Temperature dependence of polymer film properties on the air-water

Chanjoong Kim, Alan R. Esker, Frank E. Runge, and Hyuk Yu. Macromolecules 2006 39 ... Zhihao Yang and Hyuk Yu , Danny G. Miles Jr. Journal of Chemical...
0 downloads 0 Views 928KB Size
Macromolecules 1989,22,4019-4026 (11) Gelles, R.; Frank, C. W. Macromolecules 1982, 15, 741. (12) Winnik, M. in ref 8b. (13) Torkelson, J. M.; Lipsky, S.; Tirrell, M. Macromolecules 1981, 14, 1603. (14) Lindsell, W. E.; Robertson, F. C.; Soutar, I. Eur. Polym. J. 1981, 17, 203. (15) Sanchez-Renamayor, C.; Radic, D.; Gargallo, L.; Pierola, I. F. Polym. Prep. (Am. Chem. Soc., Diu. Polym. Chem.) 1987,28, 195. (16) Frank, C. W.; Gelles, R. in ref 8b, 564. (17) Yoon, D. Y.;Sundararajan, P. R.; Flory, P. J. Macromolecules 1975, 8, 776. (18) Mark, J. E.; KO,J. H. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 2221. (19) Rubio, A. M.; Freire, J. J. Macromolecules 1982, 15, 1411. (20) Freire, J. J.; Rubio, A. M. J. Chem. Phys. 1984,82, 2112. (21) Rubio, A. M.; Freire, J. J. Macromolecules 1989,22, 333. (22) Reynders, P.; Dreeskamp, H.; Kuhnle, W.; Zachariasse, A. J. Phys. Chem. 1987,91, 3982. (23) Blonski, S.; Sienicki, K. Macromolecules 1986,19, 2936. (24) Scott, D. W.; Messerly, J. F.; Todd, S. S.; Guthrie, G. B.;

Hossenlopp, I. A.; Moore, R. T.; Osborn, A.; Berg, W. T.; McCollough, J. P. J. Phys. Chem. 1961, 65, 1320. (25) Ishii, T.; Handa, T.; Mataunaga, J. Macromolecules 1978,11,

40. (26) Abuin, E.; Lissi, E.; Gargallo, L.; Radic, D. Eur. Polym. J. 1984, 20, 105.

4019

(27) Ishii, T.; Handa, T.; Mataunaga, S. Makromol. Chem. 1977, -7 78. .-, -23.51. -- - . (28) McCallum, J. R. In Photophysics of Polymers; Hoyle, C. E., Torkelson, J. M., Eds.;ACS Symposium Series 358; American Chemical Society: Washington, DC, 1987. (29) (a) Bokobza, L.; Monnerie, L. Polymer 1981,22,235. (b) Fox,

R. B.; Price, T. R.; Cozzens, R. F.; McDonald, J. R. J. Chem. Phys. 1972,57, 534. (30) Wu, S. K.; Jiang, Y. C.; Rabek, J. F. Polym. Bull. 1980,3,319. (31) Phillips, D.; Roberta, A. J.; Rumbles, G.; Soutar,I. Macromolecules 1983,16, 1597. (32) Vala, M. T., Jr.; Haebig, J.; Rice, S. A. J. Chem. Phys. 1965, 43,886. (33) Ghiggino, K. P.; Wright, R. D.; Phillips, D. J. Polym. Sci., Polym. Phys. Ed. 1978, 16, 1499. (34) Frank, C. W.; Harrah, L. A. J. Chem. Phys. 1974, 61, 1526. (35) In the m(tt) equilibrium conformers, neighboring rings may not be perfectly parallel (ref 17 for the case of PS), and

therefore, a reorientation of phenyl groups may also be needed for excimer formation. (36) De Schryver, F. C.; Moens, L.; Van der Auweraer, M.; Boens, N.; Monnerie, L.; Bokobza, L. Macromolecules 1982, 15, 64. (37) Itagaki, H.; Horie, K.; Mita, I.; Wasshio, M.; Tagawa, S.; Tabata, Y.;Sato, H.; Tanaka, Y .Macromolecules 1987,20,2774. (38) (a) Kcda, S.; Nomura, H.; Niyahara, Y.Bull. Chem. SOC.Jpn. 1979,52, 1828. (b) Froelich, B.; Noel, C.; Jasse, B.; Monnerie, L. Chem. Phys. Lett. 1976,44,159.

