Tetrabromo Hydrogenated Cardanol: Efficient and Renewable

This brominating agent easily and inexpensively made in multigram quantity is a crystalline solid, facile to handle, and stable for extended periods w...
1 downloads 0 Views 141KB Size
ORGANIC LETTERS

Tetrabromo Hydrogenated Cardanol: Efficient and Renewable Brominating Agent

2006 Vol. 8, No. 19 4291-4293

Orazio A. Attanasi,*,† Stefano Berretta,† Gianfranco Favi,† Paolino Filippone,*,† Giuseppe Mele,‡ Giada Moscatelli,† and Raffaele Saladino§ Centro di Sudio delle Sostanze Organiche di Origine Naturale, UniVersita` di Urbino “Carlo Bo”, Via Sasso 75, 61029 Urbino, Italy, Dipartimento di Ingegneria dell’InnoVazione, UniVersita` di Lecce, Via Arnesano, 73100 Lecce, Italy, and Dipartimento di Agrobiologia ed Agrochimica, UniVersita` della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy [email protected]; [email protected] Received July 4, 2006

ABSTRACT

2,4,4,6-Tetrabromo-3-n-pentadecyl-2,5-cyclohexadienone (TBPCO) has been synthesized and used as a new efficient, convenient, and environmentally friendly brominating agent.

The spongy mesocarp of a cashew nut shell (Anacardium occidentale L.) contains, in nearly 25-30% of the total nut weight, an alkyl phenolic oil internationally known as “cashew nut shell liquid” (CNSL). This oil derives as a byproduct from mechanical processing for edible use of the cashew kernel presently in some 350 000 tons per annum worldwide with the expectation to rise up to 600 000 tons per annum soon.1-3 Therefore, CNSL represents a renewable, widely available, and relatively low-cost organic natural raw * To whom correspondence should be addressed. Fax: +390722303441. † Universita ` di Urbino. ‡ Universita ` di Lecce. § Universita ` della Tuscia. (1) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier: Amsterdam, 1966 and references therein. (2) Attanasi, O. A.; Buratti, S.; Filippone, P. Chim. Ind. (Milan) 2003, 85, 11. (3) Paramashivappa, R.; Kumar, P. P.; Vithayathil, P. J.; Rao, A. S. J. Agric. Food Chem. 2001, 49, 2548. 10.1021/ol061637b CCC: $33.50 Published on Web 08/22/2006

© 2006 American Chemical Society

material useful for several applications in fine chemistry or for production of varnishes, resins, surfactants, pesticides, etc.4 Chemically, CNSL is a mixture of anacardic acid, cardanol, and a smaller amount of cardol and 2-methylcardol, with the polyketide long chain being saturated, monoolefinic (8), diolefinic (8,11), and triolefinic (8,11,14) with an average value of two double bonds per molecule (Figure 1).1-3 However, anacardic acid undergoes ready thermal decarboxylation. Thus, the distillation of CNSL provides cardanol in high yield and good purity. The subsequent catalytic hydrogenation of distilled cardanol gives rise to 3-n-pentadecylphenol (1).5 (4) (a) Sethi, S. C.; Subba Rao, B. C. Indian J. Technol. 1963, 1, 218. (b) Attanasi, O. A.; Buratti, S.; Filippone, P. Org. Prep. Proced. Int. 1995, 27, 645. (c) Lubi, M. C.; Thachil, E. T. Des. Monomers Polym. 2000, 3, 123. (d) Shikha, S.; Bajpayee, M.; Kamani, P. K. Paintindia 2003, 53, 41. (5) Oltremare SpA, Bologna (Italy).

