INDUSTRIAL
ENOINEERING CHEMISTRY
AND
PUBLISHED BY THE A M E R I C A N C H E M I C A L SOCIETY W A L T E R J. M U R P H Y , EDITOR
Tabulated Diffraction Data for Tetragonal Isomorphs L. K. FREVEL, H. W. R I N N , AND H. C. A N D E R S O N , The Dow Chemical Company, Midland, Mich.
C
ORlPOUSD analysis of crystalline solids by isomorphism
Table II. Statistical Data on Tabulated Tetragonal Substances
depends for its utility on the availability of systematically arranged representative diffraction patterns of the various known crystal structures. The tabulation of the cubic structures (3) has been found useful and the effectiveness of the method has prompted the compilation of the tetragonal structures. The procedure for comparing diffraction patterns of isomorphous substances has been described adequately ( 4 ) , hence only the tabulated diffraction data for tetragonal isomorphs are presented in this paper. Figures 1, 2, 3, and 4 depict representative diffraction patterns of 40 tetragonal structures designated as in the “Strukturbericht” ( 2 , 5-9). The patterns are arranged in sets and within each set the simplest structure with the highest symmetry (11) is listed first. The averaged relative intensities, based largely on the Dow file of standards, refer to Debye-Schemer-Hull patterns taken with MoKa radiation. For each structure only reflections compatible with the respective space group are shown. The intensities of superposed lines were resolved by calculating the appropriate structure factors. To round out the available powder data, some fifty substances were synthesized and their diffraction patterns carefully indexed.
Dominant structures NF = number of examples ~
ZT‘V7
Configurations favoring tetragonal symmetry Prevalence of primitive lattices Prevalence of body-centered lattices IZhko = average number of observed prism reflections per powder pattern F h h = probabilityof observing ( h k o ]
= probability t h a t [hkll is the n t h strongest powder reflection of a tetragonal structure
n:hkl]
-
?a- =
(1) Plot the log d values and corresponding relative intensities of the unidentified pattern on a narrow strip of paper; (2) verify that the pattern is noncubic ( 3 ) ; (3) find an isomorphic prototype among the representative diffraction patterns for the anisotropic crystal structures; (4) compute the lattice constants and check the appropriate classification tables (for the tetragonal
noted for C11 with 2
0.06
1 .oo (100)
0.15
1 . 0 0 (100) (0.01) 0.63 0 . 7 5 (75) 0.63
2 . 1.. 9 ~
( i m ,;ZOO, izm) = (0.65, 0 . 9 3 , 0 . 0 0 )
Gi(101, 112, 110, 211, 2001 = (0.30, 0.22, 0.13, 0.13, 0.08) Y2j101, 200, 211, 110, 1121 = (0.15, 0 . 1 3 , 0.10, 0.08, 0.08) V3[110,211, 101,200, 1121 = (0.10, 0.10, 0 . o s , 0 . 0 8 . 0 . 0 5 ) 1.51; 0 . 3 1 5 5 5 6 . 7
=
1.64 (ac: 4.4 k X , c = 7.2 k X ) . However,
the lines 7.25, 2.78, 1.72, 1.68, 1.62 kX are not accounted for by this structure and the intensity agreement of the indexed lines is not satisfactory. Structure C38 permits indexing all the lines for
~
7.25 3.75 3.60 3.10 (2.98) 2.78 2.35
4.4; 1 S n h k o S 9
Columns 1 and 2 of Table I give the powder diffraction data of a phase encountered in a magnesium flux sample. After plotting log d and the corresponding relative intensities on a strip of paper, one checks first the index scale for the cubic system (3) and finds that the substance is noncubic. Proceeding to the tetragonal system and comparing systematically the unknown pattern with those of Figures 1, 2, 3, and 4, one makes the following observations: The first indication of a fit with the data is
Table I. X-Ray Powder Diffraction Data d , k;Y
average axial ratio
H04, C4, C11, OB20, . . . 36, 33, 18, 17, . . . 0.11,0.10, 0 06, 0 . 0 5 , . . Tetrahedral, octahedral, square; linear; In-cyclic 53 70 47%
system check Tables I11 and IV) ; (5) confirm the identification of the unknown phase by a qualitative spectroscopic analysis or by spot tests. The following example illustrates the procedure :
GENERAL PROCEDURE FOR IDENTIFYING A NONCATALOGED PATTERN
I I1
.v,
{ hkl) 001 101 002 110
- _-
1.65 (a = 4.38 k X , c = 7.23 k X ) but gives poor agreement with the relative intensities. Checking Table I11 under C38, one fails to find a substance agreeing with the computed lattice constants. A similar situation is encountered for structure D31 with c = 2.32 (a = 6.20 k X , c = 14.5 k X ) and for structure DO22
102 112 200 201, 103 211, 113 212 104 203
2.11 0.2: 0.40 1.90 0.25 1.72 1.68 0.20 1.62 0.02 (1.59) (0.01) 220,114 1.55 0.15 221, 213 1.52 0.15 222, 301 1.43 0.08 204, 310 1.390.10 311, 302 1.3~0 0.02 Filtered M o X a was used t o obtain the powder diffraction data. d = nterplanar spacing. 1. = relative intensity. T h e lattice constants for t h e
with
c
=
1.65 (a = 8.75 k X , c = 14.5 k X ) . Structure E01,how-
ever, accounts for all the lines and matches the relative intensities well. Looking under E01 for 2 = 1.65 (a = 4.38 k X , c = 7.23 kX),one identifies the unknown as BaFC1. Spectroscopic analysis confirms Ba as a major constituent. The faint lines 2.98 and 1.59 k X belong to an unidentified material present in low concentration. (In completing the comparison of the identified pattern with the remaining tetragonal structures, one finds only partial matching with structures Hod, HOT,and HOs.)
