73 Synthetic Erionite and Selective Hydrocracking H. E. ROBSON, G. P. HAMNER, and W. F. AREY, JR.
Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
Esso Research Laboratories, Humble Oil & Refining Co., Baton Rouge, La. 70821
Erionite has been synthesized at 100°-150°C from a (Νa,Κ) aluminosilicate gel with SiO /Al O = 10. X-ray and elec tron diffraction results on the product show intergrowths of the related offretite structure, which is a hrge-pore zeolite. Adsorption capacity for n-hexane is consistent with the density but adsorption rates are far slower than for zeolite A. Adsorption rates for n-octane are even slower but still better than for natural erionite. Hydrocracking tests on a C /C naphtha show strong selectivity for converting normal paraf fins to C4- gas, particularly propane. As temperature is in creased, other components of the naphtha feed are cracked and selectivity decreases. 2
2
3
5
6
R e d i t e A , a l t h o u g h a n excellent adsorbent, has never seen w i d e u s e as a catalyst f o r p e t r o l e u m processes.
T h i s is p r o b a b l y because o f its
l o w s i l i c a / a l u m i n a r a t i o w h i c h makes i t u n s t a b l e i n t h e h y d r o g e n f o r m . Nevertheless,
processes s u c h as octane i m p r o v e m e n t a n d p o u r p o i n t
r e d u c t i o n c o u l d benefit f r o m a catalyst w h i c h w o u l d operate o n l y o n straight-chain hydrocarbons—i.e.,
a catalyst b a s e d o n a s m a l l - p o r e zeo
lite. E r i o n i t e appears to b e t h e p r i m e c a n d i a t e f o r this service b e c a u s e i t has b o t h a t h r e e - d i m e n s i o n a l 5 - A p o r e system a n d h i g h s i l i c a content (Si0 /Al 0 2
2
Synthesis
3
~ 7 ) .
Experiments
T h e synthesis of erionite w a s r e p o r t e d b y Z h d a n o v (11)
i n 1965.
T h e m e d i u m w a s d e s c r i b e d as a m i x e d sodium—potassium a l u m i n o s i l i c a t e h y d r o g e l at 9 0 ° - 1 0 0 ° C
b u t f u r t h e r details are n o t g i v e n .
Breck a n d
417
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
418
M O L E C U L A R SIEVE ZEOLITES
II
A c a r a ( 1 ) h a d r e p o r t e d earlier t h e synthesis of zeolite T , w h i c h appears to b e erionite as f a r as c a n b e seen f r o m t h e p r i n c i p a l x-ray lines. T h e results of o u r synthesis experiments are g i v e n i n F i g u r e 1, w h i c h plots 2 o f t h e 4 c o m p o s i t i o n v a r i a b l e s r e q u i r e d to d e s c r i b e t h e synthesis gel of 5 components ( N a 0 · K 2
2
0 · A1 0 2
3
· Si0
2
*H 0 ) .
T h e system i s
2
c o m p a r a t i v e l y less sensitive t o t h e other 2 c o m p o s i t i o n v a r i a b l e s : K (K 0 2
+
Na 0) 2
and H 0 / S i 0 . 2
2
2
0 /
E x p e r i m e n t s i n F i g u r e 1 a r e at 0.25
K 0 / ( K 0 -f- N a 0 ) ; t h e results w o u l d b e n e a r l y t h e same i f this ratio 2
2
2
w e r e 0.20 o r 0.30. B e y o n d this range, c r y s t a l l i z a t i o n o f other
zeolite
phases becomes p r e d o m i n a n t . Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
Silica sol was the S i 0
2
source f o r a l l these experiments. A n a l u m i n a t e
liquor was prepared b y dissolving alumina trihydrate i n hot N a O H - K O H s o l u t i o n . A f t e r c o o l i n g t o r o o m t e m p e r a t u r e , the ( N a , K ) A 1 0 l i q u o r w a s 2
b l e n d e d w i t h 4 0 % s i l i c a s o l u s i n g a h i g h - s p e e d m i x e r . W a t e r content o f the synthesis g e l w a s h e l d t o a m i n i m u m ; r e d u c t i o n o f w a t e r has c o n sistently
g i v e n better erionite
H 0/Si0 2
2
crystallinity.