al. reported the synthesis of 1,2-dipyridiniumditribromideethane (DPTBE) as a new efficient brominating reagent.19 Despite the variety of reagents available for bromination, low selectivity and formation of undesired side products under mild reaction conditions continue to be problematic. To find an alternative, environmentally friendly, mild, clean, efficient, regioselective, simple workup, and costeffective procedure, we investigated the use of hydrogenated cardanol as starting material for the preparation of such a brominating reagent, as part of our ongoing program for the utilization of this compound in fine chemistry. First, 2,4,6tribromo-3-n-pentadecylphenol 2 was easily obtained in 4 h by reaction of 3-n-pentadecylphenol 1 in carbon tetrachloride under reflux with 3 equiv of bromine (1.0 M solution in CH3COOH). The fourth bromine atom in position 4 of the phenolic ring of 2 was introduced by treatment of this latter compound in carbon tetrachloride with a fourth bromine equivalent (1.0 M solution in CCl4) in the presence of ZnCl2 in a catalytic amount producing 2,4,4,6-tetrabromo-3-npentadecyl-2,5-cyclohexadienone 3 (TBPCO) in nearly quantitative yield (Scheme 1).4b Figure 1. Components of CNSL.

During the past few years, allylation,6 cyclocarbonylation,6 and nitration7 of hydrogenated cardanol, as well as the synthesis of phthalocyanines,8 porphyrins,9 and fullerene10 derivatives of cardanol, have been investigated in our laboratories. The general importance of halogenation reactions in organic chemistry11 and, in particular, the role of bromination12 in the synthesis of organic intermediates or antitumor, antifungal, antibacterial, antineoplastic, and antiviral compounds have drawn our attention.13 The most commonly used reagents for such a reaction include elemental bromine,14 organic ammonium tribromides (OATB),15 copper(II) bromide,16 N-bromosuccinimmide (NBS),17 and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCO).18 Recently, Patel et (6) Amorati, R.; Attanasi, O. A.; El Ali, B. G.; Filippone, P.; Mele, G.; Spadavecchia, J.; Vasapollo, G. Synthesis 2002, 18, 2749. (7) Attanasi, O. A.; Berretta, S.; Fiani, C.; Filippone, P.; Mele, G.; Saladino, R. Tetrahedron 2006, 62, 6113. (8) Attanasi, O. A.; Ciccarella, G.; Filippone, P.; Mele, G.; Spadavecchia, J.; Vasapollo, G. J. Porphyrins Phthalocyanines 2003, 7, 52. (9) (a) Attanasi, O. A.; Del Sole, R.; Filippone, P.; Mazzetto, S. E.; Mele, G. J.; Vasapollo, G. J. Porphyrins Phthalocyanines 2003, 7, 52. (b) Attanasi, O. A.; Del Sole, R.; Garcı`a-Lo`pez, E.; Mazzetto, S. E.; Filippone, P.; Mele, G.; Palmisano, L.; Vasapollo, G. Green Chem. 2004, 6, 604. (10) Attanasi, O. A.; Del Sole, R.; Filippone, P.; Ianne, R.; Mazzetto, S. E.; Mele, G.; Vasapollo, G. Synlett 2004, 5, 799. (11) (a) Carey, F. A.; Sundberg, R. J. AdVanced Organic Chemistry, 3rd ed.; Plenum: New York, 1990. (b) March, J. AdVanced Organic Chemistry: Reactions, Mechanism and Structure, 4th ed; John Wiley & Sons: New York, 1992. (12) (a) Muathen, H. A. J. Org. Chem. 1992, 57, 2740. (b) Katritzky, A. R.; Li, J.; Stevens, C. V.; Ager, D. J. Org. Prep. Proced. Int. 1994, 26, 439. (c) Conte, V.; DiFuria, F.; Moro, S. Tetrahedron Lett. 1994, 45, 7429. (d) Dinesh, C. U.; Kumar, R.; Pandey, B.; Kumar, P. J. Chem. Soc., Chem. Commun. 1995, 611. (e) Smith, K.; Bahzad, D. Chem. Commun. 1996, 467. (f) Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Chem. Commun. 1996, 2679. (g) Clark, J. H.; Ross, J. C.; Macquarrie, D. J.; Barlow, S. J.; Bastock, T. W. Chem. Commun. 1997, 1203. (h) Barhata, N. B.; Gajare, A. S.; Wakharkar, R. D.; Bedekar, A. B. Tetrahedron Lett. 1998, 39, 6349. (i) Larock, R. C. ComprehensiVe Organic Transformations, 2nd ed.; WileyVCH: New York, 1999. (13) Butler, A.; Walker, J. V. Chem. ReV. 1993, 93, 1937. 4292

Scheme 1.

