TEMPO-Mediated Synthesis of ... - ACS Publications

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application ...
0 downloads 0 Views 1MB Size
Article Cite This: J. Org. Chem. 2018, 83, 85−95

pubs.acs.org/joc

TEMPO-Mediated Synthesis of Tetrahydropyridinofullerenes: Reaction of [60]Fullerene with α‑Methyl-Substituted Arylmethanamines and Aldehydes in the Presence of 4‑Dimethylaminopyridine Jie Peng,⊥,† Gang Huang,⊥,† Hui-Juan Wang,⊥,‡ Fa-Bao Li,*,† Cheng Huang,† Jun-Jun Xiang,† Yongshun Huang,† Li Liu,*,† Chao-Yang Liu,*,‡ Abdullah M. Asiri,§ and Khalid A. Alamry§ †

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People’s Republic of China ‡ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China § Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia S Supporting Information *

ABSTRACT: A series of scarce tetrahydropyridinofullerenes were synthesized by the metal-free-mediated reaction of [60]fullerene with cheap and easily available α-methylsubstituted arylmethanamines and aldehydes in the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4dimethylaminopyridine (DMAP) in moderate to good yields comparable to the previously reported data for most monoadducts. The in situ generation of azadienes played a crucial role in the successful synthesis of tetrahydropyridinofullerenes. A plausible reaction mechanism was proposed to elucidate the reaction process.



extrusion of benzosultines4b,c. As for fullerene-fused sixmembered heterocyclic derivatives, only those from oxa-5a and thiadienes5b,c can be prepared, whereas those from azadienes5d are still not successfully isolated and characterized. Accordingly, further exploration and development of new protocols for the synthesis of six-membered heterocyclic fullerene derivatives, especially for those from azadienes, are still in demand. Recently, a new strategy for chemical modification of fullerenes by using cheap and easily accessible aldehydes and amines has attracted increasing attention because a large variety of novel fullerene derivatives with structural and functional diversities have been successfully prepared by adopting the above strategy.6 For example, we reported the reaction of [60]fullerene (C60) with different arylmethanamines promoted by Fe(ClO4)3 to produce a series of rare symmetrical 2,5-diaryl fulleropyrrolidines.6b In efforts to extend the reactions of C60 with aldehydes and amines, we found that the reaction of C60 with benzaldehyde and α-methylbenzylamine in the presence of 4-dimethylaminopyridine (DMAP) could afford the rare tetrahydropyridinofullerene. To the best of our knowledge, tetrahydropyridinofullerene is very rare, and

INTRODUCTION Although fullerenes with unique structures display outstanding properties, the limited solubility in water and/or polar organic solvents has hampered their applications in many fields. Therefore, the functionalization of fullerenes with various organic functional groups is extremely important.1,2 Chemical modification of fullerenes has received extensive attention over the past decades because functionalized fullerenes have exhibited remarkable potential in various areas such as material science, biological application, nanotechnology, and so on.1 Among the known methods for chemical modification of fullerenes, Diels−Alder reactions3−5 are often used to prepare the relatively rare fullerene-fused six-membered carbo- or heterocyclic derivatives by [4 + 2] cycloadditions in which the [6,6]-double bonds of fullerenes always act as dienophiles and tend to react with different types of dienes including carbodienes and heterodienes to afford the cycloadducts. For example, the C60-fused six-membered carbocyclic products can be easily synthesized by the [4 + 2] cycloadditions of C60 with anthracene,3a,b cyclopentadiene,3c,d and buta-1,3-dienes.3e It should be pointed out that many [4 + 2] cycloaddition products can also be formed by the reactions of fullerenes with in situ generated dienes such as o-quinodimethane intermediates, which can be produced either by the reaction of 1,2bis(bromomethyl)benzene with KI4a or by the thermal © 2017 American Chemical Society

Received: September 20, 2017 Published: December 12, 2017 85

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry Table 1. Optimization of Reaction Conditions for the Reaction of C60 with Benzaldehyde 1a and (R)-(+)-αMethylbenzylamine 2aa

entry

additive

base

molar ratiob

temp (°C)

time (h)

yield (%) of 3aac

yield (%) of 4ac

yield (%) of cis-5ac

1 2 3 4 5 6 7 8 9 10 11 12 13 14d 15d 16 17 18 19 20 21e

none none TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO TEMPO BHT TEMPO none TEMPO

DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DMAP DABCO Py DMAP none none DMAP

1:5:5:0:2 1:10:5:0:1 1:10:5:1:1 1:10:5:1:1 1:15:5:1:1 1:5:5:1:1 1:10:8:1:1 1:10:2:1:1 1:10:5:2:1 1:10:5:1.5:1 1:10:5:0.5:1 1:10:5:1:2 1:10:5:1:0.5 1:10:5:1:1 1:10:5:2:1 1:10:5:1:1 1:10:5:1:1 1:10:5:1:1 1:10:5:1:0 1:10:5:0:0 1:10:5:1:1

180 180 180 160 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180

4 3 2 2.5 2 2.5 2.5 3 2 2 2 2 2 2 2 2.5 2.5 3 3 3 2.5

12 27 50 28 48 31 47 25 49 48 36 44 39 47 49 26 26 27 26 300 °C. 3aa: 1H NMR (600 MHz, CS2/CDCl3) δ 8.26 (d, J = 3.6 Hz, 2H), 7.83 (br s, 2H), 7.54−7.53 (m, 3H), 7.32 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 6.19 (s, 1H), 5.01 (d, J = 14.4 Hz, 1H), 4.64 (d, J = 14.4 Hz, 1H); 13C NMR (150 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.57 (CN), 155.07, 154.94, 151.87, 151.76, 146.58, 146.50, 146.05, 145.96, 145.56 (2C), 145.50 (2C), 145.27 (2C), 145.22, 145.10, 144.93, 144.83, 144.72, 144.44 (3C), 144.42 (4C), 144.35, 143.82, 143.70, 143.62 (2C), 143.54, 142.08, 142.02, 141.69, 141.63 (2C), 141.56, 141.26, 141.17 (3C), 141.10 (2C), 141.05, 140.82 (2C), 140.74, 140.55, 140.32, 139.22 (2C), 138.37, 137.95, 137.57, 137.04, 135.26, 135.02, 134.77 (2C), 130.22 (aryl C), 130.13 (2C, aryl C), 127.97 (2C, aryl C), 126.99 (aryl C), 126.78 (2C, aryl C), 126.43 (2C, aryl C), 70.93 (sp3-C of C60), 70.20 (sp3-C of C60), 63.59, 39.72; FTIR ν/cm−1 (KBr) 1612, 1445, 1429, 1402, 1339, 1181, 1069, 764, 757, 724, 701, 689, 527; UV−vis (CHCl3) λmax/nm 258, 314, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H14N 928.1120, found 928.1101. Tetrahydropyridinofullerene 3ba. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1b (83.1 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 3.5 h afforded first unreacted C60 (27.7 mg, 77%) and then 3ba (8.3 mg, 17%) as a brown solid: mp >300 °C. 3ba: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.23−8.22 (m, 2H), 7.51−7.48 (m, 3H), 7.31−7.26 (m, 2H), 6.73 (d, J = 8.3 Hz, 1H), 6.25 (s, 1H), 4.96 (d, J = 14.1 Hz, 1H), 4.72 (d, J = 14.1 Hz, 1H), 3.71 (s, 3H), 3.65 (s, 3H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.21 (CN), 155.03, 154.87, 151.94, 151.90, 147.70 (aryl C), 147.40 (aryl C), 146.28, 146.22, 145.91, 145.80, 145.27 (2C), 145.20 (2C), 145.00 (2C), 144.93, 144.80, 144.63, 144.50, 144.41, 144.23, 144.12 (6C), 144.04, 143.64, 143.43, 143.35, 143.32, 143.24, 141.83, 141.73, 141.40, 141.35 (2C), 141.30, 140.98, 140.93 (2C), 140.87, 140.80, 140.79, 140.75, 140.54, 140.52, 140.48, 140.34, 140.13, 138.91 (2C), 137.62, 137.22, 136.82, 134.72, 134.65, 134.56, 134.29, 130.49 (aryl C), 130.03 (aryl C), 127.81 (2C, aryl C), 126.22 (2C, aryl C), 122.38 (aryl C), 114.32 (aryl C), 109.67 (aryl C), 70.95 (sp3-C of C60), 69.54 (sp3-C of C60), 63.34, 54.74, 54.42, 38.73; FTIR ν/cm−1 (KBr) 1609, 1514, 1461, 1446, 1415, 1401, 1264, 1234, 1181, 1163, 1137, 1028, 764, 689, 527; UV−vis (CHCl3) λmax/nm 257, 314, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C77H18NO2 988.1332, found 988.1308. Tetrahydropyridinofullerene 3ca. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1c (83.1 mg, 0.5 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 3 h afforded first unreacted C60 (28.8 mg, 80%) and then 4a6b,8 (1.9 mg, 5%) and 3ca (6.2 mg, 13%) as a brown solid: mp >300 °C. 90