F o r high-silica formulas,
w a s 16; as s i l i c a w a s decreased, w a t e r content w a s r e d u c e d
u n t i l at the l o w s i l i c a e n d , H 0 / S i 0 2
2
= 6.
T h e g e l w a s c r y s t a l l i z e d i n c l o s e d containers to p r e v e n t e v a p o r a t i o n loss. C r y s t a l l i z a t i o n t i m e r a n g e d f r o m 1 to 5 days d e p e n d i n g o n g e l c o m p o s i t i o n a n d c r y s t a l l i z a t i o n temperature.
F i g u r e 1 shows t h e ranges of
g e l c o m p o s i t i o n w h e r e t h e p r o d u c t is s u b s t a n t i a l l y p u r e erionite. T h e b o u n d a r i e s are n o t sharp b u t rather represent areas of d e c r e a s i n g erionite crystallinity i n the product. I n c r e a s i n g the c r y s t a l l i z a t i o n t e m p e r a t u r e f r o m 1 0 0 ° t o 150 ° C sub s t a n t i a l l y increases t h e erionite c r y s t a l l i z a t i o n area.
J 10 2
2
good
ι
1
15
20
Si0 /Al 0 Figure 1.
A t 150 ° C ,
3
Erionite synthesis from silica sol, 0.25 K 0 / ( K 0 + minimum water 3
2
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Nafi),
73.
ROBSON E T
Synthetic
AL.
Erionite
419
erionite p r o d u c t s w e r e o b t a i n e d w i t h 10 S i 0 / A l 0 a n d 16 h o u r s ' c r y s t a l 2
2
3
l i z a t i o n t i m e . T h e change i n s i l i c a content of t h e erionite p r o d u c t is o n l y f r o m 7 to 6 S i 0 / A l 0 2
Comparison
2
3
as t h e g e l changes f r o m 20 to 10 S i 0 / A l 0 . 2
with Natural
2
3
Erionite
N a t u r a l erionite, u n l i k e most other n a t u r a l zeolites, occurs i n deposits large e n o u g h a n d p u r e e n o u g h to b e u s e d f o r c o m m e r c i a l purposes ( 3 ) . S e v e r a l h i g h - q u a l i t y deposits are k n o w n i n N e v a d a a n d O r e g o n .
Natural
Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
erionite has some properties w h i c h are definite l i a b i l i t i e s f o r c a t a l y t i c purposes. O b v i o u s l y , n a t u r a l erionite contains a w h o l e s p e c t r u m of i m p u r i t i e s s u c h as F e , T i , C a , M g , a n d C u w h i c h m a y b e
objectionable.
F u r t h e r , t h e n a t u r e of the f o r m a t i o n process p r a c t i c a l l y guarantees v a r i a t i o n i n q u a l i t y w i t h i n a single deposit (4).
S y n t h e t i c erionite, a l t h o u g h
m o r e expensive, s h o u l d b e d e p e n d a b l e i n q u a l i t y .
Table I.
