Tables of Ozone Properties

Tables of selected data on ozone properties are presented in Tables I, II, and III. ACKNOWLEDGMENT. The author thanks A.V. Grosse for helpful suggesti...
0 downloads 0 Views 553KB Size
Table It. Cobalt Extraction Is Unchanged in Presence of Nickel Metal in Feed, G./L. Ni co 30.871 30.871 30.871 30.871

3.024 1.515 0.760 0.377

Wt. Ratio, Co to Ni 0.0979 0.0490 0.0246 0.0122

Co after Extraction, G./L. Raffinate Extract 1.514 0.756 0.384 0.177

aqueous extracts or raffinates by precipitation as sulfides. Another approach t o metal recovery is electrodeposition. T h e calcium chloride solution remaining after deposition of nickel from aqueous raffinates could be recycled t o effect necessary process economy. CONCLUSIONS Furfural is a n effective selective solvent for the separation of cobalt from nickel when present as chlorides in aqueous solutions. Calcium chloride is a n excellent complexing additive. High purity nickel and cobalt may be obtained via a process based on this extraction system. T h e general utility of furfural as a n extraction solvent for metal separations has been further substantiated.

1.509 0.756 0.376 0.200

eo

Distribution Coeff. 1.0 1.0 1.0 1.1

Probable Error,

70 3.2 5.3 10.1 8.6

LITERATURE CITED Brown, L.H., Cole, F.K. (to The Quaker Oats Co.), U.S. Patent 2,943,912 (July 5, 1960). Cole, F.K., Brown, L.H., I d . Erg. Chem. 51, 58 (1959). Garwin, L., Hixson, A.N., Ibid., 41, 2298, 2303 (1949). Kylander, R.L., Garwin, L., Chem. Eng. Progr. 47, 186 (1951). Lutjen, G.P., Erg. Mining J. 155 (6), 81 (1954). Nicholson, I.W., Brooks, P.T., Clemmer, J.B., Rocky Mountain Minerals Conf., A.I.M.E., Salt Lake City, Utah, Sept. 17, 1958. Riaamonti, R., Spaccamela-Marchetti,E., Chim. e id. (Milan) 36r91 (1954). Sharp, R.A., Wilkinson, G., J . Am. Chem. SOC.77, 6519 (1955). RECEIVED for review September 19, 1960. Accepted December 30, 1960.

Tables of Ozone Properties A. G. STRENG The Research Institute of Temple University, Philadelphia 44, Pa.

O Z O N E is a highly active, allotropic form of oxygen. I t has been known since 1785, t h e year in which van M a r u m observed t h e formation of this gas in a n electric spark discharge in oxygen. Schoenbein recognized ozone in 1840 as a new substance. Soret showed in 1866 t h a t t h e chemical composition of ozone is t h a t of triatomic oxygen. At ordinary temperatures, ozone is a gas, is light blue in color, a n d has a characteristic pungent odor from which its name was derived from t h e Greek word ozein, t o smell. T h e odor permits recognition of ozone in concentrations down t o about 0.1 p.p.m. Gaseous ozone is a highly active, irritating, oxidizing substance. It is characterized by its strong oxidizing power a n d by t h e tendency t o revert t o molecular oxygen according t o t h e reaction

os-+ % 0 2 T h e rate of reaction depends upon the temperature, pressure, and concentration of the ozone. T h e reaction proceeds slowly a t ordinary temperatures, b u t fairly quickly, even t o VOL. 6 , NO. 3, JULY 1961