I1
unknown phase are u = 4.38 h S , c = 7.23 k X ; E = 1.65.
83
I N D U S T R I A L A N D E N G I N E E R I N G CHEMISTRY
04
An alternative method of identifying the unknown phase is based on the general tabulation of tetragonal substances in Table [V. By matching the unknown pattern against the standard structures it is noted that the pattern can be indexed tetragonal with
=
1.65 ( a = 4.38 kX,c = 7.23 k X ) . Looking in Table
[V for these lattice constants one finds BaFCl listed. As in the first method a qualitative spectroscopic analysis is required to confirm the phase identification. In using Table IV it is advisable to look not only under
1,2,3,.. .,n and r = 0,
(3):
f but also under
*2.
where p , q =
-.
Table
111.
Figure 1 until a match is found for
= 1.65.
The phase identifi-
cation is then carried out in the manner already discussed. LITERATURE CITED
(1) Davey, W. P., Gen. Elec. Rev., 35,565 (1922). (2) Ewald. P. P., and Hermann, C., “Strukturbericht”, Vol. 1 Leipzig, Akademische Verlagsgesellschaft, 1931. (3) Frevel, L. K.,IND. ENO.CHEM.,ANAL.ED.,14,687 (1942). (4) Frevel, L. K.,J. Applied Phus.. 13,109 (1942). (6) Gottfried, C.,“Strukturbericht” Vol. IV (1938),Vol. V (1939). Leipzig, Akademische Verlagsgesellschaft. (6) Gottfried, C., and Schossberger, F.,Ibid., Vol. I11 (1937). (7) Hermann, C.,Lohrmann, 0..and Philipp, H., Ibid., Vol. II(1937) ( 8 ) Hermann, K.,Ibid., Vol. V I (1941). (9)Ibid., Vol. VI1 (1943). (10) Hull, A. W., and Davey, W. P., Phys. Rev., 17, 549 (1921). (11) Zaohariason, W.H., “Theory of X-Ray Diffraction in Crystals” pp. 73-7. New York. John Wiley & Sons, 1945.
Tetragonal Substances Tabulated b y Types
Table 111 lists 329 tetragonal substances. For each isomorphous type che members are arranged in the ascending order of their axial ratios. If two members have the same value for c / a the one with thesmaller lattice ron.
-1
( h k o } scale and notes if any of the remaining d’s match (220) As no match is found one proceeds systematically to the succeeding lines and observes that dc = 3.10 k X and ds = 2.19 kX match-Le., dr:ds = 1.415 fi = dj200j:dj22D) = djllo):dj2~01. Checking the possibility that da:ds = djltD):djzoo),one sees immediately that d,:da:dll = 3.10:2.19:1.55 = d[llo):djzoo):d(2zo) = 2 : 4 2 : 1 . Three prism reflections are thus identified and the unknown pattern is readily indexed by following the { 110) lines down
In practice one usually considere
1 1 only the factors 2, 4,4’2 The ease with which a tetragonal pattern can be recognized is a determining factor in the speed of the above methods. Reference to Table I1 suggests how one may expedite the indexing of tetragonal powder patterns. For approximately 85% of the tetragonal substances it is possible to pick out the (2001 and 1220) reflections by translating the log d strip of the unknown pattern along the ( h k a ) scale a t the top of Figure 1. The data of Table I can be used to illustrate the procedure. After plotting log d one &xes the first line, d l = 7.25 k X , on 12001 of the
Vol. 18, No. 2
stanta ia listed first. (Toavoid repetition, the varioue literature values have been averaged.) For specific references prior to 1939 see “Strukturbericht’,’. Vols. I t o V I I : for later references see Chem. Abst., 33 to 39 (1939-1945). C
C
a,
kX
e.