Erionite X - R a y Diffraction Patterns
I/h hkl
d
100 101 002 110 102 200 201 103 202 210 211 300 212 104 302 220 213 310 204 311 312 400 214 401 402 410 322
11.47 9.37 7.55 6.61 6.30 5.72 5.35 4.61 4.56 4.326 4.158 3.814 3.754 3.587 3.401 3.304 3.278 3.173 3.148 3.106 2.923 2.860 2.842 2.811 2.675 2.497 2.479
Natural 100 8.5 7.8 41 4.9 5.3 6.9 4.1 5.8 25 11 14 40 21 0.8 17 6.2 6.6 13 3.3 6.5 27 21 22 7.3 5.6 8.8
Synthetic 100
*
4.0 41 2.8 3.3
* *
3.9 31 4.5* 12 36 15 0.6 11 1.3* 5.1 12
*
4.4 30 25 5.7* 7.1 5.6 10
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
420
M O L E C U L A R SIEVE ZEOLITES
II
A s e c o n d a n d m o r e subtle area o f difference is i n t h e c r y s t a l l o g r a p h y of the erionite p h a s e itself (10). T a b l e I c o m p a r e s x - r a y d i f f r a c t i o n i n t e n sities of l o w angle lines f o r a n a t u r a l erionite (Jersey V a l l e y , N e v . ) a n d a synthetic erionite p r e p a r e d at E s s o R e s e a r c h L a b o r a t o r i e s . T h e agree m e n t is q u i t e g o o d except f o r those lines w h i c h h a v e b e e n m a r k e d b y a n astrisk i n d i c a t i n g a n i n t e n s i t y of less t h a n h a l f o f that f o r n a t u r a l erionite. W i t h o u t e x c e p t i o n , the d e s i g n a t e d lines ( 101, 201, 103, 211, 213, 311, a n d 401) h a v e o d d values f o r t h e " 1 " i n d e x . F u r t h e r , t h e i r intensities are s u b s t a n t i a l l y less t h a n t h e reference. S u c h a n effect is u n d e r s t a n d a b l e i n v i e w o f t h e d i s t i n c t i o n b e t w e e n Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
erionite a n d offretite structures p u b l i s h e d b y B e n n e t t a n d G a r d (2, 9 ) . T h e d e s i g n a t e d lines are f o r b i d d e n f o r t h e offretite structure.
G a r d has
e x a m i n e d o u r synthetic erionite p r o d u c t b y e l e c t r o n d i f f r a c t i o n a n d f o u n d " d i s o r d e r e d i n t e r g r o w t h w i t h w i d e l y v a r y i n g p r o p o r t i o n s of erionite a n d offretite structures" ( 8 ) . Adsorption
Properties
S i n c e offretite is a l a r g e - p o r e structure, i n t e r g r o w t h o f offretite i n t h e erionite phase w o u l d b e e x p e c t e d to affect t h e a d s o r p t i o n p r o p e r t i e s . T a b l e I I compares a d s o r p t i o n capacities f o r n a t u r a l a n d synthetic erionite w i t h Z e o l i t e A ( C a ) a n d synthetic faujasite ( N a ) ( 4 . 8 S i 0 / A l 0 ) . A s 2
2
3
e x p e c t e d , t h e m o r e dense erionite structure shows l o w e r c a p a c i t y ( 5 ) . T h e r e is s u b s t a n t i a l agreement
b e t w e e n n a t u r a l a n d synthetic
erionite
c a p a c i t y ; the difference shows i n a d s o r p t i o n rates ( D/r ). T h e l o w a p p a r 2
ent d i f f u s i v i t y of η-paraflîns i n erionite is s o m e w h a t a m y s t e r y since there does n o t a p p e a r t o b e that m u c h difference i n p o r e d i m e n s i o n s b e t w e e n erionite a n d zeolite A as p r e d i c t e d f r o m t h e i r structures ( 6 ) . T h e differ ence cannot b e a t t r i b u t e d t o crystallite size since t h e n a t u r a l erionite s a m p l e (laths, 0.5 μ d i a m e t e r o r less) has finer c r y s t a l l i t e size t h a n a n y of t h e synthetic materials ( 1 - 5 μ ). Table II.
Adsorption Capacities n-Hexane
Sample
Capacity"
Faujasite (Na) Zeolite A ( C a ) Natural Erionite Synthetic Erionite ( N a , K ) Synthetic Erionite (H)
1.68 0.83 0.57 0.68 0.50
n-Octane
Diffusivity
b
137 2.1 0.23 2.4 10 c
Capacity
0
Diffusivity
1.06 0.80 0.32 0.27 0.35
° M i l l i m o l e s a d s o r b a t e / g r a m zeolite (20- t o 35-mesh granules). A p p a r e n t d i f f u s i v i t y (D/r ) s e c Χ 10 (6). Desorption. b
2
- 1
3
0
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
46 2.3 0.024 5.5 5.1 c
73.