t h e velocity of thermal explosion, a t elevated temperatures. I n addition, the reaction is catalyzed by many sensitizers. Low temperatures contribute t o t h e conservation of ozone. I n t h e liquid phase, ozone has a n indigo-blue color. At temperatures around 90" K. (-183" C.), liquid ozone may be kept without noticeable decomposition for long periods. Fast warming t o t h e boiling point or rapid cooling causes explosions. T h e liquid ozone must be evaporated or frozen, therefore, very slowly with appropriate precautions. Liquid ozone can be supercooled readily. Solid ozone has a deep blue-violet color. A layer 0.2 t o 0.5 mm. is transparent, but soIid ozone in a layer 1 mm. thick is almost opaque. Solid ozone ( a t 77.35" K.) was compressed t o 22.5 atm. without any difficulty. Slight impact a n d slight friction a t t h a t temperature did not cause a n explosion. Gaseous, liquid, or solid ozone explodes easily if exposed t o heat, spark, flame, or shock. When working with highly concentrated ozone, improper handling may cause a violent explosion. A knowledge of t h e properties and safety pre43 1

cautions is very important. Impurities sensitize t h e ozone vigorously. I n recent years, ozone h a s attracted attention as a highenergy chemical with a potential use in powerful propellant and explosive systems. Being a n endothermic compound and a highly active oxidizer, ozone can b u m a n d detonate by itself and in combination with various fuels. Ozone also represents the simplest combustible a n d explosive system. When combined with fuels, ozone produces systems with much higher energy content than does oxygen. Much work has been devoted t o t h e investigation of properties of ozone. T w o surveys of ozone literature have been made (IO,36), b u t since then much more has been published. A critical review and compilation of ozone d a t a have become a necessity. Tables of selected data on ozone properties are presented in Tables I , 11, a n d 111.

Brabets, R.I., Waterman, T.E., Ibid., 28, 1212 (1958). Brinner, E., Porretted, E., Helu. Chim. Acta 22. 397 (1939). Brown, C., Berger, A.W., Hersh, C.K., J. Chek. Phys. 23, 1340 (1955). Cook,.G.A., Spading, E., Kiffer, A.D., Clumpp, C.V., Ind. Eng.Chem. 48,736 (1956). Danti, A., Lord, R.C., J . Chem. Phys. 30, 1310 (1959). 55, 713 (1959). Gill, E.K., Laidler, K.J., Trans.Faraday SOC. Grosse, A.V., Streng, A.G., "Study of Ultra High Temperatures," Tech. Note 4, Research Institute, Temple University, Philadelphia, Pa., Aug. 1, 1957; U.S. Dept. of Commerce, Office of Technical Services, Washington, D. C., PB 131732. Grosse, A.V., Streng, A.G., U.S. Patent 2,298,529 (March 15, 1960). Guenther, P., Waesmuth, E., Schryver, L.A., - 2. physik. Chem. A158,297 (1932). Harper, S.A., Gordon, W.E., Advances in Chem. Ser. No. 21, 28 (1959). Hersh, C.K., Berger, A.W., Brown, J.R.C., Ibid., p. 22. Chem. Ser. 21, ACS, Washington, D. C., 1959. Henh, C.K., Brabets, R.I., Platz, J.M., Swehla, R.J., Kinh, D.P., A m . Rocket SOC.J.30,264 (1960). Hoslowski, S.A., Ph.D. dissertation, University of Missouri, 1956. Hughes, R.H., J . Chem. Phys. 24,131 (1956). Jenkins, A.C., Birdsall, C.M., Ibid., 20, 1158 (1952). Jenkins, A.C., Di Paolo, F.S., Birdsall, C.M., Ibid., 23, 2049 (1955). Jenkins, A.C., Di Paolo, F.S., Ibid., 25,296 (1956). Klein, M.J., Klevelent, F.F., Meister, A.G., Zbid., 19, 1068 (1951). Miller, R.O., J.Phys. Chem. 63, 1054-7 (1959). .

ACKNOWLEDGMENT The author thanks A.V. Grosse for helpful suggestions and L.V. Streng for help in t h e systematization of this material. LITERATURE CITED (1) Benson, S.W., Axworthy, A.E., Jr., J. Chem. Phys. 26, 1718

(1957). (2) Birtsall, C.M., Jenkins, A.C., Di Paolo, S.F., Ibid., 23, 441 (1955). (3) Brabets, R.I., McDonough, J.M., Ibid., 27, 880 (1957).