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry

TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 3 h afforded first unreacted C60 (20.8 mg, 58%) and then 3ia (17.7 mg, 36%) as a brown solid: mp >300 °C. 3ia: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.21 (d, J = 5.8 Hz, 2H), 8.14 (d, J = 8.7 Hz, 1H), 7.51−7.49 (m, 3H), 7.31−7.29 (m, 2H), 6.73 (s, 1H), 5.05 (d, J = 14.2 Hz, 1H), 4.74 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 172.76 (CN), 155.07, 154.22, 151.29, 150.85, 146.65, 146.58, 145.90, 145.66, 145.62, 145.54, 145.49, 145.31 (2C), 145.27, 145.12, 144.96, 144.82, 144.77, 144.68, 144.58, 144.50 (5C), 144.36, 144.32, 143.75, 143.71 (2C), 143.66, 143.59, 142.25, 142.08, 141.76, 141.66 (2C), 141.58, 141.26 (3C), 141.14 (2C), 141.06, 140.87, 140.80, 140.76 (2C), 140.61, 140.47, 139.27, 139.17, 138.55, 137.69, 136.75, 135.55, 135.37, 135.06, 134,95, 134.74, 134.37 (2C, aryl C), 133.82 (aryl C), 130.53 (aryl C), 128.07 (2C, aryl C), 127.97 (aryl C), 126.53 (2C, aryl C), 126.09 (aryl C), 70.56 (sp3-C of C60), 65.81 (sp3-C of C60), 63.67; FTIR ν/cm−1 (KBr) 1605, 1598, 1470, 1446, 1429, 1381, 1354, 1337, 1324, 1180, 1100, 865, 763, 688, 680, 552, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H12Cl2N 996.0341, found 996.0323. Tetrahydropyridinofullerene 3ja. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1j (68 μL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 3.5 h afforded first unreacted C60 (20.6 mg, 57%) and then 3ja (17.4 mg, 35%) as a brown solid: mp >300 °C. 3ja: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.26−8.24 (m, 2H), 8.02 (d, J = 7.4 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.52−7.48 (m, 3H), 6.49 (s, 1H), 5.00 (d, J = 14.2 Hz, 1H), 4.81 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.80 (CN), 154.48, 154.46, 150.91, 150.87, 146.20, 146.15, 145.18, 145.16, 145.13 (3C), 144.90 (2C), 144.85, 144.73, 144.52, 144.39, 144.33, 144.16, 144.13, 144.10, 144.08, 144.02 (5C), 143.43, 143.28 (2C), 143.22, 143.19, 142.62 (aryl C), 141.73, 141.67, 141.33, 141.27, 141.23, 141.18, 140.86, 140.79, 140.76 (2C), 140.68 (3C), 140.41, 140.38, 140.35, 140.16, 139.96, 138.87 (2C), 137.69, 137.34, 136.50, 135.15, 134.82, 134.47, 134.45, 130.27 (2C, aryl C), 130.14 (aryl C), 128.24 (q, JC−F = 30 Hz, aryl C), 127.77 (2C, aryl C), 126.18 (2C, aryl C), 123.23 (2C, aryl C), 122.70 (q, JC−F = 271 Hz), 70.16 (sp3-C of C60), 69.06 (sp3-C of C60), 63.31, 38.85; FTIR ν/cm−1 (KBr) 1618, 1446, 1428, 1418, 1323, 1164, 1126, 1067, 833, 764, 688, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDITOF) m/z [M + H]+ calcd for C76H13F3N 996.0994, found 996.0972. Tetrahydropyridinofullerene 3ka. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1k (82 μL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 2.5 h afforded first unreacted C60 (19.1 mg, 53%) and then 3ka (20.8 mg, 39%) as a brown solid: mp >300 °C. 3ka: 1H NMR (500 MHz, CS2/CDCl3) δ 8.35 (br s, 2H), 8.28− 8.25 (m, 2H), 7.79 (s, 1H), 7.59−7.55 (m, 3H), 6.31 (s, 1H), 5.08 (d, J = 14.2 Hz, 1H), 4.64 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 172.54 (CN), 154.45 (2C), 150.31 (2C), 146.38, 146.35, 145.38 (2C), 145.31 (2C), 145.08 (2C), 145.06, 144.92, 144.79, 144.77, 144.67, 144.53, 144.52, 144.36 (2C), 144.32, 144.21 (5C), 143.56, 143.51, 143.39 (2C), 143.37, 142.00 (aryl C), 141.93, 141.86, 141.53, 141.47, 141.37 (2C), 141.08, 140.99, 140.90 (3C), 140.84, 140.75, 140.57, 140.53, 140.38, 140.32, 140.17, 139.06, 139.04, 137.69, 137.40, 136.48, 135.61, 135.46, 134.81, 134.57, 130.40 (aryl C), 129.94 (2C, aryl C), 129.15 (q, JC−F = 32 Hz, 2C, aryl C), 127.94 (2C, aryl C), 126.34 (2C, aryl C), 122.15 (q, JC−F = 272 Hz, 2C), 120.16 (aryl C), 70.15 (sp3-C of C60), 68.37 (sp3-C of C60), 63.46; FTIR ν/cm−1 (KBr) 1611, 1428, 1384, 1347, 1277, 1176, 1135, 894, 764, 689, 682, 527; UV−vis (CHCl3) λmax/nm 257, 315, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C77H12F6N 1064.0868, found 1064.0851. Tetrahydropyridinofullerene 3la. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1l (75.6 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of

