284 Jownel of Chemkal and Engltwdng Data, Vd. 37, No. 2, 1992
solvents. Swh Wkavkw may arbse from dlfferent solventh the pure and mixed soivents. crown mtera-
I
\
/
A a C D, K K‘ J I
/
/ *
\
)
II
\ \
interface area actlvlty concentration diffusion coefficient overall equllbrlum constant conditional constant flux membrane thickness transport rate activity coefflclent
V
Y subscripts
a
aqueous phase organic phase alkail-mtal camn counteranion ionpak neutral ligand
0 0.0
0.2
0.4
0.6
M+
1 .o
0.8
AMLA L
X1
Flguro 1. Dependance of the transport rate of K+ ion on the mixed solvent compodtkn for the systems (*) chloroform (lknltrobenzene (2); (0)dichbroethane (lknltrobsnzem (2); (0)chloroform (l)-dC
R m NO. Ne+, 17341-25-2; K+, 24203-36-9; CHCI,, 67-66-3; dC b8nz~lBcrown-8, 14187-32-7; 1,2dkhloroethane, 107-06-2; nkrobenzene, 98-95-3.
chloroethane (2).
The results indicate that the transport rate of K+ is much greater than that of Na’, but the two cations behave In the same way for the mixed solvent chloroform and nitrobenzene. In both cases the trend of the transport rate as a functlon of thesd/entcomposltkn hasa mexknumataboutx0.5. Similar experhnents were made with 1,ldlchloroethane nitrobenzene and chloroform 1,Pdkhloroethane at different composltlons, but for these systems the plot of v as a function of the solvent composbn did not show a marked maxlmum as can be soen in Figures 4 and 5. The transport rate values determined for the examlned pure solvents are found in the sequence
Uwaturo Cnod (1) R&, C. F.; C W , E. L. A K W J . 1979, 70, 736. (2) hmb, J. D.; w O l l 6 O l l , J. J.; Izcln, S. R.; -8, K.; Astin, M. S.; I a t t , R. M. J . Am. chsm.Soc. 1980, 702, 3300. (3) hmb, J. D.; m, J. J.; OsCamon, J. L.; Nleisen. B. L.; A m y , B. W.; Ian, R. M. J . Am. chsm.Soc. 1980, 702, 6820. (4) hmb, J. D.; Irstt, R. M.; (knlck, D. Q.; Bradshaw, J. S.: Christensen, J. J. J . &m&. Sd. 1081, 9 , 83. (5) W ,J. P.; Kkch, M.; Lehn, J. M. J . Am. Chem. Soc. 1985, 107, 241. (6) Y M , 8.; HayanaO, 8. J . Mwnk. Sd. 1981, 26, 09. (7) IR. M.; clarlc. Q. A,; BfaddWw, J. S.; Lamb, J. D. Sep. Pwif. h&m& 10.8, 15,21. (8) I u t t , R. M.; R. t;tkdrluw, J. S.; Lamb, J. D.; ChristenIbn, J. J. R ~ Ap@. o chm.lW, 60,453. (0) T w w a , M.; N w a n u , 8.; Twruya, S.; Masai, M. Chem. Eng. J . (l.”m) 1988, 39, 157. (10) YorrMda, 8.; Hayam, S. J . C/?em.Soc. 1981, 708, 3003. (11) Slrklm, M.; HayasMa, T.; Yamabe, T.; Igewa, M. Bull. Chem. Soc. 1987, BO, 1289. (12) Marcus, Y.; A S k . L. E. J . Pnys. W m . 1978, 82, 1246.
-
+
+
1,2dichioroethane
< chloroform < nitrobenzene
The dlstrlbuHon ratio shows the same sequence, and also a “um value is found for an equlroler sokrtlon of chbroform and nitrobenzene. Therefore, it can be hypothesized that the variatlons In the lon fluxes are, at least In part, due to different v a h of thedistributkn ratband In partlcularof the equiskiun constants for the solute-crown complexation in the different
m.
Received for revkw W O tm b W 6, 1991. Revised December 20, 1901. Accepted January 18, 1002.
Correction
Ternary Llquid-Llquid Equilibria of Water, Ethanol, and Oleic Acid. usheng Zhang and Gordon A. Hi#,J . chem.Eng. Data 1991, 36,453-456. The caption to Flgure 3 should read as follows: Flguro 3. Effect of temperature on interaction energy dlfference for water (1) ethand (2) oleic add (3): (0)A 23; (*) A 2 1 ; (A) A 3 1 ; (.I A 13; (-1 mean vakres.
+
+