I

(Continued on page 436) Table I. Pure Ozone Reference (3)

Reference Molecular weight

48.0

Molecular structure

Triangular, apex angle 116"49'

Molecular constants

Interatomic distance 1.278 ( 4 9 , xlO-'cm.; collision diam- 3 7 , ~ ) eter 3.35 x cm.; vibration frequency 3.164 ~ 1 0 - l ~set.-'; dipole moment 0.53 Debye unit; asymmetry parameter, L = 4.031 x centrifugal distortion constant, D K = 1.96 x lo-' cm.?

Specific volume of liquid

ozone,temp. range V =0.551 77.4"-174.2" K. (-195.8"+ (6.25 x lo-') T -99.0" C.), cc./g. + (3.35 x

Melting point

80.7 f 0.4" K. (-192.5 j=0.4" C.)

(20)

Boiling point

161.3 f 0.3" K. (-111.9 0.3" C.)

(18)

*

Density

Gaseous, at NTP Liquid K. c. 77.4 -195.8 77.6 -195.6 77.8 -195.4 85.2 -188.0 87.6 -185.6 90.2 -183.0 90.2 -183.0 90.3 -182.9 103.2 -170.0 123.2 -150.0 153.2 -120.0 -112 161 Solid K. c. 77.4 -195.8

~~~

Vapor pressure

Temp. range 90.2243.2" K., (-183"-30" C.), mm. Hg At 80.2' K., -193.0' C. (triple point of ozone) At 90.2" K., -183.0" C. (b.P. 0 2 )

(18)

Log P = 8.25313 - 814.941587/ T - 0.001966943 T

6.18 atm. (90.8 p.s.i.)

Critical temperature

261.1" K. (-12.1" C.)

(28)

Critical pressure, derived

fromcritical temperature 54.6 atm. Cdtical volume

432

147.1 cc./mole

1.613 (supercooled) 1.6130 f O.OOO4 1.614 f 0.004 1.595 f 0.003 1.5839 f 0.0011 1.571 f 0.003 1.574 1.5727 f 0.0004 1.536 1.473 1.376 1.354 f 0.001

1.728 f 0.002 +7.1%

(31) (10, 24, 20)

Viscosity

0.10 111111. Hg

At 195" K., -78.2" C., dry ice temperature

2.1415 g./liter

~

Volume expansion on melting

0.00859 mm. Hg

(36)

T2

Gaseous K. c. 298 25 273 0 195 -78 Liquid 77.6

-195.6

90.2 161.3

-183.0 -111.9

Poise 133 x lo-' 127 x 107 x lo-'

1

1549 - 945 d 0.0414 f 0.0005 (supercooled) 0.0156 f 0.0002 0.00272

JOURNAL OF CHEMICAL AND ENGINEERING DATA

Table I. Pure Ozone (Continued) Activation energy

At

c.

K. 77.2 90.2 90.5

Dynes/ Cm. 43.8 i 0.1 38.4 i 0.7 38.1 f 0.2

-196.0 -183.0 -182.7

(14) (14) (20)

Heat of formation

Gaseous, at 291" K., 18" C. Constant volume Constant pressure Liquid, at 90.19" K., -183.0" C. Solid, at 80.7" K., -192.5" C. Heat of vaporization,

Kcal. / Mole 34.220 f 0.180 33.923 f 0.180

(12)

29.83 f 0.20

(31)

29.3

(31)

3.630

at b.p.

(15)

0.5

Heat of fusion (estd.) Heat conductivity

c.

K.

Cal./G. C.

Heat capacity

O

(-183" to -123" C.) K. c. 90 -183 150 -123

1 atm., 298" K., 25" C.

Cal./ (Sec.)(Sq. Cm.) C./Cm.) 3.3 x

25 O

c.

(39)

5.52 5.42 5.31 5.21

-128.0 -165.0 -183.0 -195.8

x 10-0 (1-5%) x x lo-' x

Cal./G. C.

Heat capacity