Synthetic
ROBSON E T AL.
421
Erionite
T h e difference is m o r e n o t a b l e i n η-octane a d s o r p t i o n w h i c h is s h o w n i n the last 2 c o l u m n s of T a b l e I I . Z e o l i t e A shows s u b s t a n t i a l l y t h e same c a p a c i t y a n d a d s o r p t i o n rate f o r η-octane as for n-hexane. B u t f o r e r i o n i t e , b o t h n a t u r a l a n d synthetic, η-octane
capacities,
a n d particularly the
a d s o r p t i o n rates are s u b s t a n t i a l l y r e d u c e d . H e r e the difference b e t w e e n synthetic a n d n a t u r a l erionite a d s o r p t i o n rate is q u i t e large. I t is possible that this is a n effect of r e s i d u a l K cations. H o w e v e r , s i m p l e exchange of +
Na
+
a n d K f o r H s h o w e d l i t t l e change. +
+
W e believe the more probable
e x p l a n a t i o n is t h e i n t e r g r o w t h of offretite i n t h e erionite c r y s t a l . T h e large offretite channels c o u l d g i v e m o r e r a p i d d i s t r i b u t i o n o f t h e sorbate Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
m o l e c u l e w i t h i n the synthetic erionite c r y s t a l . Hydracracking
Tests
T h e s e materials w e r e tested as catalysts f o r t h e selective c o n v e r s i o n of n o r m a l paraffins. T h e use of 5 A zeolites as shape-selective
catalysts
w a s first d e s c r i b e d b y E n g ( 7 ) ; i t has b e e n d e v e l o p e d s u b s e q u e n t l y b y several authors.
F o r this p u r p o s e , the e x c h a n g e d zeolites w e r e i m p r e g
n a t e d w i t h 0 . 5 % P d , m a d e i n t o 14- to 35-mesh granules ( s e l f - b o n d e d ), a n d p r e r e d u c e d w i t h h y d r o g e n at 8 5 0 ° F . C /C 5
6
T h e feedstock w a s a n A r a b i a n
n a p h t h a stream, selected because of its h i g h η-paraffin
content
( o v e r 4 0 % ) . T h e n i t r o g e n content of t h e f e e d w a s less t h a n 1 p p m , s u l f u r less t h a n 10 p p m . T e s t c o n d i t i o n s w e r e 7 5 0 ° F ( e x c e p t w h e r e other w i s e n o t e d ) , 500 p s i g , 0.5 V / V / h r , a n d 2000 s t d . c u f t H / b b l .
The
2
catalyst w a s s u l f i d e d b y a d d i n g 0 . 2 5 % C S t o t h e f e e d . 2
p r o d u c t s w e r e e v a l u a t e d b y G C a n d M S analyses.
L i q u i d a n d gas
Individual
p e r i o d s w e r e 7 hours l o n g ; m u l t i p l e tests o n the same catalyst
balance charge
gave t o t a l exposures u p to 200 h o u r s .
Table III.
Hydrocracking of C5—CQ Naphtha by Zn-Exchanged Zeolites
Catalyst (Na 0 + 2
Base
K 0)/A1 0 2
Conversion, W t % n-Pentane n-Hexane Other
2
3
Natural Erionite
Synthetic Erionite
Faujasite
Zeolite A
0.24
0.11
0.33
0.20
60 79 52
62 86 15
81 98 25
93 99+ 36
T a b l e I I I compares results f r o m erionite catalysts w i t h faujasite a n d zeolite A , a l l i n t h e z i n c - e x c h a n g e d f o r m . Z i n c w a s u s e d to o b t a i n a n a c t i v e f o r m of zeolite A w h i c h is stable to these c o n d i t i o n s . E r i o n i t e is less a c t i v e t h a n faujasite f o r c o n v e r s i o n of t h e t o t a l n a p h t h a f e e d t o C 4
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
422
M O L E C U L A R SIEVE ZEOLITES
Table I V .