kX A5
0,5456
.5.819
3.175
d-Sn
0.936 0,952 0.962 0.981 0.998 1.077
3.774 3.76 3.767 3.764 3.752 4.585
A6 d.533 3.58 3.624 3 693 3.744 4.937
y-Mn 95hIn.5Cu 8912In.llCu 79Mn.21Cu 66Mn.34Cu In
1.22 1.26 1.27
3.55 3.98 3.80
B10 4.33 5.01 4.81
LiOH PbO (red) SUO
1.74 1.76 1.76
3.03 3.03 3.47
B17 6.26 5.32 6.10
PdO PtO PtS
0.667 0.707 0.709 0.711 0.712 0.713 0.722 0.724 0.729
6.011 6.18 5.70 7.78 8.44 7.76 8.28 7.94 6.34
4.009 4.37 4.04 5.53 6.01 5,53 5,98 5.75 4.62
NH&H y-NH,I y-NHdBr(-173° N(CHa)GI N(CHa)&InO, N(CHa)4Br N(CHd4CIOd N(CHs)rI PHd
1.03 1.04
6.37 6.35
B34 6.58 6.60
(Pd, P t , N i ) 8 PdS
0.873
8.02
B37 7.00
TlSe
1.35 1.39
3.24 3.46
NaBi 4.38 4.80
MgIn NaBi
0.570 0.574
(4.86) (4.86)
8 2 5 and OB25
c4 (2.77) (2.79)
WOI MOO2
kX
Substance
4.77 4.61 4.54 4.69 4.58 4.68 1.41 4.64 4.63 4.39 4.40 4.62 1.67 4.68 4.51 4.64 4.59 4.71 4.58 4.72 4.72 4.60 4.87 4.70 4.95 4.93 4.51 4.83 4.49 4.51 (4.79)
2.96 2.92 2.88 3.01 2.95 3.02 2.86 3.01 3.01 2.86 2.87 3.01 3.04 3.05 2.96 3.06 3.03 3.11 3.04 3.14 3.17 3.10 3.30 3.19 3.38 3.38 3.11 3.36 3.14 3.19 (3.77)
CbOz RhVOi VOZ RhCbO, Ti02 RhTaO, Crop CrCbOh CrTaO, GeOz MnOz FeSbO, FeTaOd FeCbO, .41Sb01 JIgFz GaShO, NiFz CrBhO, ZnFz SnOz RhSbO, JInFt CoFz PbOt PdFt RuOt FeFt IrOz Os01 TeOr
2.51
3.75
c5 9.43
TiOr
1.15 1.17 1.18 1.20 1.28 1.61 1.63 1.65 1.65 1.66 1.67 1.67 1.67 1.67
6.27 5.99 5.70
c11 7.22 7.02 6.73
csot RhOt KOt
a
Substance
K.)
0.621 0.633 0.634 0.642 0.644 0.645 0,649 0.649 0.650 0.651 0.652 0.652 0.652 0.652 0.656 0.659 0.660 0.660 0,664 0.665 0,672 0.674 0.678 0,679 0.683 0,686 0.690 0.696 0.699 0.707 0.787
‘3,
kX
(4. ‘i4) 4.39 4.11 3.82 3.87 3.85 3.54 3.75 3.87 3.92
c,
( 5 :28) 7.05 6.68 6.30 6.37 6.38 5.91 6.28 6.48 6.55
ucz
ThCr BaCt SrCl NdCt CaCt PrCz CaOt SmCy CeCt LaCt
(Continued on nezt p a g e )
ANALYTICAL EDITION
February, 1946
85
Table 111 (Continued)
-e 5
a,
kX
c , kX
Substanos
1.79 1.86 1.87 2.10
3.78 3.65 (4.28) (3.89)
6.77 6.55 (8.42) (8.17)
BaOi Sr0t KHCi NaHCi
2.83
4.36
C13 12.36
HgIi
0.806 0.814 0.818 0.832 0.841 0.846 0.851 0.852 0.867 0.880
6.052 6.52 6.647 6.099 6.006 6.899 4.980 6.835 6.348 6.651
C16 4.878 6.31 5.434 4.240 4.212 4.991 4.236 5.821 5.441 5.853
2.46 2.46
3.21 3.20
CZO 7.88 7.86
1.40 1.41
4.96 6.00
C30 6.92 7.06
1.53 1.61 1.66 1.67 1.76
3.992 4.08 3.627 3.76 3.613
C3S 6.091 6.56 5.973 6.27 6.333
0.605 2.86
0.602 AlzCu SnaFe SnzAln FezB ConB GezFe NizB PbtPd SnzCo PbiRh
WSir hloSir
kX
c,
kX
dubstance
10.81
El4 6.94
(PnCId4
4.19
E21 7.94
NHbHgClr
13.3013.52
E28 6.696.78
KMg(HiO)a(CI, Br)r
1.00 1.01
6.34 6.08
0331) 6.34 6.14
0.906
(6.41)
(E61) (5.81)
0.880
(6,32)
(E6d (6.56)
Si02 AIPOd
1.94 1.94 1.94 1.95 1.95
4.70 4.71 4.73 4.70 4.71
FeTazOa 9.10 9.12 9.16 9.18 9.18
CuzSb lLInzSb FeaAs hfnzAs CrzAs
0.921
9.69
FII 8.92
8.35
c47 5.05
SeOt
6.07 6.09 6.36 5.67
F5z 7.03 7.06 7.41 6.81
KNCO K NE RbNa KFHF
2.998
C48 8.630
1.16 1.16 1.17 1.20
CrnAl 0.593
6.31
F54 3.74
NHdCIOi
5.74
GOs 5.00
NHiNOa-I1 (357-398' K.)