Liquid, temp. range 90"-150" K.. (-183" to -123" C.) K. c. 90 -183 150 -123

(4)

C, = 0.425 + 0.0014(T - 90)

Heat Content Function, Enthropy, OK. ( H o - H o o / T ) So

8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347

(35)

7x

mjoules (16 x lo-' cal.)

Thermal explosion limits, 111111. Hg.

(max. and min., calcd.) Vessel, Liters 1 oC. 0.5 535-1020 424-810 70 275-525 348-656 80 174-332 90 222-424 118-225 149-285 100 101-193 80-153 110

Burning velocity,

Free Enerm, Functioi,-(F- Ho"/T)

51.171 43.208 53.519 45.505 _. . ~ . 47.308 55.444 48.749 57.046 48.798 57.105 58.590 50.095 59.949 51.245 52.282 61.219 53.231 62.375 63.460 54.111 As a Real Gas in Ca1.i" Mole

At 1 atm. 200 7.951 298.15 8.272 350 8.481 At 5 atm. 200 7.665 298.15 8.173 350 8.415 At 10 atm. 298.15 8.048 350 8.332

Heat Capacity,

c,"

8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955

53.474 57.030 58.579

45.531 48.757 50.100

50.094 53.765 55.335

42.436 45.593 46.922

8.987 9.564 10.059

52.305 53.901

44.257 45.570

9.761 10.190

Coefficients of thermal expansion

range 77"-17P K., (-196" to -98" C.)

VOL. 6, NO. 3, JULY 1961

2 336-640 218-416 138-264 94-180 64-122

(2,21)

,. K.

O

(calcd.)

c.

As an Ideal Gas in Ca1.i" Mole At 1 atm. 150 7.961 250 298.15 300 350 ... 400 450 500 550

0.425 0.509

Gaseous, 1atm., 298" K., initiation by shock 9.2 mole % O1in oxygen wave Liquid, 90" K., -183" C., initiation by electrical 18.6 mole % 03 spark in liquid 02

OK. 343 353 363 373 383

0.425 0.509

Thermodynamic quantities of ozone

8.022

C, = 0.425 + 0.0014(T- 90)

Inflammability limits

Liquid

200 _-

(4)

Liquid, temp. range 90"-150" K.,

(O

(calcd.)

K. 145.2 108.2 90.2 77.4

of thermal decomposition of gaseous ozone, low pressure M +'30 M + 02 + 0 24,000 cal. (for M = 03) Rateof energization K , = 4.61 0.25 x 10" exp. (-24,000/ R T ) , liter mole-' set.-'

Minimum ignition energy

Gaseous

298

Reference (1)

Reference

Surface tension

a = 0.551

b = 6.25 x lo-' y = 3.35 x

(3)

298 273 233 195 161

70 63 20

25 0 -40 -78 -112

Pressure. Atm. 1 2 5 10 100 Cm./Sec. Gaseous (Reference 2 3 , 2 8 , 3 4 ) 472 & 12" 488 504 529 ... 420 ... ... ... ... 325 ... ... *.. ... 270 i 7" 282 295 304 317 205 ... ... ... ... Liquid (Reference 24) 0.361 0.738 ... 3.84 ... (161" K., (172.5" K., (206" K., -112" c. -100.7" C.) -67" C.) initial temp.)

Solid (Reference 25) 0.301 0.294 0.274

-203 -210 -253

Flame temperature

Atm. 1 2

5 10

1 2

5

10

(calcd.) K. c. K. Gaseous (Referenre 2 3 , 2 8 , 3 4 ) 298 25 2677 298 25 2716 298 25 2761 298 25 2789 195 -78 2648 195 -78 2683 195 -78 2723 195 -78 2748 O