Hydrocracking by Different Cationic Forms of Synthetic Erionite
Catalyst Base (Na 0 + 2
K 0)/A1 0 2
2
Conversion, W t n-Pentane n-Hexane Other
Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
Table V .
II
Zn-Erionite
3
%
H-Erionite
RE-Erionite
0.20
0.31
0.24
93 99+ 36
96 99+ 41
97 99+ 27
Effect of Temperature on Hydrocracking with R E - E r i o n Temp.,
Conversion, W t n-Pentane n-Hexane Other
°F
%
Table V I .
Ci C C i-C n-C i-C n-C Branched-Ce n-C Branched C7 MCP CH MCH Benzene 3
4
4
B
5
6
700
750
52 30 8
91 99+ 15
97 99+ 27
Feed and Product Composition, W t
Component
2
650
Feed 0.0 0.0 0.0 0.0 0.2 9.8 16.2 38.7 25.0 0.5 6.3 1.0 0.0 2.2
%
Product 0.7 3.2 36.6 1.7 6.6 7.1 1.4 34.4 0.2 0.4 4.3 0.6 0.2 2.6
a n d l i g h t e r m a t e r i a l s , b u t it is c o n s i d e r a b l y m o r e a c t i v e f o r c o n v e r t i n g n - p e n t a n e a n d n-hexane. Z e o l i t e A is s t i l l less active b u t is m o r e selective f o r c o n v e r t i n g o n l y the n o r m a l paraffin c o m p o n e n t . C o m p a r e d w i t h nat u r a l e r i o n i t e , the synthetic erionite catalyst is m o r e active f o r c o n v e r s i o n of b o t h t o t a l f e e d a n d the n - p a r a f f i n c o m p o n e n t .
It is less selective f o r
o p e r a t i n g o n l y o n the n o r m a l paraffins. E r i o n i t e c a n be u s e d i n other c a t i o n i c forms i n c l u d i n g the h y d r o g e n a n d rare e a r t h f o r m s . A s e x p e c t e d , these g i v e i m p r o v e d a c t i v i t y as s h o w n in Table IV.
T h e h y d r o g e n f o r m is t h e m o s t active b u t also the least
selective, p o s s i b l y because the test c o n d i t i o n s are too severe.
T h e rare
e a r t h e x c h a n g e d f o r m ( n a t u r a l m i x t u r e less c e r i u m ) is just as a c t i v e f o r c o n v e r t i n g n o r m a l paraffins b u t m o r e selective. A g a i n , the c o n d i t i o n s are
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
73.
ROBSON E T
Synthetic
AL.
423
Erionite
too severe, a n d better results c a n b e a c h i e v e d b y a c c e p t i n g less t h a n e x t i n c t i o n of t h e n-parafBns. T h i s is c o n f i r m e d b y T a b l e V , w h i c h shows the t e m p e r a t u r e effect. A t 6 5 0 ° F , n-hexane c o n v e r s i o n i s o n l y 3 0 % ; this is consistent
w i t h l o w e r a d s o r p t i o n rates o b s e r v e d f o r t h e h i g h e r n -
paraffins. A t 7 0 0 ° F a n d a b o v e , t h e greater s t a b i l i t y of n - p e n t a n e b e c o m e s the c o n t r o l l i n g factor; n-hexane is s u b s t a n t i a l l y e x t i n g u i s h e d .
Selectivity
at 7 0 0 ° F is better t h a n t h e earlier results w i t h zeolite A at 7 5 0 ° F . C o m p o s i t i o n of f e e d a n d p r o d u c t f r o m t h e rare-earth erionite catalyst at 7 0 0 ° F are g i v e n i n T a b l e V I . The
question
remains
w h y t h e other
components,
principally
Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
b r a n c h e d paraffins, are c o n v e r t e d at a l l . S e v e r a l explanations c a n b e offered, n o n e c o m p l e t e l y satisfactory.