Temperature Dependence of Polymer Film Properties on the Air-Water Interface: Poly(viny1 acetate) and Poly(n-butyl methacrylate) Kyung-Hwa Yoot and Hyuk Yu* Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706. Received July 18, 1988; Revised Manuscript Received March 7, 1989

ABSTRACT: Surface dynamic light scattering is used to deduce the surface viscoelastic properties of poly(viny1 acetate) (PVAc) and poly(n-butyl methacrylate) (PnBMA) spread at the air-water interface. The two polymers were selected as group representatives of expanded (PVAc) and condensed (PnBMA) type films. Surface longitudinal viscosity, K , and elasticity, e, for the two types were calculated from the frequency shift and line broadening of the power spectrum of the scattered light with a dispersion relation over a range of temperatures and surface concentrations. In some cases,the wavevedor dependence of the spectral characteristia necessitated the incorporation of a transverse viscosity term, p, in the dispersion equation, subject to the assumption that e and K did not depend on the scattering wavevedor. This transverse viscosity was shown to have an anomalous temperature dependence with characteristics different for the two polymers; an explanation of the temperature dependence in terms of a slow, collective transverse relaxation process is provided, which may be related to the orientational properties of the different polymers at the interface. Introduction Polymer conformation and dynamics at interfaces are important for scientific1and technological2reasons. It has been known for m a n y years that a wide variety of polymers can be spread at the air-water interface and that measurements of the surface pressure of the resulting films as a function of surface polymer densities suggest grouping polymers according to qualitative differences in their t e n d e n c y to spread and q u a n t i t a t i v e differences i n their pressure-area ~ u r v e s .For ~ example, poly(viny1 acetate) (PVAc) spreads readily to form fluid (expanded) films stable up to high surface pressures ( 1, p decreases with decreasing temperature. It follows that, if the predominant relaxation time of PVAc is greater than 1/u and if of PnBMA is less than l / w , different temperature dependences of 1.1 would be observed. To our knowledge, there is no experimental data to support or test this assumption about the relaxation time. However, since it has been suggested that PVAc is horizontally oriented'OJ' and PnBMA is more nearly vertically oriented,Ig it may follow that the relaxation time, 7,associated with the transverse motion of PVAc is longer than that of PnBMA. In summary, studies of this sort to probe the transverse viscosity contribution to film viscoelasticity might well bring forth new insight into the chain conformational dynamics at the air-water interface. With the present study, we would suggest that the relaxation processes associated with transverse motions may be of significance in defining the interfacial conformational dynamics; at least we cannot outright ignore it under all circumstances. Acknowledgment. This work was in part supported by the Miami Valley Laboratories of the Procter and Gamble Company and the Research Committee of the University of Wisconsin-Madison. Additional support by the Research Laboratories of Eastman Kodak Company is gratefully acknowledged.

+

Registry No. PVAc, 9003-20-7;PnBMA, 9003-63-8.