433

Table Flame temperature (continued)

1 1 1

Pure Ozone (Continued)

Reference

Liquid (Reference 24) 161 -112 172.5 -100.7 206 -67 Solid (Reference 25) 20 -253 63 -210 70 -203

1 2 10

I.

Reference

Gaseous, 1atm., 298" K., 25" C. Liquid 96" K., -177" C.

2400 2414 2436 2287 2339 2346

1863 + 20 meten/sec.

(32)

5730 f 460 meters/sec.

(22)

Detonation temperature (calcd.)

Flame pressure (calcd.)

1atm., 298" K., 25" C., 4.1 mm. Hg

Detonation velocity

(34)

Gaseous, 1atm., 298" K., 25" C. Liquid, 90" K., -183" C.

3340" K. 3140" K.

Quenching diameter

in cylinder 1atm., 298" K., 25" C., 90 microns

Detonation pressure

(11,351

Quenching diameter VI.pressure

in cylinder a t 298" KI, 25" C. Log d, = 1.953 - 1.111 L o g P d, in microns; P i n Atm. (35)

(32)

Gaseous 1atm., 298" K., 25" C. Liquid 90" K., -183" C .

30 atm. 4 x 10' atm.

Quenching diameter n. temperature,

in cylinder at 1 atm. d, = 347.5 - 0.864 T d, in microns; Tin K.

(35)

Critical boundary

velocity adient for flash b a c c a t 1atm., 298" K., 25" C .

Gaseous ozone Liquid ozone

0.002 x 10-6cgs units 0.150 x lo-' cgs units

Molar extinction coefficients

g/ = 2.9 X lo6 MC.-'

(35)

Minimum gas flow or flash back flow

at 1atm., 298" K., 25" C. Burner Tube, Internal Diameter, Cm.

Min. Flow, cc./sec.

0.0&5

I

0.1 0.2 0.3 0.6 0.8 1.0 2.0

(35)

29 232 725 6090 14500 29000 232000

K. 273 283 293 303 313 323 333

c.

-183 -170 - 155 -126 -111 -98 -88

Gas a t 295" K. 3360 cm.-' mole-' lit. at 252 mp (ultraviolet) 1.32 cm.-' mole-' lit. at 605 mp (visible) 80.00 cm.-' mole-' lit. at 9.49p (infrared) Liquid at 77" K. 2.00 cm.-' mole-' lit. at 600mp, dissolved in liquid oxygen 3.10 cm.-' mole-' lit. at 600mp, dissolved in 23 vol. % Freon 12 + 77 vol. % Freon 13 mixture. Solubility in water

Dielectric constant, at 1 kilocycle/sec.

K. 90 103 ii8 147 162 175 185

Magnetic susceptibility

4.75 4.33 .~ 3.85 3.33 3.01 2.91 2.78 ~

C. 0 10 20 30 40 50 60

G./Liter 1.13 0.875 0.688 0.563 0.450 0.369 0.307

Bunsen Coefficient, Liter Gas in 1Liter Water 0.526 0.408 0.321 0.258 0.210 0.172 0.143

Heat of solution

in water a t 291" K., 18" C.

3904 cal./mole

a Experimental.

Table

II. Mixtures of Ozone with Oxygen

mole % liquid 03

93.3 zt 0.5" K., -179.9 f 0.5" C. Ozone concentration in liquid phases (reference 10) 0 3

in original Mixture

K.

90.2

77.5

C.

-183.0

-195.7

Mole %

17.6 18.2 30.8 40.0 50.0 66.7 67.2 6.9 18.2

30.8 40.0 50.0 66.7 84.3 434

Reference