Preparation of TBPCO and Bromination of Organic Substrates

This brominating agent easily and inexpensively made in multigram quantity is a crystalline solid, facile to handle, and stable for extended periods when stored in a refrigerator. The presence of the long alkyl chain in the meta position of the phenole ring gives to TBPCO a lower melting point and a higher solubility in apolar organic solvents than those of similar products lacking a long alkyl side chain (i.e., (14) (a) Bigelow, L. A.; Hanslick, R. S. Org. Synth. Collect.; Wiley: New York, 1943; Vol. 2, p 244. (b) Dowd, P.; Kaufman, C.; Kaufman, P. J. Org. Chem. 1985, 50, 882. (c) Ogilvie, W.; Rank, W. Can. J. Chem. 1987, 65, 166. (d) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035. (e) Jana, N. K.; Verkade, J. G. Org. Lett. 2003, 5, 3787. (15) (a) Cattaway, F. D.; Hoyle, G. J. Chem. Soc. 1923, 654. (b) Buckles, R. E.; Popov, A. I.; Zelezny, W. F.; Smith, R. J. J. Am. Chem. Soc. 1951, 73, 4525. (c) Avramoff, M.; Weiss, J.; Schaechter, O. J. Org. Chem. 1963, 28, 3256. (d) Fisier, L. F.; Fisier, M. Reagents for Organic Synthesis; Wiley: New York, 1967; p 967. (e) Kajigneshi, S.; Kakinami, T.; Tokiyama, H.; Hirakawa, T.; Okamoto, T. Chem. Lett. 1987, 627 (f) Muathen, H. A. J. Org. Chem. 1992, 57, 2740. (g) Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan, A. T.; Patel, B. K. Org. Lett. 2000, 2, 247. (16) (a) Shi, X.; Dai, L. J. Org. Chem. 1993, 58, 4596. (b) Rao, A. V. R.; Singh, A. K.; Reddy, K. M.; Ravikumar, K. J. Chem. Soc., Perkin Trans. 1 1993, 3171. (c) Coats, S. J.; Wasserman, H. H. Tetrahedron Lett. 1995, 36, 7735.

Org. Lett., Vol. 8, No. 19, 2006

TBCO). For the same reason, its precursor 2,4,6-tribromo3-n-pentadecylphenol 2 is soluble in most organic solvents but is highly insoluble in water, methanol, and acetonitrile thus facilitating its recovery by separation from brominated products at the end of the reaction.20 These properties represent a further advantage of this reagent in respect to other known organic tetrabromides together with the smooth regeneration of TBPCO and the natural origin of these reagents. The results of bromination at room temperature of activated aromatic amines and phenols, β-naphthol, and sensitive substrates such as carbonyl compounds are summarized in Table 1. TBPCO works well with both aromatic