N o t a l l t h e p a l l a d i u m is i n s i d e t h e
z e o l i t e cages b u t m a y b e p a r t i a l l y o n e x t e r n a l surfaces a n d n o n z e o l i t e c o m p o n e n t s , a m o r p h o u s m a t e r i a l w h i c h is either t h e r e s i d u e of i n c o m plete c r y s t a l l i z a t i o n o r the p r o d u c t of zeolite d e c o m p o s i t i o n i n subsequent treatments.
Since x-ray c r y s t a l l i n i t y is u n i f o r m l y h i g h , t h e a m o r p h o u s
c o m p o n e n t s h o u l d b e q u i t e s m a l l . B r a n c h e d paraffins c a n penetrate t h e zeolite surface f a r e n o u g h to b e c r a c k e d .
H i g h t e m p e r a t u r e alters t h e
selective a d s o r p t i o n properties o f t h e zeolite, w h i c h w e r e o b s e r v e d at l o w temperature.
Offretite i n t e r g r o w t h s p r o v i d e e n o u g h surface i n larger
d i a m e t e r pores p a r t i a l l y to c o n v e r t b r a n c h e d a n d c y c l i c m o l e c u l e s .
There
is some t r u t h i n a l l o f these b u t w e p r e f e r t h e latter.
Literature Cited (1) Breck, D. W., Acara, Ν. Α., U. S. Patent 2,950,952 (1960). (2) Bennett, J. M., Gard, J. Α., Nature 1967, 214, 1005-6. (3) Deffeyes, K. S., "Molecular Sieves," Society of Chemical Industry, Lon don, 1968. (4) Deffeyes, K. S., Am. Mineralogist 1959, 44, 501-9. (5) Eberly, P. E., Jr., Am. Mineralogist 1964, 49, 30-40. (6) Eberly, P. E., Jr., Ind. Eng. Chem. Prod. Res. Develop. 1969, 8, 140-4. (7) Eng, Jackson, U. S. Patent 3,039,953 (1962). (8) Gard, J. Α., private communication. (9) Sheppard, R. Α., Gude, A. J., Am. Mineralogist 1969, 54, 875-86. (10) Staples, L. W., Gard, J. Α., Mineral. Mag. 1959, 32, 261-81. (11) Zhdanov, S. P., Izv. Akad. Nauk SSSR, Ser. Khim. Nauk 1965 (6) 950-9. RECEIVED February 10, 1970.
Discussion F . W . K i r s c h ( S u n O i l C o . , M a r c u s H o o k , P a . 19061): D i d y o u i n f e r a n y conclusions a b o u t r e a c t i o n m e c h a n i s m f r o m the n a t u r e o f the p r o d u c t distribution?
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
424
M O L E C U L A R SIEVE ZEOLITES
II
H . Robson: W e w e r e p r i m a r i l y interested i n the h y d r o c r a c k i n g of n-pentane a n d n-hexane to l o w m o l e c u l a r w e i g h t gases, p r i n c i p a l l y p r o p a n e . T h e r e w e r e m i n o r s e c o n d a r y effects s u c h as i s o m e r i z a t i o n . I. M . Keen ( B r i t i s h P e t r o l e u m C o . , L t d . , M i d d l e s e x , E n g l a n d ) : F i r s t , h o w d i d y o u i m p r e g n a t e the p a l l a d i u m hydrogénation
c o m p o n e n t onto
y o u r catalysts—i.e., w h a t salt d i d y o u use? S e c o n d l y , d i d y o u notice any differences i n the h y d r o c r a c k e d p r o d u c t d i s t r i b u t i o n f r o m C - C r
6
naphtha
u s i n g y o u r different i o n - e x c h a n g e d forms o f the erionite catalyst? H . Robson: P a l l a d i u m was d e p o s i t e d o n the z e o l i t e p o w d e r b y ex change w i t h P d ( N H ) C l Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
8
4
2
s o l u t i o n . W e d i d not observe significant d i f