5.28
1.46 1.55 1.56 1.57 1.58 1.58
5.548 5.605 6.334 5.422 5.425 5.427
DOzz 8.093 8.712 8.305 8.536 8.579 8.584
TiGar ZrGai VAli TaAIi TiAlr CbAli
4.32
4.003
DOzr 17.29
ZrAlr
8.46 2.48 2.54
4.53 4.45 4.35
Dlr 11.14 11.04 11.07
AlrBa AI& AlrCa
2.36 2.39 2.44 2.98
4.92 4.65 4.46 3.66
D31 11.62 11.10 10.89 10.9
HgzBri HgzClr HgzFa
1.40 1.41 1.41 1.41
8.75 8.10 8.32 8.95
D50 12.28 11.45 11.76 12.65
CdsPa ZnaPz ZnsAsi CdsAsi
0,490 0.491 0.492 0.499 0.502
9.09 9.01 8.92 9.13 9.16
FeaP 4.45 4.42 4.39 4.56 4.60
FetP (Fe, Ni, COhP NiaP CraP MniP
1.65 1.71 1.76 1.76 1.82 1.89 2.07 2.28
4.38 4.10 4.65 3.89 4.09 4.18 3.89 3.92 4.01
E01 7.22 6.88 7.93 6.83 7.21 7.59 7.37 8.11 9.14
BaFCl SrFCl BaFI CaFCl PbFCl PbFBr BiOCl BiOBr BiOI
1.82 1.97
5.66 5.26
1.68
0.660 1.89
ZnPz 18.65 19.70
3.68 3.73
a,
6.07
ZnPa CdPi
Hdz
Eli
LO.30
LO.37
AgFeSr CuFeS.r
0.871
NiTazOs Fe(Cb, Ta)iOc CoTazOa MgTaxOa FeTaaOa
Phosgenite 8.83 PbzClzCOi 9.06 Pb2Br2COI
1.086 1.086
8.13 8.34
0.867 0.874 0.888 0.901 0,910 1.46 1.46 1.47
7.13 7.25 6.87 6.58 6.89 (7.74) (7.76) (7.75)
HOr 6.18 6.34 6.10 5.93 6.27 (11.31) (11.32) (11.41)
2.15 2.17 2.17 2.17 2.18 2.18 2.19 2.19 2.19 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.21 2.21 2.22 2.22 2.22 2.23 2.23 2.23 2.23 2.24 2.24 2.26 2.27 2.29 2.30 2.31 2.32 2.36 2.52 2.53
5.94 5.15 5.24 5.35 5.32 5.34 5.23 5.27 5.36 5.23 5.31 5.33 5.40 5.75 5.87 5.87 5.44 5.44 5.38 5.39 5.62 5.35 5.37 5.41 5.42 5.32 5.37 5.62 5.80 5.56 5.08 5.76 5.65 5.46 5.61 5.72
HOd 12.80 11.17 11.38 11.63 11.59 11.63 11.44 11.55 11.72 11.50 11.67 11.70 11.90 12.63 12.94 12.94 12.01 12.03 11.92 11.94 12.50 11.92 11.96 12.08 12.11 11.93 12.01 12.70 13.17 12.76 11.69 13.33 13.08 12.89 14.13 14.50
YVO, CaCrOd YP04 ZrSiOr YAsO4 Y (Cb, Ta)Oi YCbOi YTa06 CdhloO4 NHrIO4 Caw04 NaLa(W0r)r NaCe(W0r)n LiLa(W0r)t CaMoOr NaBi(X1 o 0 i ) z NaReOr LiBi(bIo0,)z LiLa (AI 004) z Na La (Moods SrWOr KIOi RbIOr NHaKeOt PbWOr KLa(W0r)n KBi(AIoO4)s KCe(W0dz KReOh AgReOr SrZIoOr Pbh1004 KLa(MoO4)l NaIO4 AgIO4 BaWOi RbReO4 BaAIoOr BiAsOr B-TlReOr (400' K.) KOsOaN KCrOsF CsSOaF CsCrOaF
(Continued on paoe 87)
INDUSTRIAL AND ENGINEERING CHEMISTRY
86
A5
. .
:-:
=I
N
n
t l
2
I
Vol. 18, No. 2
f
2
I
-a 5
.so
10 I
A6
I 1.10
.so
B IO 1.20
1.40
I
PdO
c5 2.40
1.10
1.70
.e0
LO9 d
+OOnSlOnl
Figure 1.