Phase boundaries,

Consolute temp.

Wt. % 24.27 25.0 40.0 50.0 60.0 75.0 75.45 10.0 25.0 40.0 50.0 60.0 75.0 89.0

In Upper Phase, Wt. % 24.27 23.92 16.8 12.04 7.32 0.21 0.00 10.0 8.10 6.20 4.93 3.67 1.77 0.00

In Lower Phase,

wt. %

90.0" K., -183.2" C. 77.5" K., -195.7" C.

Mole % 0 3 85.0 90.0 95.0 98.0

1.80

0.00

16.90 33.80 45.07 56.33 73.23 89.00

In Lower Phase 67.2 84.3

(6, 19)

Vapor pressure data, extrapolated

0.00 23.20 37.96 52.68 74.79 75.45

In Upper Phase 17.6 6.9

to 760 mm. K. OC. 94.1 -179.1 97.2 -176.0 106.1 -167.1 122.3 -150.9

Density

At 90" K., -183.2" C . Mole % O3 18.1 72.2 81.0 95.2 100.0

G./Cc. 1.2334 1.4596 1.5050 1.5489 1.574

(20)

JOURNAL OF CHEMICAL AND ENGINEERING DATA

Table II. Mixture of Ozone with Oxygen (Continued)

Reference

Reference Viscosity at 90.2" K.,

(20)

-183.0" C.

Burning velocity (confinuedj

Log 7 = XI Log p oz + xz Log p 03(f5%) xl and x z = mole fractions of 02 and 0 3 7 03 = 1.56 Cp.; p Oz = 0.190 Cp.

Solid (calcd.) Reference 25) 1Atm.at"K. Mole 7% Os 20 63 50 0.0380 0.0505 75 0.147 0.170 100%03 0.274 0.294

Latent heat of vaporization

Mole % 0s in Os + OzMixture Kcal./Mole 100 3.630 90 1.422 80 1.499 1.586 60 40 1.642 20 1.642 10 1.642 0 1.642

(15)

70

...

0.173 0.301

Quenching diameter,

in cylinder, 1atm., 298" K., 25" C. Mole % O3 15.0 25.0 50.0 75.0 100.0

Mm. 5.000 1.650 0.390 0.165 0.090

(11,35)

Quenching diameter, us. 03 Concentration Critical boundary velocity gradient for flash back,

at 1atm., 298" K., 25" C. Mole % 03 g/= 8.0 X 10' WC. -I 25 40 8.3 x io3 50 2.1 x 10' 1.1x los 75 100 2.9 x 10' Minimum gas flow or flash back flow

at 1 atm., 298" K., 25" C. Burner Tube Internal Diameter, Cm. 25 0.065 0.1 0.2 0.3 0.6 ..0.8 1.0 2.0

... ... ...

...

17 40 80 640

(35)

(reference 35)

Minimum Gas Flow, Cc./Sec. 40 50 75 100 Mole % ... ... 3 7 ... 2 11 29 7 17 88 232 21 53 275 125 174 441 2310 6090 5500 14500 1050 415 29000 2100 11OOO 830 232000 16800 88OOO 6640

Minimum ignition energy

1Atm., 25" C. Initial Gas Temp.

Mole % 0 s 25.0 50.0 75.0 100.0

Mjoules 1.25 x lo-' 2.9 x 3.3 x io-' 7 x 10-6

or

Calories 0.3 x 10-~ 0.7 x 7.8 x lo-' 16 x 1 0 - ~

Burning velocity

Gaseous (Reference 10,28,34) 1Atm., 195" K., 1Atm., 298" K., 25" c. -78" c. Mole % 03 17 9.2 *.. 20 18.2 ... 24 ... 18.0 28 52.2 ... 36 ... 44.0 40 128.4 ... 46 165.9 ... 53 210.1 ... 58 ... 132.0 75 331.2 82 ... 209:o 100 472 f 12 270 f 7 Liquid (calcd.) (Reference 24) 1Atm. 2 Atm. 10 Atm. Cm. Initial Cm. Initial Cm. Initial per temp., per temp., per temp., Mole % O3 sec. OK. sec. OK. set. OK. 50 0.0774 150.5 0.155 187.5 160.5 0.78 2.31 198 75 0.227 156.5 0.456 167 100 0.361 161 206 0.738 172.5 3.84

