de Abajo et al.
8674 The Journal of Physical Chemistry, Vol. 97, No. 33, 1993 of an ester group occur. The critical interpretation of the dipole moments of both compounds indicate that the dipoles associated with the amide groups dominate their dielectric behavior. Moreover, since dipolar interactions die away fairly quickly with distance, the polarity of DEBA and TEBA is very sensitive to the modulus of the dipoles associated with the amide groups but it is nearly insensitive to their orientation. Therefore the value of ( p 2 ) for a polyamide with structural unit -HNCOCsH&ONH(CH2)xshould approach that of a freely jointed chain whenever x 1 4. The rotational isomeric state model gives a very good account of the polarity exhibited by these compounds.
References and Notes (1) McClellan, A. L. Tables of Experimenial Dipole Moments, Rahara Enterprises: El Cerrito, CA, 1974; Vol. 11. (2) Rodrigo, M. M.; Tarazona, M. P.; Saiz, E. J. Phys. Chem. 1986,90, 2236. (3) Shipman, L. L.; Christoffersen, R. E. J. Am. Chem. SOC.1973,95, 1408. (4) Khanarian, G.;Msek, P.; Moore, W. J. Biopolymers 1981,95,1408. ( 5 ) Ldpez Pifieiro, A,; Saiz, E. h t . J . Eiol. Macromol. 1983, 5, 37. (6) Yan, J. F.; Momany, F. A,;Hoffmann, R.;Scheeraga, H. A. J. Phys. Chem. 1970, 74,420. ( 7 ) Rodrigo, M. M.; Tarazona, M. P.; Saiz, E. J . Phys. Chem. 1986,90, 5565.
(8) Iwabuchi, S.;Nakahira, T.; Tsuchiya, A.; Kojima, K. Makromol. Chem. 1982,183, 1427. (9) San R o m h , J.; Guunh, J.; Riande, E.; Santoro, J.; R i a , M. Macromolecules 1982, 15, 609. (10) Riande, E.; GuzmPm, J.; Llorente, M. Macromolecules 1982, 15, 298. (11) Riande, E.; Guzmh, J.; Tarazona, M. P.; Saiz, E. J. Polym. Sci.; Polym. Phys. Ed. 1984,22, 917. (12) Riande, E.; Guzmh, J., J . Polym. Sci.; Polym. Phys. Ed. 1985,23, 1235. (13) Abe, A.; Mark, J. E. J. Am. Chem. SOC.1976,98, 6468. (14) Flory, P. J. Statistical Mechanics of Chain Molecules; Wiley-Interscience: New York, 1969. (15) Dietrich, B.; Lehn, J. M.; Sauvage, J. P.; Blauzat, J. Tetrahderon 1973, 29, 1629. (16) Guggenheim, E. A. Trans. Faraday SOC.1949, 45, 714. (17) Smith, J. W. Trans. Faraday Soc. 1950,46, 394. (18) Gutowsky, H. S.;Belford, G. G.; Mc Mahon, P. E. J . Chem. Phys. 1962, 36, 3353. (19) Abraham, R. J.; Gatti, G. J. Chem. SOC.E 1969, 961. (20) Phillips, L.; Wray, V. J. Chem. Soc., Perkin Trans. 2 1972, 536. (21) PANIC 86, Bruker Program Library. (22) La Planche, L. A.; Rogers, T. J. Am. Chem. Soc. 1964, 86, 337. (23) Hummel, J. P.; Flory, P. J. Macromolecules 1980, 13, 479. (24) PC Model, Serena Software, Blomington, IN. (25) Dewar, M. J. S.;Zocbisch, E. J.; Healy, E. F.; Stewart, J. J. P. J . Am. Chem. Soc. 1985,107, 3902. (26) MOPAC 6.0, Quant. Chem. Progr. Exch. 1990.
ADDITIONS AND CORRECTIONS 1992, Volume 96
1993, Volume 97
David W. Minsek, Joel A. Blush, and Peter Chen*: 1 + 1 Resonant Multiphoton Ionization Spectrum of the Allyl Radical. Rotational Structure in the C[22Bl] %[12A2] Origin Band.
Daniel W. Kohn, Eric S. J. Robles, Cameron F. Logan, and Peter Chen': Photoelectron Spectrum, Ionization Potential, and Heat of Formation of CC12.
Page 2025. Due to an error in the production process, the arrow in the title was printed pointing in the wrong direction. The arrow is correctly displayed in the above title.
Page 4938. Due to an error in the production process, the superscripts and subscripts in Table I wereinadvertently switched. The correct band designations are shown below.
-
-
TABLE I: Some Franck-Condon Factors for CCl$+ CCll Computed by Using the Cartesian Displacement, Internal Coordinate, and Parallel Mode Methods of Handling the Duschinskv Rotation band designation
Cartesian displacement method
internal coordinate method
parallel mode method
1
1 7.0 26 69 8.4 33 82 0.01 1 57 203 214 2927 15598
1 8.0 32 87 3.4 6.0 7.0 0.029 28 109 48 424 3469
5.8
17 35 9.2 43 130 0.030 52 150 232 21991 3487