Representative Diffraction Patterns of Tetragonal Structures The log d h k o values of the various structures (Figures 1 P 3 and 4) are matched according t o the [ hko) relectiona. (To conserve printing space some ofthe structures had
intensities of the powder pattern pertaining t o a particulaf structure represent the arithmeticallv averaged to be translated to the left-e.s., BJO, CJ3, C38.) fh;rehive relative intensities (for M o K a radiation) of representative members of the isomorphous group. The change of d h k l with c/a is expressed graphicallv ( I , 1 0 ) and coven the c/a spread wxountered wlthln the particular isomorphous group
'
ANALYTICAL EDITION
February, 1946
a7
Table 111 (Continued) -C
-Ca
kX
c, kX
a, k X
e , k.Y
1.524 1.533
4.459 4.332
HO7 6.796 6.640
B.4~04 BPOi
1.71 1.72 1.73
8.39 8.41 8.14
K3 4 14.34 14.5 14.1
1.73 1.73 1.76 1.77
3.55 3.62 3.61 3.59
Hoe 6.14 6.26 6.37 6.35
KAlFa RbAlFa TlAlFi NHaAIF4
1.48
7.01
10.36
1.43 1.40
7.49 7.38
10.87 11.01
1.13 1.13 1.14 1.16 1.16
6.70 7.37 7.05 6.78 6.78
3.13 3.13 3.20 3.20 3.22 3.34 3.34 3.36
3.840 3.877 3.925 3,943 3.876 3.970 3.990 3.941
0.825 0.935 0.966 0.967
3.89 3.98 3.85 3.66
0.757
15.63
a
Substance
CuFelOA CaInzOI ZnLInzOr CdInzOa LlnLlnzOr
8.68 9.82 9.15 9.87 9.42
1.48 1.58 1.59 1.61 1.64
5.85 6.20 5.74 6.12 5.75
0.684 0.687 0.689 0.696 0.697 0.699 0.708 0.722 0.742
8.22 8.592 8.685 8.49 8.491 8.445 8.35 8.72 8.85
0,582 0.591 0.591
7.04 6.99 7.21
Hla 4.10 4.13 4.26
IizPdClr KnPtCli (SH4)nPdCln
7.61 7.43 7.32 7,70
H22 7.12 6.97 7.54 7.74
IiHzAs01 KHzPOd SHaHzPOi SHIHZASOI
5.46
HZ6 10.73
1.024 1.05 1.05 1.06 1.09
7.81 7.58 7.9 7.45 7.50
H4I 8.00 7.96 8.3 7.88 8.16
RbzCuClr. 2Hz0 (SHa)zCuCla.2H20 (NH4jzCuBrr.2HzO KzCuCIa.2HzO (NH1)nFeClr.2H?0
0.403 0.423
10.40 10.21
H4 9 4.19 4.31
Pt(NHs)cClz.HzO Pd (X Hs)L!Iz.HzO
0.753
8.43
H 4 17 6.35
.IgnS01.4NHa
2.96
6.9!)
H59 20.63
1.21
6.98
H51a 8.42
PbPbnOr
0.936 0.938 1.003 1.005 1.97
5.32 5.29 5.33 5.35 5.22
0.84i 0.848 0 857 0 859
9.76 9.84 9.25 9.50
1.25
6.99
Jls 8.75
1.50
6.9i
J1g 10.43
8.12
1.14 1.15
15.84 16.95
1.58
9.A8
8.01
k75
8.4
NaaAlrTi14
1c76
KrCrOa 7.60 8.34 8.05 7.86 7.88
CszAuAuCh CszAgAuCls KSCrOs CsrTaOs RbsTaOa KaCbOn hsTaOa
Jlii 7.91 7.88
110 3.21 3.72 3.72 3.54
XiZn AuCu FePd SihIn
sz J
CuzFeSnS4
1.76
9.00
11.83
Ca1o3Igz.llcSio03r(OH)r
15.84
KCaaSiaOzoF.8HzO
553
Ca(UO~)z(P04)~.10~/zHzO Ca(UO?)z(POi)a.61/2H10 I
IiiOsOKlr
0.637 0.651 0.655 0.659 0.675
7.83 7.76 7.75 (7.47) (7.38)
4.99 5.05 5.08 (4.92) (4.98)
0.624 0.627
12.27 12.09
56r 7.66 7.58
CatAlsSiaOzr(SO~.C o d NarAlaSi~OzrCl
0b11 5.80
N(CHaj4IC1z
,
9.18
1.72 1.75 2.95 2.96 3.03 3.33 3.35 3.40 3.78 3.93 4.02 4.15 4.25 4.58 5.42 5.88 6.03
5.09 5.11 5.18 5.02 5.02 5.01 5.16 5.00 5.16 4.98 4.93 5.18 4.96 5.18 6.18 5.18 5.18
1.20 1.51 1.58 1.61
4.28 4.85 4.48 4.57
0.711 0.712 0.713 0.722 0.724
7.78 8.44 7.76 8.28 7.94
OB25 and OHOa 5.53 N(CH3)aCI 6.01 N(CHa)rMnO4 5.53 S(CHa)rBr 5.98 N(CHa)rClOr 5 , 75 E(CHa)aI
2.81 3.08 3.27
4.78 4.47 4.29
Tl(CHr)zI 13.43 TI(CHa)zI 13.78 Tl(CHa)zBr 14.02 Tl(CHa)zCl
0b20
AgCo(NHajz(N0z)r A -S b ( 0H) 6 NGSb(OH)a
18.01 19.45
KisTlCla.PH10 RbrTIBre,8/7HzO
K3 I 14.47 14.0
CsaCoCls RbrCoCla
CanZnSizOi (Ca, Najz(RIg, Al)(Al, Si)zO, CazA12SiOr (Ca, Na)iBe(Al. Si)z(O, Fj; (Ca, ha)zBeSiz(O, OH, F)I
0.632
J31
1.61
XHIPbzBrs RbPbzBra KPbnBra
55?