mg, 50%) and then 3fa (20.1 mg, 42%) as a brown solid: mp >300 °C. 3fa: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.25−8.22 (m, 2H), 7.80 (d, J = 6.7 Hz, 2H), 7.51−7.47 (m, 3H), 7.25 (dd, J = 7.5, 1.3 Hz, 2H), 6.36 (s, 1H), 4.98 (d, J = 14.1 Hz, 1H), 4.76 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.74 (CN), 154.78, 154.73, 151.36, 151.31, 146.36, 146.30, 145.61, 145.55, 145.35 (2C), 145.29 (2C), 145.06 (2C), 145.00, 144.88, 144.70, 144.57, 144.49, 144.27 (4C), 144.18 (4C), 143.64, 143.45, 143.44, 143.40, 143.35, 141.89, 141.82, 141.48, 141.42, 141.40, 141.35, 141.03, 140.95 (3C), 140.85 (3C), 140.57 (2C), 140.51, 140.37, 140.17, 138.99 (2C), 137.85, 137.51, 137.11, 136.72, 135.21, 134.85, 134.67, 134.62, 132.69 (aryl C), 131.31 (2C, aryl C), 130.21 (aryl C), 127.88 (2C, aryl C), 126.74 (2C, aryl C), 126.30 (2C, aryl C), 70.57 (sp3-C of C60), 69.03 (sp3-C of C60), 63.43, 39.02; FTIR ν/cm−1 (KBr) 1610, 1572, 1488, 1461, 1446, 1428, 1355, 1346, 1216, 1182, 1088, 828, 798, 763, 689, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13ClN 962.0731, found 962.0714. Tetrahydropyridinofullerene 3ga. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1g (92.5 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 4 h afforded first unreacted C60 (26.1 mg, 73%) and then 3ga (12.4 mg, 25%) as a brown solid: mp >300 °C. 3ga: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.24−8.22 (m, 2H), 7.74 (d, J = 6.8 Hz, 2H), 7.51−7.47 (m, 3H), 7.41 (dd, J = 7.6, 1.2 Hz, 2H), 6.34 (s, 1H), 4.98 (d, J = 14.1 Hz, 1H), 4.76 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.46 (CN), 154.46, 154.39, 151.04, 150.96, 146.12, 146.05, 145.32, 145.26, 145.11, 145.10, 145.04 (2C), 144.82 (2C), 144.76, 144.63, 144.44, 144.31, 144.24, 144.07, 144.03, 144.01 (2C), 143.94 (4C), 143.34, 143.21, 143.18, 143.15, 143.09, 141.63, 141.57, 141.23, 141.18, 141.15, 141.10, 140.78, 140.70 (3C), 140.60 (3C), 140.33, 140.30, 140.25, 140.14, 139.93, 138.76 (2C), 137.64, 137.31, 137.29, 136.46, 134.96, 134.56, 134.43, 134.34, 131.40 (2C, aryl C), 130.02 (aryl C), 129.46 (2C, aryl C), 127.68 (2C, aryl C), 126.08 (2C, aryl C), 121.11 (aryl C), 70.23 (sp3-C of C60), 68.93 (sp3-C of C60), 63.15, 38.69; FTIR ν/cm−1 (KBr) 1611, 1571, 1486, 1446, 1428, 1404, 1345, 1257, 1217, 1181, 1069, 1011, 826, 798, 762, 688, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13BrN 1006.0225, found 1006.0208. Tetrahydropyridinofullerene 3ha. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1h (56 uL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 4 h afforded first unreacted C60 (21.4 mg, 59%) and then 3ha (18.4 mg, 38%) as a brown solid: mp >300 °C. 3ha: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.24−8.21 (m, 2H), 8.15 (dd, J = 7.9, 1.6 Hz, 1H), 7.52−7.47 (m, 3H), 7.33−7.27 (m, 2H), 7.24−7.20 (m, 1H), 6.78 (s, 1H), 5.05 (d, J = 14.3 Hz, 1H), 4.75 (d, J = 14.3 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 172.14 (CN), 154.91, 154.09, 151.25, 150.97, 146.30, 146.22, 145.81, 145.32, 145.27, 145.19, 145.13, 144.95 (2C), 144.91, 144.77, 144.66, 144.53, 144.43, 144.36, 144.28, 144.21 (3C), 144.18, 144.08, 144.03, 143.94, 143.49, 143.40, 143.34 (2C), 143.23, 141.89, 141.72, 141.40, 141.30 (2C), 141.23, 140.95, 140.92 (2C), 140.83, 140.80, 140.71, 140.57, 140.49, 140.43 (2C), 140.19, 140.04, 138.91, 138.81, 138.02, 137.17, 136.58, 136.08, 135.05, 134.69, 134.66, 134.49, 133.41 (aryl C), 133.18 (aryl C), 130.19 (aryl C), 128.37 (aryl C), 128.12 (aryl C), 127.83 (2C, aryl C), 126.26 (2C, aryl C), 125.49 (aryl C), 70.37 (sp3-C of C60), 65.87 (sp3C of C60), 63.38; FTIR ν/cm−1 (KBr) 1607, 1568, 1444, 1429, 1325, 1180, 1155, 1034, 1026, 749, 686, 526; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13ClN 962.0731, found 962.0714. Tetrahydropyridinofullerene 3ia. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1i (87.5 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of 91

