic Research Centre, Mumbai, India - 400085, Institute of Physics, SachiValaya Marg, Bhubaneswar, Orissa, India - 751005, and Department of Physics, Barkatullah UniVersity, Bhopal, M. P. 462026, India ReceiVed February 23, 2007; ReVised Manuscript ReceiVed September 4, 2007
ABSTRACT: One-dimensional tellurium nanostructures have been prepared by thermal evaporation in a tubular furnace under argon gas flow at a pressure of 1 atm. The depositions were found to occur along the length of the quartz tube with microrods deposited at higher temperatures (350–400 °C) and nanotubes at lower temperatures (200 mL/min), flux of Te vapors at the deposition temperature is very high, and this is detrimental to the growth of 1D structures.
4. Conclusions Te nanowires and nanotubes have been grown by thermal evaporation of Te powder and chunks in a tubular furnace under argon gas flow. The microstructure of Te was found to be dependent on the evaporation and condensation temperatures and the gas flow rate. At low temperatures, below the melting point of Te we observed the growth of Te nanowires on the surface of Te chunks. At a furnace temperature of 550 °C, Te nanotubes were deposited on the walls of quartz tube in the low temperature zone of the furnace. The growth of these structures has been understood on the basis of Te crystal structure and the vapor solid growth process. It is seen that the growth mechanism involves nucleation of spherical particles followed by growth of 1D structures due to anisotropic
Sen et al.
properties. Initial growth of 1D nanorods is followed by evolution into nanotubes at lower Te flux. Therefore, the source and growth temperatures as well as gas flow rate need be critically adjusted to get good deposition of nanotubes.
References (1) Sen, S.; Bhandarkar, V.; Muthe, K. P.; Roy, M.; Deshpande, S. K.; Aiyer, R. C.; Gupta, S. K.; Yakhmi, J. V.; Sahni, V. C. Sens. Actuators, B 2006, 115, 270–275. (2) Kaur, M.; Bhattacharya, S.; Roy, M.; Deshpande, S. K.; Sharma, P.; Gupta, S. K.; Yakhmi, J. V. Appl. Phys. A 2007, 87, 91–96. (3) Xia, Y.; Yang, P.; Sun, Y.; Yu, Y.; Mayer, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. AdV. Mater. 2003, 15, 353–389. (4) Kolobov, A. V. J. Non-Cryst. Solids 1996, 728, 198–200. (5) Kastner, M.; Fritzsche, H. Phil. Mag. B 1978, 37, 199. (6) Okuyama, K.; Kumagai, Y. Jpn. J. Appl. Phys. 1973, 12, 1884–1889. (7) Janda, M.; Kubovy, A. Phys. Status Solidi A 1976, 35, 391–402. (8) Granveaud, M.; Petroff, Y. Phys. Status Solidi A 1970, 3, 629–638. (9) Selbach, A.; Kanert, O.; Wolf, D. Phys. ReV. B 1979, 19, 4435–4443. (10) Mayer, B.; Xia, Y. AdV. Mater. 2002, 14, 279–282. (11) Mayer, B.; Xia, Y. J. Mater. Chem. 2002, 12, 1875–1881. (12) Zheng, R.; Cheng, W.; Wang, E.; Dong, S. Chem. Phys. Lett. 2004, 395, 302–305. (13) Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. AdV. Mater. 2002, 14, 1658–1662. (14) Liu, Z.; Hu, Z.; Xie, Q.; Yang, B.; Wu, Ji.; Qian, Y. J. Mater. Chem. 2003, 13, 159–162. (15) Liu, Z.; Hu, Z.; Liang, J.; Li, S.; Yang, Y.; Peng, S.; Qian, Y. Langmuir 2004, 20, 214–218. (16) Chen, X.; Wang, Z.; Wang, X.; Wan, J.; Qian, Y. Appl. Phys. A: Mater. Sci. Process. 2005, 80, 1443–1445. (17) Yin, H.; Xu, Z.; Bai, J.; Bao, H.; Zheng, Y. Mater. Lett. 2005, 59, 3779–3782. (18) Liu, X.; Mo, M.; Chen, X.; Qian, Y. Inorg. Chem. Commun. 2004, 7, 257–259. (19) Liu, Z.; Li, S.; Yang, Y.; Hu, Z.; Peng, S.; Liang, J.; Qian, Y. New J. Chem. 2003, 27, 1748–1752. (20) He, Z.; Yu, S.-H.; Zhu, J. Chem. Mater. 2005, 17, 2785–2788. (21) Zhao, A.; Zhang, L.; Pang, Y.; Ye, C. Appl. Phys. A: Mater. Sci. Process. 2005, 80, 1725–1728. (22) Zhao, A. W.; Ye, C. H.; Meng, G. W.; Zhang, L. D.; Ajayan, P. M. J. Mater. Res. 2003, 18, 2318–2322. (23) Geng, B.; Lin, Y.; Peng, X.; Meng, G.; Zhang, L. Nanotechnology 2003, 14, 983–986. (24) Métraux, C.; Grobéty, B. J. Mater. Res. 2004, 19, 2159–2164. (25) Mohanty, P.; Kang, T.; Kim, B.; Park, J. J. Phys. Chem. 2006, 110, 791–795. (26) Nishida, I.; Kimoto, K. Jpn. J. Appl. Phys. 1975, 14, 1425–1432. (27) Xi, G.; Peng, Y.; Yu, W.; Qian, Y. Cryst. Growth Des. 2005, 5, 325– 328. (28) Cao, X.; Xie, Y.; Gao, W. Cryst. Growth Des. 2005, 5, 1295–1301.
CG070185M