VOL. 6, NO. 3, JULY 1961

in cylinder, 1atm., 298" K., 25" C. (35) Lo d, = 6.189 - 2.118 Log x ; d, in microns; z in vol. % 0 3 In cyfinder, 1atm., 195" K., -78" C. Log d, = 6.403 - 2.113 Log x (35) (calcd.) Gaseous, 1Atm., 298" K., 25" C. (Reference28) Mole % O3 K. 18.18 1027 40.00 1687 66.67 2277 100.00 2677 Liquid (Reference 24) 1Atm. 2 Atm. 10 Atm. Initial Flame Initial Flame 'Initial Flame temp., temp., temp., temp., temp., temp., Mole%Os OK. OK. O K . O K . OK. OK, 50mole% 0 3 150.5 1509 160.5 1508 187.5 1507 75mole% 03 156.5 2029 167 2030 198 2031 100 % 0 3 161 2400 172.5 2414 206 2436 Solid (Reference 25) Mole % O3 50mole % 03 20 1371 63 1445 75mole % 03 20 1894 1960 63 70 1969 20 2287 100 % 0 3 63 2339 70 2346

Rnme temperature

Detonation velocity

Gaseous, 1Atm., 298" K., 25" C. (Reference32) Mole % O3 Meter/Sec. 25.0 1290 50.0 1633 f 20 75.0 1782 f 40 100.0 1863 f 20 Liquid (Reference22) Mole % O3 Meter/Sec. 58.0 4160 f 140 65.1 4500 f 80 77.6 5100 & 180 89.5 5600 + 60 100.0 5730 k 460 Conversion of mole %, to wt. % O3

(mole % 0 3 ) x 214.4 142.9 + 0.715 (mole % 0,)

In oxygen

Wt. % 0 3 =

In air

(mole % 0 8 ) 214.4 Wt' % O3= 129.3 + 0.851 (mole % 0 3 )

435

Table Ill. Mixtures of Ozone with Various Gases Miscibilityand reactivity

Miscibility and reactivity (confinved)

Temperature pressure, K. oC. Mm.Hg Gaseous Phase (Reference29,33) Hz + O3mixtures 195-294 -78-+21 504-1061 (CN)z + 2/3 0 3 273 0 774 (CN), 2/3 03 296 +23 557 CHa + 4/3 0 3 195-294 -78-+21 778-910 CO + 113 0 3 195 -78 752 Nz0 + 0 3 195-273 -78-0 765 NO + 1 / 3 03 195 -78 785 NH3 + 1 / 2 0 3 273 0 765 PH3 + 4/3 0 3 195 -78 760 SOz + 113 0 3 273 0 760

Time, Hm. 3-20" ..2" 18* 1-22c

... d

3"

K. 0 3

Fz OFz OxF,

+ +03 + 0,

0zFz

0 3

0 3

+0

3

CClzFz + 03 CFa+ 0:1 CClFa + 0 s

90

77 77 77 90

(23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33)

+ +

Burning velocities 0 3

+ Hz mixtures,

B. Velocity, Cm./Sec.

6.0 207 f. 5 12.0 664 f 57 18.2 1290 f 20 18.5 1330 f 30 25.0 1680 i 80 Mixtures with higher concentration Osexploded 03 + (CN), mixtures, 1 atm. 273" K., 0" C. 25.0 6of 3 33.3 242 f 12 40.0 285 f 6 Mixtures with higher concentration 0 3 exploded

12'

OC. -183" -196"' -196" -196" -183'

Slow reaction.