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry

Tetrahydropyridinofullerene 3oa. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1o (68 μL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 8 h afforded first unreacted C60 (24.0 mg, 67%) and then 3oa (9.2 mg, 19%) as a brown solid: mp >300 °C. 3oa: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.70 (d, J = 8.7 Hz, 1H), 8.36 (d, J = 7.4 Hz, 1H), 8.30−8.26 (m, 2H), 7.74 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.52−7.49 (m, 4H), 7.42 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.31 (s, 1H), 5.13 (d, J = 14.2 Hz, 1H), 5.02 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSOd6) (all 1C unless indicated) δ 172.26 (CN), 155.87, 154.68, 152.45, 152.29, 146.43, 146.37, 146.32, 145.38, 145.31 (2C), 145.17, 145.04 (2C), 145.00, 144.90, 144.67 (4C), 144.55, 144.31, 144.26 (2C), 144.23, 144.18, 144.09 (2C), 143.67, 143.49, 143.46, 143.38, 143.32, 141.92, 141.83, 141.52, 141.43, 141.38, 141.33, 141.15, 140.97 (3C), 140.86 (2C), 140.71 (2C), 140.59, 140.45, 140.27, 140.06, 139.05 (2C), 137.91, 137.15, 137.08, 135.06, 134.87, 134.82 (2C), 134.01 (aryl C), 132.27 (aryl C), 131.16 (aryl C), 130.40 (aryl C), 130.11 (aryl C), 128.09 (aryl C), 127.93 (2C, aryl C), 127.55 (aryl C), 126.36 (2C, aryl C), 124.90 (aryl C), 124.44 (aryl C), 124.36 (aryl C), 123.37 (aryl C), 71.29 (sp3-C of C60), 64.34 (sp3-C of C60), 63.82; FTIR ν/cm−1 (KBr) 1605, 1595, 1426, 1398, 1343, 1180, 1021, 788, 778, 765, 687, 527; UV−vis (CHCl3) λmax/nm 257, 316, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C79H16N 978.1277, found 978.1249. Tetrahydropyridinofullerene 3pa. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1p (46 μL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 5 h afforded first unreacted C60 (24.5 mg, 68%) and then 3pa (12.0 mg, 26%) as a brown solid: mp >300 °C. 3pa: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.26−8.24 (m, 2H), 7.53−7.48 (m, 3H), 7.25 (dd, J = 5.1, 1.1 Hz, 1H), 7.18 (dd, J = 2.7, 0.8 Hz, 1H), 6.92 (dd, J = 5.1, 3.6 Hz, 1H), 6.69 (s, 1H), 4.97 (d, J = 14.1 Hz, 1H), 4.75 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/ DMSO-d6) (all 1C unless indicated) δ 171.93 (CN), 155.05, 154.58, 151.86, 151.38, 146.55, 146.44, 146.38, 145.85, 145.43 (2C), 145.40, 145.35, 145.13 (2C), 145.06, 144.94, 144.81, 144.67, 144.57, 144.41, 144.33, 144.29 (3C), 144.24, 144.22, 144.20, 143.69, 143.57, 143.50, 143.46, 143.39, 143.29, 141.89, 141.86, 141.55, 141.49 (2C), 141.45, 141.09 (3C), 141.02, 140.97, 140.91 (2C), 140.66, 140.60, 140.52, 140.47, 140.27, 139.07, 139.01, 137.69, 137.54, 136.44, 134.99, 134.90, 134.85, 134.66, 130.36 (aryl C), 127.92 (2C, aryl C), 126.85 (aryl C), 126.46 (2C, aryl C), 125.37 (aryl C), 125.33 (aryl C), 70.92 (sp3-C of C60), 65.99 (sp3-C of C60), 63.56, 38.72; FTIR ν/ cm−1 (KBr) 1617, 1446, 1428, 1401, 1343, 1181, 764, 701, 689, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/ z [M + H]+ calcd for C73H12NS 934.0685, found 934.0662. Tetrahydropyridinofullerene 3qa. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1q (63 μL, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 1 h afforded first unreacted C60 (22.6 mg, 63%) and then 3qa (12.4 mg, 26%) as a brown solid: mp >300 °C. 3qa: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.23−8.21 (m, 2H), 7.50−7.48 (m, 3H), 7.36 (d, J = 7.3 Hz, 2H), 7.23−7.12 (m, 5H), 5.85 (d, J = 5.8 Hz, 1H), 4.92 (d, J = 14.1 Hz, 1H), 4.61 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 170.94 (CN), 155.23, 154.65, 152.46, 152.01, 146.62, 146.52, 146.24, 145.92, 145.61, 145.55 (2C), 145.52, 145.26 (4C), 145.14, 144.99, 144.88, 144.74, 144.60 (2C), 144.46 (4C), 144.41, 144.03, 143.80, 143.70 (2C), 143.60, 142.12 (2C), 141.71, 141.65 (2C), 141.57, 141.24 (4C), 141.17, 141.08 (2C), 140.91, 140.73, 140.69, 140.67, 140.45, 139.20 (2C), 138.64, 138.38, 136.99, 135.86, 135.47, 135.17, 135.01, 134.74, 133.58, 130.23 (aryl C), 128.17, 127.98 (2C, aryl C), 127.89 (2C, aryl C), 127.04 (aryl C), 126.45 (2C, aryl C), 125.96 (2C, aryl C), 69.95 (sp3-C of C60), 67.40 (sp3-C of C60), 63.75, 38.66; FTIR ν/cm−1 (KBr) 1601, 1447, 1429, 1341, 1181, 960, 763, 744, 688, 527; UV−vis (CHCl3) λmax/nm 258, 312,

TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 1.5 h afforded first unreacted C60 (20.6 mg, 57%) and then 3la (19.5 mg, 40%) as a brown solid: mp >300 °C. 3la: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.25 (dd, J = 7.5, 1.9 Hz, 2H), 8.14 (d, J = 9.1 Hz, 2H), 8.09 (d, J = 6.7 Hz, 2H), 7.54− 7.49 (m, 3H), 6.56 (s, 1H), 5.00 (d, J = 14.2 Hz, 1H), 4.81 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 172.17 (CN), 154.49 (2C), 150.72 (2C), 146.37, 146.34, 146.23, 145.89, 145.37 (2C), 145.31 (2C), 145.12 (2C), 145.08 (2C), 145.04, 144.92, 144.67, 144.53, 144.51, 144.36, 144.34, 144.30, 144.20 (5C), 143.55, 143.47, 143.40, 143.37 (2C), 141.92, 141.86, 141.53, 141.47, 141.41, 141.38, 141.03, 140.97, 140.90 (2C), 140.85, 140.83 (2C), 140.59, 140.53 (2C), 140.35, 140.17, 139.07 (2C), 137.86, 137.54, 136.57 (aryl C), 135.44, 135.17, 134.64, 134.58, 130.84 (2C, aryl C), 130.34 (aryl C), 127.91 (2C, aryl C), 126.33 (2C, aryl C), 121.55 (2C, aryl C), 70.22 (sp3-C of C60), 68.94 (sp3-C of C60), 63.48, 39.08; FTIR ν/cm−1 (KBr) 1599, 1514, 1446, 1427, 1341, 1215, 1181, 693, 527; UV−vis (CHCl3) λmax/nm 258, 315, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13N2O2 973.0971, found 973.0951. Tetrahydropyridinofullerene 3ma. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1m (75.6 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 4 h afforded first unreacted C60 (21.7 mg, 60%) and then 3ma (13.2 mg, 27%) as a brown solid: mp >300 °C. 3ma: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.68 (s, 1H), 8.26− 8.24 (m, 3H), 8.10−8.07 (m, 1H), 7.54−7.49 (m, 4H), 6.56 (s, 1H), 5.00 (d, J = 14.1 Hz, 1H), 4.80 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 172.30 (CN), 154.61 (2C), 150.81, 150.73, 146.51, 146.47 (2C), 145.52, 145.50, 145.44 (2C), 145.20 (5C), 145.05, 144.83, 144.71, 144.66, 144.49 (2C), 144.44, 144.33 (5C), 143.65, 143.63, 143.52 (3C), 142.06, 142.00, 141.66, 141.60, 141.53, 141.50, 141.20, 141.13 (2C), 141.02 (3C), 140.99 (2C), 140.72, 140.66, 140.63, 140.44, 140.27, 139.20 (2C), 138.02, 137.66, 136.69, 135.78, 135.69, 135.41, 134.87, 134.78, 130.39 (aryl C), 127.99 (2C, aryl C), 127.58 (aryl C), 126.42 (2C, aryl C), 124.58 (aryl C), 121.81 (aryl C), 70.41 (sp3-C of C60), 68.91 (sp3-C of C60), 63.59; FTIR ν/cm−1 (KBr) 1610, 1527, 1446, 1430, 1346, 1218, 1182, 1098, 764, 690, 527; UV−vis (CHCl3) λmax/nm 257, 315, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13N2O2 973.0971, found 973.0951. Tetrahydropyridinofullerene 3na. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1n (91.1 mg, 0.50 mmol) and 2a (32 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 5 h afforded first unreacted C60 (23.4 mg, 65%) and then 3na (15.3 mg, 31%) as a brown solid: mp >300 °C. 3na: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.27−8.24 (m, 2H), 7.88 (d, J = 5.9 Hz, 2H), 7.53−7.47 (m, 7H), 7.31 (t, J = 7.7 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 6.38 (s, 1H), 4.99 (d, J = 14.2 Hz, 1H), 4.77 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.61 (CN), 155.02, 154.92, 151.81, 151.76, 146.46, 146.38, 145.98, 145.88, 145.46, 145.44, 145.39 (2C), 145.15 (2C), 145.09, 144.97, 144.84, 144.72, 144.60, 144.40 (2C), 144.34 (2C), 144.29 (3C), 144.23, 143.77, 143.59, 143.52 (2C), 143.44, 141.99, 141.98, 141.91, 141.57, 141.51, 141.48, 141.42, 141.16, 141.05 (3C), 141.02, 140.99, 140.94, 140.73, 140.69, 140.61, 140.46, 140.25, 139.32, 139.14, 139.09 (2C), 137.97, 137.59 (2C), 136.94, 135.22, 134.87, 134.79, 134.73, 130.56 (2C, aryl C), 130.20 (aryl C), 127.93 (4C, aryl C), 126.44 (aryl C), 126.39 (2C, aryl C), 126.08 (2C, aryl C), 125.19 (aryl C), 70.88 (sp3-C of C60), 69.76 (sp3-C of C60), 63.59, 38.94; FTIR ν/cm−1 (KBr) 1602, 1571, 1486, 1446, 1429, 1341, 1256, 1182, 1007, 762, 733, 690, 527; UV−vis (CHCl3) λmax/nm 258, 313, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C81H18N 1004.1433, found 1004.1414. 92