NaBaPOd
0.974 0.984
Substance
LiBi s O P C ~
La2 ( M a 0 4) 2.18 2.19 2.21 2.21 2.23
a,
0b21 5.13 7.33 7.10 7.36
CHaNHrC1 CaH7NHaI CaHiNHaCl CaH7NHrBr
(Continued on p a g e 8 9 )
INDUSTRIAL AND ENGINEERING CHEMISTRY
88
Vol. 18, No, 2
0 "
.
0
0
4.30
g
E It Cu Fe S2
1.70
2.20
48
70 0
.90
110
F52
. ANALYTICAL EDITION
February, 1946
Table
-a
111 (Continued)
C
0.451 0.451
a,
kX
c,
OGlr 7.26 7.48
16.1 16.6
1.42
7.88
0.613
13.95
0.396
10.37
kX
OJli 11.19
Substance
-ca
'1.
kX
c, kX
Substance
0 411 PdClzlr (CHs)sAs, PdBrzla t(CHdaAs,
1.44 0.457
6.09 12.1
[N(CHs)r]zSiFa
[(CHdaSiOla 8.55 [(CHa)zSiO]a 011
4.11
89
[CHsCHOlr
0.533 0.544 0.591 0.612 0.645 0.713
8.76
C(CHa0H)a
05 5.53
C(CHZOCOCH~I
06 6.48 6.47 6.85 7.00 7.15 (6.69)
12.15 11.90 11.60 11.44 11.09 (9.38)
Pb(CaHa)d Sn(CaHaj4 Ge(CsHs)d Si(CaHah C(CsHa)c C(CHzONOz),
02s 0.427 0.444
12.59 12.43
6.37 5.52
Ag(CHs.CS.NHz).rCl Cu(CHa.CS.KHz)rCl
Table IV. Tetragonal Substances Tabulated According to A x i a l Ratios rable I V lists 447 tetragonal substances arranged in ascending order of the smaller lattice constants is listed first. Column 4 also includes spacr their axial ratios. If two substances have the same value for c/a, the one with group data where no definite structure has been established.
c
0.514
a , kX 12.2 11.44 11.09 10.37 11.06 10.40 10.12 10.21 12.59 14.6 12.43 16.1 16.6 12.1 8.12 18.8 9.09 9.01 8.92 7.56 9.13 9.16 13.3013.52 34.04
'd.518 0.533 0.536
5.56 12.15 12.78
2.88 6.48 6.85
0.541
26.60
14.40
0.544 0.546 0.550 0.550 0.552 0.570 0.574 0.582 0.582 0.591 0.591 0.591 0.593 0.603
11.90 5.819 10.81 12.17 7.82 (4.86) (4.86) 7.04 12.19 6.99 7.21 11.60 6.31 9.22
6.47 06 3 . 1 7 5 AS 5.94 El6 6.69 4.32 ... (2.77) c 4 (2.79) c 4 4.10 7.09 SZ-I4 4.13 Hlr 4.26 Hli 6.85 06 3.74 F54 5.56
0.605 0.612 0,613 0.617 0.622 0.624
8.35 11.44 13.95 4.81 (5.72) 12.27
5.05 7.00 8.55 2.97 3.56 7.66
0.627
12.09
7.58
S64
0.632 0.633 0.634 0.637
9.18 4.61 4.54 7.83
5.80 2.92 2.88 4.99
OB11 c4 c4 S5r
0.642 0.644
4.69 4.58
3.01 2.95
c4 c4
a
0.311 0.367 0.394 0.396 0.401 0.403 0.417 0.422 0.427 0.429 0.444 0.451 0.451 0.457 0.464 0.487 0.490 1.491 1.492 1.495 0.499 0.502 0.502
c,
kX
3.79 4.20 4.37 4.11 4.43 4.19 4.22 4.31 5.37 6.26 5.52 7.26 7.48 5.53 3.77 9.15 4.45 4.42 4.39 3.74 4.56 4.60 6.696.78 17.49
Si:Iz Si-I4 012-
s:-I4 H4a
...
H40
020
...
02s
OGli OGlz
05
...
C2h-14~/a FeaP FeaP FesP
...
