Temperature and Volume Dependence of the Viscosity of Water and

Temperature and Volume Dependence of the Viscosity of Water and Heavy ... Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Wate...
1 downloads 0 Views 25KB Size
J. Chem. Eng. Data 2004, 49, 1851

1851

Correction Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures. Kenneth R. Harris* and Lawrence A. Woolf, J. Chem. Eng. Data 2004, 49, 1064-1069. There are two errors to be corrected in this paper. These relate to the densities used in the calculations of viscosities from the experimental fall times. The first was due to a mistake in transferring density and molar volume data for ordinary water to the final version of Table 2 at temperatures of 278, 283, and 298 K. The values published were derived from the older IAPWS correlation of 1985.16 The correct values are derived from the formulation of 1995,17 for which we employed the NIST/ ASME Steam Properties Database Software, version 2.2. This affects some of the reported viscosities very slightly

(in the fourth decimal place), and corrected values for both density and viscosity are given below. The values given in Tables 4 and 5 for the coefficients of best fit to eq 4 for ordinary water were based on the correct densities and are therefore unaffected, as are the Figures. The other is an incorrect attribution on p 1067 for the equation of state used for D2O. The citation should be for the work of Aleksandrov and Matveev (ref 20), not ref 16. The equation of state in the latter paper is valid only below 100 MPa. Acknowledgment We thank Dr Marcia Huber (NIST, Boulder, CO) for detecting the error in Table 2.

Table 2. Viscosity of Ordinary Water from 298 K to 278 K T/K

t/s

p/MPa

V/(cm3/mol)

F/(g/cm3)

η /(mPa‚s)

Rea

T/K

t/s

p/MPa

V/(cm3/mol)

F/(g/cm3)

η /(mPa‚s)

Re

298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15

29.64 29.64 29.68 29.68 29.68 29.58 29.64 29.80 30.06 30.42 30.87 31.36 31.92 32.53 33.18 33.86 34.58 35.30

0.1 0.1 0.1 0.1 0.1 31.0 61.0 90.9 120.7 150.6 180.6 210.6 240.6 270.1 299.7 329.2 358.5 384.3

18.0686 18.0686 18.0686 18.0686 18.0686 17.8272 17.6124 17.415 17.2328 17.0629 16.904 16.7553 16.6156 16.4861 16.3633 16.2473 16.1377 16.0454

0.99706 0.99705 0.99705 0.99705 0.99705 1.01055 1.02288 1.03447 1.04541 1.05582 1.06574 1.07520 1.08424 1.09276 1.10096 1.10882 1.11635 1.12277

0.8916 0.8916 0.8927 0.8927 0.8928 0.8881 0.8881 0.8913 0.8979 0.9070 0.9191 0.9326 0.9478 0.9649 0.9830 1.0018 1.0222 1.0422

374 374 373 373 373 382 386 387 384 380 373 365 356 345 335 324 313 303

283.15 283.15 283.15 283.15 283.15 283.15 283.15 283.15 283.15

42.38 42.84 43.49 44.26 45.11 46.00 46.98 48.06 49.12

150.8 180.8 210.2 240.6 270.7 300.2 330.0 359.2 385.2

16.971 16.808 16.659 16.515 16.382 16.258 16.141 16.031 15.938

1.06155 1.07185 1.08142 1.09082 1.09972 1.10808 1.11614 1.12377 1.13032

1.263 1.275 1.293 1.313 1.337 1.362 1.389 1.420 1.450

197 195 191 186 181 176 170 163 158

283.15 283.15 283.15 283.15 283.15 283.15 283.15 283.15

43.65 43.56 43.54 43.54 42.65 42.19 42.03 42.09

0.1 0.1 0.1 0.5 30.7 60.7 90.7 120.8

18.021 18.021 18.021 18.018 17.769 17.544 17.337 17.147

0.99971 0.99971 0.99971 0.99987 1.01388 1.02686 1.03912 1.05067

1.313 1.310 1.310 1.310 1.280 1.264 1.257 1.257

173 174 174 174 184 191 195 197

278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15 278.15

50.78 50.77 50.76 49.33 48.53 48.16 48.18 48.44 48.93 49.67 50.47 51.32 52.51 53.77 55.18 56.64

0.1 0.1 0.6 30.7 60.7 90.5 120.3 150.8 180.7 210.7 240.4 270.4 300.6 330.3 360.0 389.0

18.016 18.016 18.012 17.758 17.527 17.318 17.125 16.944 16.779 16.626 16.485 16.351 16.224 16.106 15.995 15.891

0.99997 0.99997 1.00021 1.01451 1.02786 1.04030 1.05198 1.06324 1.07366 1.08356 1.09286 1.10182 1.11043 1.11854 1.12632 1.13365

1.528 1.528 1.527 1.481 1.454 1.440 1.439 1.444 1.456 1.476 1.498 1.521 1.554 1.590 1.630 1.671

128 128 128 138 145 149 151 151 150 147 143 140 135 130 124 119

a Reynolds number for annular flow: Re ) 2r 2Fv/(r - r )η, where v is the terminal velocity of the sinker and r and r are the radii 1 2 1 1 2 of the sinker and tube, respectively.9

JE049668+ 10.1021/je049668+ Published on Web 10/01/2004