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C77H16N 954.1277, found 954.1261. Tetrahydropyridinofullerene 3ab. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1a (51 μL, 0.50 mmol) and 2b (37 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 2 h afforded first unreacted C60 (19.8 mg, 55%) and then 3ab (19.6 mg, 41%) as a brown solid: mp >300 °C. 3ab: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.18 (d, J = 8.9 Hz, 2H), 7.78 (d, J = 5.6 Hz, 2H), 7.27 (t, J = 7.9 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 8.9 Hz, 2H), 6.22 (s, 1H), 4.93 (d, J = 14.1 Hz, 1H), 4.64 (d, J = 14.1 Hz, 1H), 3.86 (s, 3H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 170.41 (CN), 160.93 (aryl C), 155.01, 154.85, 151.75, 151.72, 146.35, 146.27, 145.89, 145.79, 145.35, 145.33, 145.28, 145.26, 145.05 (2C), 145.00, 144.87, 144.73, 144.61, 144.49, 144.30, 144.23 (2C), 144.19 (4C), 144.11, 143.68, 143.50, 143.41 (2C), 143.32, 141.85, 141.81, 141.46, 141.41 (2C), 141.33, 141.04, 140.95 (3C), 140.89 (2C), 140.82, 140.63, 140.60, 140.51, 140.32, 140.09, 139.00, 138.96, 138.36, 137.73, 137.32, 135.08, 134.84, 134.54, 134.51, 129.94 (2C, aryl C), 129.47 (aryl C), 127.86 (2C, aryl C), 126.77 (aryl C), 126.58 (2C, aryl C), 113.18 (2C, aryl C), 70.82 (sp3-C of C60), 69.85 (sp3-C of C60), 63.40, 54.34, 38.54; FTIR ν/cm−1 (KBr) 1602, 1569, 1512, 1437, 1339, 1250, 1173, 1032, 832, 701, 527; UV−vis (CHCl3) λmax/nm 258, 312, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C76H16NO 958.1226, found 958.1202. Tetrahydropyridinofullerene 3db. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1d (61 μL, 0.50 mmol) and 2b (37 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 5 h afforded first unreacted C60 (22.6 mg, 63%) and then 4b8 (3.0 mg, 7%) and 3db (13.5 mg, 27%) as brown solid: mp >300 °C. 3db: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.17 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 6.3 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 6.76 (d, J = 8.9 Hz, 2H), 6.18 (s, 1H), 4.91 (d, J = 14.0 Hz, 1H), 4.62 (d, J = 14.0 Hz, 1H), 3.86 (s, 3H), 3.71 (s, 3H); 13C NMR (125 MHz, CS2/ DMSO-d6) (all 1C unless indicated) δ 170.29 (CN), 160.96 (aryl C), 157.86 (aryl C), 155.19, 155.01, 152.07, 152.04, 146.44, 146.33, 146.14, 145.99, 145.43, 145.40, 145.36, 145.33, 145.12 (2C), 145.06, 144.93, 144.82, 144.71, 144.55, 144.39, 144.30 (2C), 144.25 (4C), 144.18, 143.79, 143.59, 143.50 (2C), 143.40, 141.93, 141.89, 141.53, 141.47 (2C), 141.40, 141.12, 141.03 (3C), 140.98 (2C), 140.90, 140.72, 140.65, 140.57, 140.45, 140.21, 139.02, 139.00, 137.91, 137.50, 135.13, 134.92, 134.64, 134.53, 130.92 (2C, aryl C), 130.38 (aryl C), 129.59 (aryl C), 127.90 (2C, aryl C), 113.22 (2C, aryl C), 112.05 (2C, aryl C), 71.23 (sp3-C of C60), 69.39 (sp3-C of C60), 63.49, 54.37, 53.91, 38.48; FTIR ν/cm−1 (KBr) 1603, 1510, 1428, 1339, 1248, 1172, 1033, 831, 527; UV−vis (CHCl3) λmax/nm 258, 312, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C77H18NO2 988.1332, found 988.1308. Tetrahydropyridinofullerene 3lb. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1l (75.6 mg, 0.50 mmol) and 2b (37 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 1 h afforded first unreacted C60 (21.7 mg, 60%) and then 3lb (15.8 mg, 32%) as a brown solid: mp >300 °C. 3lb: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.20 (d, J = 8.9 Hz, 2H), 8.13 (d, J = 9.1 Hz, 2H), 8.07 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.49 (s, 1H), 4.97 (d, J = 14.1 Hz, 1H), 4.73 (d, J = 14.1 Hz, 1H), 3.86 (s, 3H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.21 (CN), 161.20 (aryl C), 154.64, 154.57, 150.86, 150.82, 146.44, 146.39, 146.28, 146.09, 145.44 (2C), 145.37 (2C), 145.23 (2C), 145.15 (3C), 144.98, 144.74, 144.61, 144.57, 144.42, 144.39 (2C), 144.27 (5C), 143.64, 143.54, 143.50, 143.44 (2C), 141.99, 141.94, 141.60, 141.54, 141.49, 141.45, 141.09, 141.03, 140.98 (2C), 140.91 (3C), 140.66, 140.60 (2C), 140.43, 140.23, 139.13 (2C), 137.96, 137.61, 135.56, 135.13, 134.73, 134.63, 130.85 (2C, aryl C), 129.20 (aryl C), 128.00 (2C, aryl C), 121.56 (2C, aryl