ferences i n p r o d u c t d i s t r i b u t i o n b e t w e e n c a t i o n i c f o r m s o f erionite, b u t of course w e w e r e l o o k i n g p r i m a r i l y f o r the d i s a p p e a r a n c e o f n-pentane a n d n-hexane. R. C . Hansford ( U n i o n O i l C o . of C a l i f o r n i a , B r e a , C a l i f . 9 2 6 2 1 ) : T o w h a t extent m i g h t some a m o r p h o u s s i l i c a - a l u m i n a b e responsible f o r the p o o r selectivity—i.e., are the synthetic p r o d u c t s c o m p l e t e l y c r y s t a l l i n e ? H . Robson: W e k n o w that the s y n t h e t i c erionite p r o d u c t is h i g h l y c r y s t a l l i n e f r o m the intensity of x-ray d i f f r a c t i o n peaks a n d the absence of the a m o r p h o u s " h a l o / ' U n f o r t u n a t e l y , this does not p r o v e the s a m p l e is f u l l y c r y s t a l l i n e . I f a m o r p h o u s m a t e r i a l is present, i t s h o u l d b e at a v e r y l o w level. Ν . Y . Chen ( M o b i l R e s e a r c h & D e v e l o p m e n t C o r p . , P r i n c e t o n , N . J. 08540 ) : I t m i g h t b e of interest to the a u d i e n c e , p a r t i c u l a r l y to those w h o are not f a m i l i a r w i t h t h e a p p l i c a t i o n o f zeolites i n i n d u s t r i a l c a t a l y t i c processes, to m e n t i o n that since t h e d i s c o v e r y of catalysis over shapeselective zeolite first p u b l i s h e d b y W e i s z a n d F r i l e t t e i n 1960, a c o m m e r c i a l process b a s e d o n selective h y d r o c r a c k i n g reactions s i m i l a r to that r e p o r t e d i n this p a p e r has b e e n i n o p e r a t i o n o n a large scale i n m o r e t h a n f o u r of o u r refineries since 1967. A t e c h n i c a l p a p e r d e s c r i b i n g this process, k n o w n as the S e l e c t o f o r m i n g process, was p u b l i s h e d i n 1968. H . Robson: W e h a v e no p a r t i c u l a r c o m m e n t except that p r i o r i t y of i n v e n t i o n is d e t e r m i n e d b y patents r a t h e r t h a n p u b l i c a t i o n i n journals. D . L . Peterson ( C a l i f o r n i a State C o l l e g e , H a y w a r d , C a l i f . 9 4 5 4 2 ) : D i d y o u examine the t e m p e r a t u r e d e p e n d e n c e o f selectivity a n d conver s i o n o f the Z n or H forms of either the synthetic or the n a t u r a l erionites? H . Robson: R e d u c t i o n o f r e a c t i o n t e m p e r a t u r e i m p r o v e s selectivity of Z n a n d H f o r m s of erionites, as w e l l as rare earth e x c h a n g e d f o r m s . D . A . Hickson ( C h e v r o n R e s e a r c h C o . , R i c h m o n d , C a l i f . 9 4 8 0 2 ) : C a n y o u c o m m e n t o n the s t a b i l i t y of a c t i v i t y a n d p r o d u c t s e l e c t i v i t y w i t h t i m e o n stream?
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
73.
ROBSON E T AL.
Synthetic
425
Erionite
H . Robson: O u r tests w e r e s h o r t - t e r m s c r e e n i n g tests; b a l a n c e p e r i o d s w e r e six h o u r s , t o t a l t i m e o n t e m p e r a t u r e u p to t w o or three days.
How
ever, w e w e r e a b l e to repeat the i n i t i a l results after this m u c h exposure. A s f a r as c a n be d e t e r m i n e d f r o m s h o r t - t e r m tests, catalyst l i f e appears satisfactory. Question: D o y o u h a v e a n y e s t i m a t i o n of the i n t e r n a l vs.
external
surface area of the erionite? H . Robson: B a s e d o n a p a r t i c l e size of a b o u t one m i c r o n o b s e r v e d i n the e l e c t r o n m i c r o g r a p h s , w e estimate a b o u t 3 m / g e x t e r n a l surface a r e a , 2
Downloaded by PURDUE UNIV on October 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch073
w h i c h is less t h a n 1 % of t o t a l surface area.
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.