Table 1. Bromination of Organic Substrates with TBPCO

agent in which “positive” bromine is transferred to release aromatic phenolate anions. In conclusion, this paper reports the synthesis of new tetrabromide reagent TBPCO obtained from natural and largely available CNSL. [TBPCO demonstrates an excellent bromine carrier that is able to brominate different organic substrates.] The reaction generally occurs under mild conditions, requires a simple workup procedure, and permits both the recovery and the regeneration of the brominating reagent. Therefore, the whole reaction may be considered environmentally friendly. On the basis of preliminary findings, the regioselective monobromination of TBPCO seems more favored than that of TBCO. Moreover, investigations are in progress by computational calculations able to quantify the effect of the steric hindrance of an alkyl side chain on the ortho-bromine atoms of TBPCO. Kinetics measurements will be made also to exactly determine the peculiar properties of TBPCO in respect to the other similar brominating agents. At present, further investigations are in progress to find additional applications of this reagent in organic synthesis. Acknowledgment. This work was supported by the financial assistance from the Ministero dell’Universita`, dell’Istruzione e della Ricerca (MIUR)-Roma, and the Universita` degli Studi di Urbino “Carlo Bo”. Supporting Information Available: Experimental procedures including characterization of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org. OL061637B

a All the bromo derivatives are known compounds reported in the literature. Their identities and purities were confirmed by 1H NMR spectra. b Yields of isolated product by crystallization with methanol of the 2,4,6tribromo-3-n-pentadecylphenol 2. c Reaction performed under reflux.

(entries 1-5) and aliphatic (entries 6-12) substrates as well as with different polarity solvents. 2,4,4,6-Tetrabromo-3-n-pentadecyl-2,5-cyclohexadienone 3 (TBPCO) seems to be an electrophilic brominating

Org. Lett., Vol. 8, No. 19, 2006

(17) (a) Buu-Hoi, N. P. Justus Liebigs Ann. Chem. 1944, 556, 1. (b) Roberts, J. C.; Roffey, P. J. Chem. Soc. (C) 1966, 160. (c) NBS or Br2/ NaH: Boyd, R. E.; Rasmussen, C. R.; Press, J. B. Synth. Commun. 1995, 25, 1045. (d) NBS/Et3N: Karimi, S.; Grohmann, K. G. J. Org. Chem. 1995, 60, 554. (e) NBS/NaH: Curran, D. P.; Bosch, E.; Kaplan, J.; Newcomb, M. J. Org. Chem. 1989, 54, 1826. (f) NBS/KH: Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140. (g) NBS/Amberlyst-15: Meshram, H. M.; Reddy, P. N.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 623. (18) (a) Calo, V.; Ciminale, F.; Lopez, L.; Todesco, P. E. J. Chem. Soc. (C) 1971, 3652. (b) Calo, V.; Ciminale, F.; Lopez, L.; Naso, F.; Todesco, P. E. J. Chem. Soc., Perkin Trans. 1 1972, 2567. (c) Kitahara, Y.; Kato, T.; Ichinose, I. Chem. Lett. 1976, 283. (d) Ichinose, I.; Hosogai, T.; Kato, T. Synthesis 1978, 605 and references therein. (e) Yamaguchi, Y.; Uyehara, T.; Kato, T. Tetrahedron Lett. 1985, 26, 343. (f) Calo, V.; Lopez, L.; Pesce, G.; Todesco, P. E. Tetrahedron 1987, 29, 1625. (g) Tanaka, A.; Oritani, T. Tetrahedron Lett. 1997, 38, 1955. (h) Tanaka, A.; Oritani, T. Tetrahedron Lett. 1997, 38, 7223. (i) Firouzbadi, H.; Iranpoor, N.; Shaterian, H. R. Bull. Chem. Soc. Jpn. 2002, 75, 2195. (j) Toda, F.; Schmeyers, J. Green Chem. 2003, 5, 701. (19) Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 4267. (20) General Experimental Procedure for Bromination of Organic Substrates. To a stirred solution of organic substrate (0.5 mmol) dissolved in the appropriate solvent (10 mL) (Table 1) was added in small portions 2,4,4,6-tetrabromo-3-n-pentadecyl-2,5-cyclohexadienone (0.55 mmol). The reaction mixture was magnetically stirred until the disappearance of the starting organic substrate (monitored by TLC). After completion of the reaction, the reaction mixture was concentrated under reduced pressure and was purified by crystallization of 2,4,6-tribromo-3-n-pentadecylphenol from CH3OH. The brominated organic substrate was obtained in satisfactory yield and purity.

4293