Sandri, R., Can. J . Chem. 36,1210 (1958). Sandri, R., Combustionand Flame 2,348 (1958). Sandri, R., Combustion and Flame 4, 284 (1960). Schumacher, H.J., Anales msoc. q u h . arg. 41, 197-264 (1953). Streng, A.G., Grow, A.V., Advances in Chem. Ser. No. 21, 38 (1959). Streng, A.G., Grosse, A.V., J . Am. Chem.SOC.78, 1517 (1957). Ibid., 79,3296 (1957). Ibid., p. 5583. Ibid., 81,805 (1959). Streng, A.G., Stokes, C.S., Streng, L.A., J . Chem. Phys. 29, 458 (1958). Streng, A.G., Grosse, A.V., J . Inorg. & Nuclear Chem. 9, 315 (1959).

(34) Streng, A.G., Grosse, A.V., 6th Symposium on Combustion, Reinhold, New York, 1957. (35) Streng, A.G., Grosse, A.V., "Quenching Diameter of Ozone

436

+

...

d

Slow decomposition of 03F~.Upon warming to 116" K., the mixture explodes 116 -157' At cooling to 90" K., OzFzpartially crystallizes out. Upon warming above 195" K., the mixture explodes 90 -183' 116 -1574' 116 -157' 90 -183' 116 -157' Only about 12 wt. % 0 3 is soluble in CF, -188' 85 Only about 10 wt. % 03 is soluble in Ar 77 -196' Only 4.41 f 0.14 mole % 0 3 is soluble in liquid Nt 81.8 -191.4'

'No visible reaction. Very slow reaction. Does not mix homogeneously.

0

NF3 ClF3 3 liquid

1atm., 195" K., -78" C. Mole % 0

Temperature

+ co +

*

... dd

Liquid Phase (Reference 27,33)

CHa

Only 5.1 mole % 0 3 is soluble in liquid Nz 77 -196' Only 8.8 0.9 mole % NZ is soluble in liquid O3 03 90 -183' 0 3 133 -1408 (CN)Zsolid 90 -183"

3

Reference (29)

(30)

Flame Temperatures

1Atm., 10 Atm., 40.7 Atm., 14.7P.S.I. 147P.S.I. 600 P.S.I. 3(CN)z + 2 0 3 5208" K. 5506" K. 5657" K. Solubility of ozone at low partial pressures Distribution of ozone between air and various solvents T, C. Solvent Glacial acetic acid 18.2 20 concn. in solvent D= 30.2 concn. in air 38.8 Dichloroacetic acid 0 Acetic anhydride 0 Propionic acid 17.3 Pro ionicanh dride 18.2 Cargon tetrachoride 0 21 Water 20 0

Immediate explosion.

(36) (37) (38) (39) (40)

e

SO3 formation.

' Mixed

D 2.5 2.8 1.6 1.4 1.69 2.15 3.6 2.8 3.15 2.95 0.29 0.49

homogeneously.

Flame," 17th Intern. Congr. Pure and Applied Chem., Munich, Germany, 1959. Thorp, C.E., "Bibliography of Ozone Technology," Vol. 2, Armour Research Foundation, Illinois Institute of Technology, Chicago, Ill., 1955. Trambando, R., Ghorsh, S.N., Bums, C.A., Jr., Gordy, W., J . Chem.Phys. 21,851 (1953). Trambando, R., Ghorsh, S.N., Burns, C.A., Jr., Gordy, W., Phys. Reo. 91,222 (A) (1953). Waterman, T.E., Kirsh, D.P., Brabets, R.I., J . Chem. Phys. 29,905 (1958); 32,304 (1960). Welsbach Corp., Philadelphia, Pa., "Basic Manual of Applications and Laboratory Ozonization Technique," first rev., 1958.

RECEIVED for review March 24,1960. Accepted September 19, 1960.

JOURNAL OF CHEMICAL AND ENGINEERING DATA