Substance Naco.zil.a)WOa Cd [Hg(CNS)a] Co[Hg(CiVS)4] [CHsCHO14 Zn[Hg(CKS)al P t (NHdrClz.Hz0 Be- ( W ,>f 0 ) P d ( KHa)aClz.HzO Ag(CHa.CS.NHz)&I MgPt(CN)r,7HzO Cu(CHa.CS.NHz)4CI [(CHs)aAs, PdClzlz [(CHdaAS, P d B r z ] ~ C(CHz0COCHa)r CSz(-l0Oo K.) CaH4 [ I , ~ I C H ~ . S O Z N H I FeaP (Fe,Ni,CojaP N13P w4011
FeaP FeaP E2a
D :k-P4/mnm
NaK(Ca.Alg,>ln). AlaSisOd3Hn0, ashcroftine CdHg Pb(CsH6)a CHzOH(CH0H)rCHzOH (CaH4[ 1,210.C H =S O H )ZPt Sn(CsHd4 8-Sn [PSCl*]r AgCI02 ZnHg(CNS)r
woz
MOO2 KzPdClr (CsHs)AsI
;T%d;L "aClOz NazCo(CNS)~.8HzO
CaaAlsSia0zr(S04,cor) meionite NarAlaSisOxrCl, marialite N(CHa)aIClz RhVOr
voz
CazZnSizOi, hardystonite RhCbO4 TlOz
-ca
kX
a,kX 4.68 11.09 4.41 4.64 4.63 4.39 4.67 7.76
e,
U.645 0.645 0.649 0.649 0.650 0.651 0.651 0.651 0.652 0.652 0.652 0.655 0.656 0.659 0.659
4.40 L.62 1.68 7.75 4.51 4.64 (7.47)
2.87 3.01 3.05 5.08 2.96 3.06 (4.92)
c4 c4 c4
0.660 0.660 0.664 0.665 0.667 0.672 0.674 0.675
4.59 4.71 4.58 4.72 6.011 4.72 4.60 (7.38)
3.03 3.11 3.04 3.14 4.009 3.17 3.10 (4.98)
c4 c4 c4 c4 BZS c4 c4
0.678 0.679 0.683 0.684 0.684 0.686 0.687 0.689 0.690 0.696 0.696 0.697 0.699 0.699 0.707 0.707 0.708 0.709 0.711 0.712 0.713 0.713 0.715 0.718 0.718 0.722 0.792 0.724 0.729 0.731 0.739
4.87 4.70 4.95 8.22 12.32 4.93 8.592 8.685 4.51 4.83 8.49 8.491 4.49 8.445 4.51 6.18 8.35 5.70 7.78 8.44 7.76 (9.38) 8.56 10.15 12,04 8.28 8.72 7.94 6.34 16.53 10.76
3.30 c4 3.19 c4 c4 3.38 PbPbzOi 5.62 8.43 ,.. c4 3.38 5.905 PbPbzOi 5.980 PbPbzOi c4 3.11 c4 3.36 5 . 9 1 PbPbzOi 5.920 PbPbnOi c4 3.14 5.907 PbPbzO, c4 3.19 B25 4.37 5 . 9 1 PbPbzOr B25 4.04 0b25 5.53 0b25 6.01 0b25 5.53 (6.69) 0 6 A18 6.12 7.29 D:-P4z21 8.65 5.98 0b25 6.30 PbPbzOd 5.75 0b25 4.62 B25 12.09 ... 7.95 ...
0.742 0.752 0.753 0.757
8.85 9.74 8.43 15.63
6.57 7.32 6.35 11.83
3.02 7.15 2.86 3.01 3.01 2.86 3.04 5.05
Type c4 06 c4 c4 c4 c4 c4 s51
S51
c4 c4
S51
S5r
PbPbzO,
...
H411
sz 1
(Continmued o n page
Substancr KhTaO4 CrOz C(CsHa)i CrCbO4 CrTaOi GeOz FeTaOI (Ca,Na)z(Rlg,BI). (A1zSi)zOi melilitr MnOz FeSbO4 FeCbOr CazAlzSiOr, gehlenitr AlSbOi MgFz (Ca,Na)zBe(Bl,Si)l. (O,F)i,meliphanitr GaSbO4 NiFz CrSbOi ZnFz "ISH SnOz RhSbOi (Ca,Na)zBeSiz(O,OH,F)i, leucuphanite MnFz CoFz PbOz NiAszOr C(CHzOCsHd, PdFz FeSbzOi hlnSb20i
RuOz
FeFz CoSbzOi ZnSbzO4 IrOz hIgSbzO4 0802
Y-NHII NiSbz04 r-NHcBr N (CHa)4C1(-173'
K.)
N(CHa)rMnO4 N(CHa)rBr C(CHzOSOd4 Clr (88' K.) OsOaC4(C Ha) a Ca(OClh3HzO N(CHa).ClOi SnPbzO4 N(CHa)rI PHiI CdaHg Naz(TiFe) Sir011 narsarsukite PbPbzO4 CusPd CaloMgi~IaSi~Oar(0H AgzSO4.4NHa )a vesuviamte
INDUSTRIAL AND ENGINEERING CHEMISTRY
90
Vol. 18, No. 2
(HI,)
\,l I
KgPt G I 4 .60
.e
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1
b
.S
3
~~I'I~"I~I""I'I~I~I~I'I.I''~I'~'~II~'~I''~'~~'~~I'~ Leg d
Figwe 3.