C), 113.29 (2C, aryl C), 70.36 (sp3-C of C60), 68.96 (sp3-C of C60), 63.52, 54.37, 38.82; FTIR ν/cm−1 (KBr) 1601, 1568, 1512, 1417, 1401, 1343, 1283, 1174, 1027, 837, 527; UV−vis (CHCl3) λmax/nm 258, 312, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C76H15N2O3 1003.1077, found 1003.1054. Tetrahydropyridinofullerene 3ac. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1a (51 μL, 0.50 mmol) and 2c (33 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 2.5 h afforded first unreacted C60 (17.1 mg, 48%) and then 3ac (19.7 mg, 42%) as a brown solid: mp >300 °C. 3ac: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.29 (dd, J = 8.9, 5.4 Hz, 2H), 7.78 (d, J = 5.9 Hz, 2H), 7.27 (t, J = 7.8 Hz, 2H), 7.22−7.16 (m, 3H), 6.26 (s, 1H), 4.97 (d, J = 14.1 Hz, 1H), 4.71 (d, J = 14.1 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 170.47 (CN), 163.57 (d, JC−F = 250.9 Hz, aryl C), 154.91, 154.80, 151.72, 151.67, 146.43, 146.36, 145.91, 145.82, 145.44, 145.41, 145.37 (2C), 145.13 (2C), 145.08, 144.96, 144.79, 144.66, 144.57, 144.38, 144.33, 144.28 (5C), 144.19, 143.79, 143.55, 143.48 (2C), 143.39, 141.94, 141.89, 141.55, 141.49 (2C), 141.43, 141.10, 141.02 (3C), 140.94 (2C), 140.91, 140.67 (2C), 140.59, 140.38, 140.18, 139.04, 139.02, 138.23, 137.79, 137.41, 135.06, 134.82, 134.67 (2C), 133.23 (aryl C), 129.99 (2C, aryl C), 128.65 (d, JC−F = 5.9 Hz, 2C, aryl C), 126.91 (aryl C), 126.70 (2C, aryl C), 114.84 (d, JC−F = 20.8 Hz, 2C, aryl C), 70.76 (sp3-C of C60), 69.96 (sp3-C of C60), 63.46, 38.78; FTIR ν/cm−1 (KBr) 1600, 1508, 1429, 1336, 1232, 1182, 1156, 836, 701, 527; UV−vis (CHCl3) λmax/nm 257, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13FN 946.1026, found 946.1008. Tetrahydropyridinofullerene 3dc. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1d (61 μL, 0.50 mmol) and 2c (33 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 5 h afforded first unreacted C60 (23.9 mg, 66%) and then 3dc (13.7 mg, 29%) as a brown solid: mp >300 °C. 3dc: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.27 (dd, J = 8.8, 5.4 Hz, 2H), 7.66 (d, J = 5.8 Hz, 2H), 7.17 (t, J = 8.5 Hz, 2H), 6.76 (d, J = 8.9 Hz, 2H), 6.20 (s, 1H), 4.94 (d, J = 14.1 Hz, 1H), 4.67 (d, J = 14.1 Hz, 1H), 3.72 (s, 3H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 170.12 (CN), 163.49 (d, JC−F = 250.8 Hz, aryl C), 157.88 (aryl C), 154.88, 154.73, 151.84, 151.77, 146.40, 146.30, 146.00, 145.86, 145.40, 145.36, 145.33, 145.30, 145.09 (2C), 145.02, 144.90, 144.74, 144.61, 144.52, 144.28 (2C), 144.23 (5C), 144.14, 143.69, 143.52, 143.45, 143.43, 143.34, 141.92, 141.85, 141.50, 141.44 (2C), 141.37, 141.05, 140.98 (3C), 140.90 (2C), 140.86, 140.63, 140.60, 140.53, 140.40, 140.18, 138.96 (2C), 137.87, 137.49, 134.97, 134.80, 134.61, 134.52, 133.19 (aryl C), 130.84 (2C, aryl C), 130.04 (aryl C), 128.56 (d, JC−F = 5.4 Hz, 2C, aryl C), 114.78 (d, JC−F = 20.6 Hz, 2C, aryl C), 112.04 (2C, aryl C), 71.03 (sp3-C of C60), 69.48 (sp3-C of C60), 63.38, 53.87, 38.65; FTIR ν/cm−1 (KBr) 1609, 1600, 1508, 1336, 1246, 1233, 1172, 1156, 1035, 835, 527; UV−vis (CHCl3) λmax/nm 257, 314, 436; HRMS (MALDI-TOF) m/ z [M + H]+ calcd for C76H15FN 960.1183, found 960.1165. Tetrahydropyridinofullerene 3lc. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1l (75.6 mg, 0.50 mmol) and 2c (33 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 2 h afforded first unreacted C60 (18.4 mg, 51%) and then 3lc (17.6 mg, 36%) as a brown solid: mp >300 °C. 3lc: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.33 (dd, J = 8.8, 5.4 Hz, 2H), 8.14 (d, J = 9.1 Hz, 2H), 8.09 (d, J = 7.2 Hz, 2H), 7.21 (t, J = 8.6 Hz, 2H), 6.63 (s, 1H), 5.03 (d, J = 14.3 Hz, 1H), 4.85 (d, J = 14.3 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.51 (CN), 163.89 (d, JC−F = 251.4 Hz, aryl C), 154.81 (2C), 151.11, 151.03, 146.66, 146.62, 146.49, 146.25, 145.67 (2C), 145.60 (2C), 145.44 (2C), 145.37 (2C), 145.33, 145.21, 144.98, 144.82, 144.79, 144.65, 144.61, 144.59 (2C), 144.48 (4C), 143.99, 143.78, 143.66 (3C), 142.22, 142.15, 141.83, 141.76, 141.70, 141.67, 141.30, 141.27, 141.19 (2C), 141.16, 141.11 (2C), 140.85, 140.81 (2C), 140.62, 140.46, 139.29 (2C), 138.14, 137.82, 135.69, 93