References and Notes de Gennes, P.-G. Adv. Colloid Interface Sci. 1987,27, 189. Wu, S. Polymer Interface a d Adhesion; Marcel Dekker: New York, 1982. Crisp, F. J. J. Colloid Sci. 1946,1, 49, 161. Goodrich, F. C. Proc. R. SOC.London 1961,A260, 490, 503. Davies, J. T.; Vose, R. W. Proc. R. SOC.London 1965,A286, 218. Lucassen, J.; Hansen, R. S. J.Colloid Interface Sci. 1966,22, 32;1967,23,319. Bendure, R. L.; Hansen, R. S. J. Phys. Chem. 1967,71,2889. Thiessen, D.; Scheludko,A. Kolloid-Z., Polym. 1967,218,139. Langevin, D. J. Colloid Interface Sci. 1981,80,412. Hard, S.;Lofgren, H. J. Colloid Interface Sci. 1977,60,529. Hard, S.;Neuman, R. D. J. Colloid Interface Sci. 1981,83,315. Crilly, J. F.;Earnshaw, J. C. In Biomedical Applications of Laser-Light Scattering; Sattelle, D. B., Lee, W. I., Ware, B. R., Eds.; Elsevier: Amsterdam, 1982. Crawford, G. E.; Earnshaw, J. C. Biophys. J. 1986,49, 869. Kawaguchi, M.;Sano, M.; Chen, Y.-L.; Zografi, G.; Yu, H. Macromokcules 1986,19,2606. Chen, Y.-L.; Kawaguchi, M.; Yu, H.; Zografi, G. Langmuir 1987,3, 31. Sauer, B. B.; Kawaguchi, M.; Yu, H. Macromolecules 1987,20, 2732. Vilanove, R.; Rondelez, F. Phys. Rev. Lett. 1980,45, 1502. Takahashi, A.; Yoshida, A,; Kawaguchi, M. Macromolecules 1982,16,1196. Pak, H.; Kawaguchi, M.; Sano, M.; Yoo, K.-H.; Yu, H. Macromolecules, submitted. Lucassen-Reynders, E. H.; Lucassen, J. Adv. Colloid Interface Sci. 1969,2,347. Mann, J. A.; Du, G. J. Colloid Interface Sci. 1971,37,2. Kramer, L. J. Chem. Phys. 1971,55,2097. Goodrich, F. C. J. Phys. Chem. 1962,66,1858. Langevin, D.; Griesman, C. J. Phys. D 1980,13,1189. Mann, J. A., Jr. In Surface and Colloid Science; Matijevic, E., Robert, J. G., Eds.; Plenum: New York, 1984;Vol. 13. Sano, M.; Kawaguchi, M.; Chen, Y.-L.; Skarlupka, R. J.; Chang, T.; Zografi, G.; Yu, H. Rev. Sci. Instrum. 1986,57,1158. Hard, S.;Hamnerius, Y.; Nilsson, 0. J. Appl. Phys. 1976,47, 2433. Gabrielli, G.;Puggelli, M. Colloid Interface Sci. 1971,35,460. Langevin, D.J. Chem. SOC.,Faraday Trans. 1 1974,70, 95. Kawaguchi, M.; Sauer, B. B.; Yu, H. Macromolecules 1989,22, 1735. Ries, H. E.,Jr.; Walker, D. C. J. Colloid Sci. 1961,16,361.

Influence of the Acid Residue on the Polarity of Cycloaliphatic Polyesters Evaristo Riande,* Julio Guzmln, and Javier de Abajo Znstituto de Ciencia y Tecnologia de Polimeros, 28006-Madrid' Spain. Received December 8, 1988; Revised Manuscript Received March 4, 1989 ABSTRACT The cis and trans isomers poly(l,4-cyclohexanedimethanoladipate) (PCCDA and PTCDA) and poly(trans-l,4-cyclohexanedimethanolsuccinate) (PTCDS) were synthesized by condensation of the corresponding cis and trans isomers of 1,4cyclohexanedhethanol with adipic acid and succinic acid, respectively. The values of the dipole moment ratio ( g 2 ) / n m 2at 30 O C for PCCDA, measured in benzene and dioxane solutions, were found to be 0.950 and 0.914,respectively. The values of the dipole moment ratio of PTCDA and PTCDS, determined from dielectric constant measurements in dilute dioxane solutions at 50 and 70 OC, were 0.596 and 0.454,respectively. In general, the trans isomers exhibit lower polarity than the cis, and the values of the dipole moment ratio of the former polyesters seem to decrease as the number of methylene groups in the acid residue decreases. The trans isomers also exhibit a positive and larger temperature coefficient than the cis isomers. Theoretical calculations carried out with the rotational isomeric state model give a good account of the experimental results, assuming that gauche states about CH2-C0 bonds of the acid residue are preferred over the alternative trans states. The theoretical analysis also suggests that the trans states about the @ CH2-CH2 bonds of the acid residue are preferred over the corresponding gauche states.

Introduction Polyesters and polyformals obtained by reaction of cyclohexanedimethanol with aliphatic acids and form-

aldehyde, respectively, were recently studied with the aim of analyzing the influence of the substitution (equatorial-axial or equatorial-equatorial) of the hydrogen atoms

0024-9297/89/2222-4026$01.50/00 1989 American Chemical Society