+Constent
Representative Diffraction Patterns of Tetragonal Structures
6
7
.a
.40
.9
1.0
-a
Table IV (Continued) C -
C
0.770 0.773 0.780 0.784 0.787 0.803 0.806 0.814 0.818 0.821
a,
k.K
9.12 13.2 10.45 8.87 (4.79) 9.29 6.052 6.52 6.647 15.6
Substance
c, k S
7:02 10.2 8.14 6.95 (3.77) 7.46 4.878 5.31 5.434 12.8
c4 c:h-P4/11 C16 C16 C16
0.825 0.830 0.830 0.830 0.832 0.838
3.89 11.2 11.2 11.2 5.099 11.1
3.21 9.3 9.3 9.3 4.240 9.3
L10 D;d-P>P,c D;d-P!2ic D$,i-P421c C16
0.841 0.846 0.847 0.848 0.861 0.852 0.857 0.857 0,859 0.867 0.871
5.006 5.899 9.76 9.84 4.980 6.835 6.348 9.25 9.50 7.13 5.74
4.212 4.991 8.27 8.34 4.236 5.821 5.441 7.93 8.16 6.18 5.00
C16 C16 NaBaPOl NaBaPO4 C16 , C16 C16 NaBaPOp NaBaPOa Koa
0.873 0.874 0.880 0.880 0.880 0.888 0.895 0.901 0.904
8.02 7.25 (6.32) 6.651 :11.36) 6.87 4.96 6.58 6.13
7.00 6.34 (5.56) 5.853 (9.96) 6.10 4.44 5.93 5.:4
0.906 0.910 0.917 0.921 0.930 0.933 u. 934
(6.41) 6.89 5 83 9.69 4.85 8.48 10.58
(5,811 6.27 5.35 8.92 4.51 7.91 9.88
0.935 0.936 0.930 0.937
3.98 3.774 7.61 5.83
3.72 3.533 7.12 5.46
0.938 0.941 0.948 0.952 0.960 0.962 0.962 0.966 0.967 0.971 0.974 0.975 0.976 0.977 0.981 0.984 0.986 0.998 1.00 1.003 1,005 1.01 1.01 1.01 1.02 1.02 1.02 1.03 1.04 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06 1.06
7.43 8.59 (3.85) 3.76 3.77 3.767 4.18 3.85 3.66 4.20 8.12 8 00 3.77 8.7 3 764 8.01 (3.61) 3 752 6.34 7,52 7.70 3.99 4.96 (6.08) 5.07 6.29 7.81 6.37 5.79 6.35 10.29 10.64 7.58 7.9 12.95 2.84 3.89 7.45 22.0
6.97 8.08 (3.65) 3.58 3.62 3,624 4.02 3.72 3 54 4.08 7.91 7.80 3.68 8.5 3.693 7.88 3.56 3.744 6.34 7.54 7.74 4.02 5.03 (6.14) 5.16 6.42 8.00 6.58 6.00 6.60 10.55 11.07 7.96 8.3 13.65 3.01 4.13 7.88 23.3
1,08 1.09 1.09 1,09 1.13 1.13 1.14 1.14 1.14
4.585 7.50 8.13 8.34 6.70 7.37 (5.33) 7.05 15.84
4.937 8.16 8.83 9.06 7.60 8.34 (6.08) 8.05 18.01
1 ,OG
91
ANALYTICAL EDITION
February, 1946
GO9
B37 HOJ (E62) C16
iio3
L10 A6 H22 C:,-P4min
H22
... ...
A6
A6
...
L10 L10
ji;, ... ... ...
A6
Jlii
... C3P4 H41 B34
...
B34
...
(E211 H4 1
...
A6 H41 Phoszenite Phosgenite K,CrOa KXrOa ,..
KsCrOs J 31
C(COOCH3jr LaAla CdCHdrBr? K(CzHaji1 TeO, pc1; A12Cll
SmFe Snzhln 2-Hydroxy-10-methoxy1,2,3,4,5,6,7,8,13,14,15-dodecahvdrochrvsene NiZn Si [SC(CHs)z]c GerSC(CHd314 Sn iSC(CHdaj4 FezB (CH3)zCHS Si[SC(CH3)3], CozB GezFe NaBaPOa KBaPOa NizB PbzPd SnzCo NaSrPO4 KSrP04
Yvoi
NHdNOs-I1 (357-3980 r i . ) TlSe CaCrO4 SrOz.8HzO PbzRh 4gaCa YPoi ‘UZrHz ZrSiOc CuBzOr.CuClz.4Hz0, bandvlite Sr(OH):.8Hz0 YASOI -JlnBi. H E (C N ) ? PbInz-s AeClO3 (Ca,Na)zBe(Si.Al)z( 0 , F j7,meliphanite AuCu ?-Nn KH2AsOi w b ( o Hj 2 . c u c i 2 , diaboleite KHzPO4 AgBrO3 Wi2032(OH)z 95hfn.5Cu 96hfn.4Pd 89Nn.llCu -7Ohfo-30N FePd KiMn 62hfn.38N AgSb(OH)! trans-Pd(h Ha)?CIz 92hfn.8N Pd(NH3)zIz 79Mn.21Co NaSb(0H)B Nirhlo 66hfn.34Cu AgzHRIa NHiHzPOa NH4HzAsOa BaT103 SrPba CuzHgIa ZrOz (