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry 135.53, 134.99, 134.83, 133.18 (aryl C), 131.10 (2C, aryl C), 128.93 (d, JC−F = 7.8 Hz, 2C, aryl C), 121.82 (2C, aryl C), 115.08 (d, JC−F = 21.4 Hz, 2C, aryl C), 70.49 (sp3-C of C60), 69.08 (sp3-C of C60), 63.80; FTIR ν/cm−1 (KBr) 1618, 1600, 1519, 1428, 1344, 1230, 1219, 1156, 836, 527; UV−vis (CHCl3) λmax/nm 258, 315, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H12FN2O2 991.0877, found 991.0862. Tetrahydropyridinofullerene 3ad. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1a (51 μL, 0.50 mmol) and 2d (36 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 2.5 h afforded first unreacted C60 (19.8 mg, 55%) and then 3ad (18.0 mg, 36%) as a brown solid: mp >300 °C. 3ad: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.18 (d, J = 8.6 Hz, 2H), 7.78 (d, J = 6.3 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 7.28 (t, J = 7.7 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 6.27 (s, 1H), 4.96 (d, J = 14.2 Hz, 1H), 4.72 (d, J = 14.2 Hz, 1H); 13C NMR (125 MHz, CS2/DMSOd6) (all 1C unless indicated) δ 170.79 (CN), 154.85, 154.76, 151.67, 151.61, 146.43, 146.36, 145.88, 145.79, 145.43, 145.41, 145.37 (2C), 145.13 (2C), 145.08, 144.95, 144.78, 144.65, 144.57, 144.33 (2C), 144.29 (5C), 144.19, 143.77, 143.54, 143.48 (2C), 143.39, 141.93, 141.88, 141.55, 141.48 (2C), 141.42, 141.09, 141.02 (3C), 140.93 (3C), 140.65 (2C), 140.59, 140.38, 140.18, 139.02, 139.01, 138.14, 137.78, 137.41, 135.79, 135.02, 134.78, 134.69 (2C), 131.04 (2C, aryl C), 129.98 (2C, aryl C), 128.07 (2C, aryl C), 126.93 (aryl C), 126.71 (2C, aryl C), 125.18 (aryl C), 70.72 (sp3-C of C60), 70.05 (sp3-C of C60), 63.46, 38.69; FTIR ν/cm−1 (KBr) 1613, 1587, 1429, 1395, 1334, 1178, 1072, 1010, 828, 700, 527; UV−vis (CHCl3) λmax/nm 258, 314, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H13BrN 1006.0225, found 1006.0208. Tetrahydropyridinofullerene 3dd. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1d (61 μL, 0.50 mmol) and 2d (36 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 3.5 h afforded first unreacted C60 (21.3 mg, 59%) and then 3dd (16.1 mg, 31%) as a brown solid: mp >300 °C. 3dd: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.16 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.23 (s, 1H), 4.94 (d, J = 14.1 Hz, 1H), 4.70 (d, J = 14.1 Hz, 1H), 3.71 (s, 3H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 170.75 (CN), 158.10 (aryl C), 155.12, 155.01, 152.08, 152.02, 146.61, 146.52, 146.23, 146.09, 145.61, 145.58, 145.55, 145.53, 145.30 (2C), 145.24, 145.12, 144.97, 144.84, 144.74, 144.55, 144.51, 144.45 (5C), 144.36, 143.97, 143.73, 143.67 (2C), 143.57, 142.11, 142.06, 141.72, 141.65 (2C), 141.59, 141.27, 141.20 (3C), 141.11 (2C), 141.09, 140.85, 140.81, 140.75, 140.61, 140.40, 139.15 (2C), 138.07, 137.69, 136.00, 135.17, 134.96, 134.88, 134.82, 131.15 (2C, aryl C), 131.06 (2C, aryl C), 130.23 (aryl C), 128.18 (2C, aryl C), 125.25 (aryl C), 112.25 (2C, aryl C), 71.23 (sp3-C of C60), 69.71 (sp3-C of C60), 63.64, 54.01, 38.69; FTIR ν/cm−1 (KBr) 1609, 1586, 1510, 1429, 1333, 1246, 1172, 830, 527; UV−vis (CHCl3) λmax/nm 258, 314, 436; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C76H15BrNO 1036.0331, found 1036.0317. Tetrahydropyridinofullerene 3ld. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1l (75.6 mg, 0.50 mmol) and 2d (36 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 1 h afforded first unreacted C60 (21.4 mg, 59%) and then 3ld (15.9 mg, 30%) as a brown solid: mp >300 °C. 3ld: 1H NMR (500 MHz, CS2/DMSO-d6) δ 8.17 (d, J = 8.6 Hz, 2H), 8.13 (d, J = 9.1 Hz, 2H), 8.06 (d, J = 7.2 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 6.48 (s, 1H), 4.99 (d, J = 14.3 Hz, 1H), 4.76 (d, J = 14.3 Hz, 1H); 13C NMR (125 MHz, CS2/DMSO-d6) (all 1C unless indicated) δ 171.52 (CN), 154.42 (2C), 150.70, 150.67, 146.41, 146.38, 146.29, 145.80, 145.42 (2C), 145.37 (2C), 145.13 (5C), 144.97, 144.70, 144.55 (2C), 144.40 (2C), 144.34, 144.24 (5C), 143.65, 143.52, 143.41 (3C), 141.97, 141.91, 141.59, 141.52, 141.44 (2C), 141.04, 141.02, 140.94 (2C), 140.91, 140.85 (2C), 140.61, 140.57, 140.54, 140.38, 140.22, 139.07 (2C), 137.91, 137.59, 135.47,

135.40, 135.25, 134.71, 134.56, 131.11 (2C, aryl C), 130.86 (2C, aryl C), 128.11 (2C, aryl C), 125.45 (aryl C), 121.62 (2C, aryl C), 70.18 (sp3-C of C60), 69.02 (sp3-C of C60), 63.50, 38.90; FTIR ν/cm−1 (KBr) 1520, 1488, 1396, 1344, 1084, 1010, 836, 827, 527; UV−vis (CHCl3) λmax/nm 258, 315, 435; HRMS (MALDI-TOF) m/z [M + H]+ calcd for C75H12BrN2O2 1051.0076, found 1051.0059. Reaction of C60 with (R)-(+)-4-Methoxy-α-methylbenzylamine and Phenylacetaldehyde in the Presence of TEMPO and DMAP. According to the general procedure, the reaction of C60 (36.0 mg, 0.05 mmol) with 1r (59 μL, 0.50 mmol) and 2b (37 μL, 0.25 mmol) in the presence of TEMPO (7.8 mg, 0.05 mmol) and DMAP (6.1 mg, 0.05 mmol) in ODCB (6 mL) at 180 °C for 0.2 h afforded first unreacted C60 (26.1 mg, 73%) and then 66d (11.7 mg, 24%) as a brown solid: mp >300 °C. Thermal Decomposition Reaction of Tetrahydropyridinofullerene 3aa at 100 °C. By the same procedure as for the preparation of tetrahydropyridinofullerenes 3, the reaction of 3aa (18.6 mg, 0.02 mmol) in ODCB (6 mL) at 100 °C for 2 h afforded C60 (0 mg, 0%) together with unreacted 3aa (18.6 mg, 100%). Thermal Decomposition Reaction of Tetrahydropyridinofullerene 3aa at 140 °C. By the same procedure as for the preparation of tetrahydropyridinofullerenes 3, the reaction of 3aa (18.6 mg, 0.02 mmol) in ODCB (6 mL) at 140 °C for 2 h afforded C60 (2.3 mg, 16%) together with unreacted 3aa (13.8 mg, 74%). Thermal Decomposition Reaction of Tetrahydropyridinofullerene 3aa at 180 °C. By the same procedure as for the preparation of tetrahydropyridinofullerenes 3, the reaction of 3aa (18.6 mg, 0.02 mmol) in ODCB (6 mL) at 180 °C for 2 h afforded C60 (8.1 mg, 56%) together with unreacted 3aa (7.9 mg, 42%).



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b02378. Proposed formation mechanisms of compounds 4a,b, cis-5a and 6, HRMS of 3oa, 3qa, and 3ab, UV−vis spectra of 3da, 3fa, 3na, 3qa, and 3db, and 1H and 13C NMR spectra of products 3aa−qa, 3ab,db,lb, 3ac,dc,lc, 3ad,dd,ld, 4a,b, cis-5a, and 6 (PDF)



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. *E-mail: [email protected]. ORCID

Fa-Bao Li: 0000-0002-1873-3128 Abdullah M. Asiri: 0000-0001-7905-3209 Author Contributions ⊥

J.P., G.H., and H.-J.W. contributed equally to this work.

Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS The authors are grateful for financial support from the National Natural Science Foundation of China (nos. 21102041 and 21671061), Scientific Research Foundation of Education Commission of Hubei Province (no. D20161007), and Innovation and Entrepreneurship Training Program for Undergraduates of Hubei Province (no. 201610512054).



REFERENCES

(1) For selected reviews, see: (a) Nakamura, E.; Isobe, H. Acc. Chem. Res. 2003, 36, 807. (b) Bendikov, M.; Wudl, F. Chem. Rev. 2004, 104, 4891. (c) Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049. 94

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95

Article

The Journal of Organic Chemistry (d) Giacalone, F.; Martín, N. Chem. Rev. 2006, 106, 5136. (e) Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. (f) Matsuo, Y.; Nakamura, E. Chem. Rev. 2008, 108, 3016. (g) Guldi, D. M.; Illescas, B. M.; Atienza, C. M.; Wielopolski, M.; Martín, N. Chem. Soc. Rev. 2009, 38, 1587. (h) Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev. 2010, 39, 817. (i) Zhu, S.-E.; Li, F.; Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7535. (2) For selected reviews, see: (a) Hirsch, A. Synthesis 1995, 1995, 895. (b) Troshin, P. A.; Peregudov, A. S.; Troyanov, S. I.; Lyubovskaya, R. N. Russ. Chem. Bull. 2008, 57, 887. (c) Tzirakis, M. D.; Orfanopoulos, M. Chem. Rev. 2013, 113, 5262. (3) (a) Schlueter, J. A.; Seaman, J. M.; Taha, S.; Cohen, H.; Lykke, K. R.; Wang, H. H.; Williams, J. M. J. Chem. Soc., Chem. Commun. 1993, 972. (b) Komatsu, K.; Murata, Y.; Sugita, N.; Takeuchi, K.; Wan, T. S. M. Tetrahedron Lett. 1993, 34, 8473. (c) Pang, L. S. K.; Wilson, M. A. J. Phys. Chem. 1993, 97, 6761. (d) Rotello, V. M.; Howard, J. B.; Yadav, T.; Conn, M. M.; Viani, E.; Giovane, L. M.; Lafleur, A. L. Tetrahedron Lett. 1993, 34, 1561. (e) Krätler, B.; Puchberger, M. Helv. Chim. Acta 1993, 76, 1626. (4) (a) Belik, P.; Gügel, A.; Spickermann, J.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 78. (b) Illescas, B.; Martín, N.; Seoane, C.; de la Cruz, P.; Langa, F.; Wudl, F. Tetrahedron Lett. 1995, 36, 8307. (c) Illescas, B. M.; Martín, N.; Seoane, C.; Ortí, E.; Viruela, P. M.; Viruela, R.; de la Hoz, A. J. Org. Chem. 1997, 62, 7585. (5) (a) Ohno, M.; Azuma, Y.; Eguchi, S. Chem. Lett. 1993, 22, 1833. (b) Ohno, M.; Kojima, S.; Shirakawa, Y.; Eguchi, S. Tetrahedron Lett. 1995, 36, 6899. (c) Ohno, M.; Kojima, S.; Eguchi, S. J. Chem. Soc., Chem. Commun. 1995, 565. (d) Ohno, M.; Kojima, S.; Shirakawa, Y.; Eguchi, S. Tetrahedron Lett. 1996, 37, 9211. (6) (a) Troshin, P. A.; Kornev, A. B.; Peregudov, A. S.; Peregudova, S. M.; Lyubovskaya, R. N. Mendeleev Commun. 2007, 17, 116. (b) Shi, J.-L.; Li, F.-B.; Zhang, X.-F.; Wu, J.; Zhang, H.-Y.; Peng, J.; Liu, C.-X.; Liu, L.; Wu, P.; Li, J.-X. J. Org. Chem. 2016, 81, 1769. (c) Shi, J.-L.; Zhang, X.-F.; Wang, H.-J.; Li, F.-B.; Zhong, X.-X.; Liu, C.-X.; Liu, L.; Liu, C.-Y.; Qin, H.-M.; Huang, Y.-S. J. Org. Chem. 2016, 81, 7662. (d) Wu, J.; Liu, C.-X.; Wang, H.-J.; Li, F.-B.; Shi, J.-L.; Liu, L.; Li, J.X.; Liu, C.-Y.; Huang, Y.-S. J. Org. Chem. 2016, 81, 9296. (e) Yang, H.-T.; Tan, Y.-C.; Ge, J.; Wu, H.; Li, J.-X.; Yang, Y.; Sun, X.-Q.; Miao, C.-B. J. Org. Chem. 2016, 81, 11201. (f) Zhang, H.-Y.; Wang, H.-J.; Li, F.-B.; Liu, C.-X.; Zhang, X.-F.; Liu, L.; Liu, C.-Y. RSC Adv. 2016, 6, 79095. (g) Xiang, J.-J.; Huang, C.; Wang, H.-J.; Li, F.-B.; Shi, J.-L.; Huang, Y.-S.; Liu, L.; Liu, C.-Y.; Asiri, A. M.; Alamry, K. A. New J. Chem. 2017, 41, 8725. (h) Zhang, M.; Wang, H.-J.; Li, F.-B.; Zhong, X.-X.; Huang, Y.-S.; Liu, L.; Liu, C.-Y.; Asiri, A. M.; Alamry, K. A. J. Org. Chem. 2017, 82, 8617. (i) Peng, J.; Xiang, J.-J.; Wang, H.-J.; Li, F.-B.; Huang, Y.-S.; Liu, L.; Liu, C.-Y.; Asiri, A. M.; Alamry, K. A. J. Org. Chem. 2017, 82, 9751. (7) Reinov, M. V.; Yurovskaya, M. A.; Streletskiy, A. V.; Boltalina, O. V. Chem. Heterocycl. Compd. 2004, 40, 1150. (8) Jiang, S.-P.; Su, Y.-T.; Liu, K.-Q.; Wu, Q.-H.; Wang, G.-W. Chem. Commun. 2015, 51, 6548. (9) Tan, X.; Schuster, D.; Wilson, S. Tetrahedron Lett. 1998, 39, 4187. (10) (a) Wang, G.-W.; Chen, X.-P.; Cheng, X. Chem. - Eur. J. 2006, 12, 7246. (b) Zhu, S.-E.; Cheng, X.; Li, Y.-J.; Mai, C.-K.; Huang, Y.-S.; Wang, G.-W.; Peng, R.-F.; Jin, B.; Chu, S.-J. Org. Biomol. Chem. 2012, 10, 8720. (11) (a) Gan, L.; Zhou, D.; Luo, C.; Tan, H.; Huang, C.; Lü, M.; Pan, J.; Wu, Y. J. Org. Chem. 1996, 61, 1954. (b) Gan, L.; Jiang, J.; Zhang, W.; Su, Y.; Shi, Y.; Huang, C.; Pan, J.; Lü, M.; Wu, Y. J. Org. Chem. 1998, 63, 4240. (c) Zhang, X.; Gan, L.; Huang, S.; Shi, Y. J. Org. Chem. 2004, 69, 5800. (12) (a) Hirsch, A.; Li, Q.; Wudl, F. Angew. Chem., Int. Ed. Engl. 1991, 30, 1309. (b) Schick, G.; Kampe, K.-D.; Hirsch, A. J. Chem. Soc., Chem. Commun. 1995, 2023. (c) Isobe, H.; Tanaka, T.; Nakanishi, W.; Lemiègre, L.; Nakamura, E. J. Org. Chem. 2005, 70, 4826. (13) (a) Jia, L.; Chen, K.; Wang, C.; Yao, J.; Chen, Z.; Li, H. RSC Adv. 2014, 4, 15590 and references therein. (b) Yang, L.; Li, S.; Dou, Y.; Zhen, S.; Li, H.; Zhang, P.; Yuan, B.; Yang, G. Asian J. Org. Chem.

2017, 6, 265. (c) Llantén, H.; Barata-Vallejo, S.; Postigo, A.; Colinas, P. A. Tetrahedron Lett. 2017, 58, 1507. (14) For selected reviews, see: (a) Boger, D. L. Tetrahedron 1983, 39, 2869. (b) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379. (15) (a) Wang, G.-W.; Saunders, M.; Cross, R. J. J. Am. Chem. Soc. 2001, 123, 256. (b) Wang, G.-W.; Chen, Z.-X.; Murata, Y.; Komatsu, K. Tetrahedron 2005, 61, 4851.

95

DOI: 10.1021/acs.joc.7b02378 J. Org. Chem. 2018, 83, 85−95