2 The Allied Chemical Sulfur Dioxide Reduction Process for Metallurgical Downloaded via TUFTS UNIV on July 7, 2018 at 08:58:24 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Emissions W. D. HUNTER, JR., J. C. FEDORUK, A. W. MICHENER, and J. E. HARRIS Allied Chemical Corp., Industrial Chemicals Div., P.O. Box 1139-R, Morristown, N. J. 07960
Allied Chemical
technology for reducing sulfur dioxide to
elemental sulfur was commercialized
in 1970 as the emission
control system for a Canadian sulfide ore roasting which received up to 500 tons/day fur dioxide. than 90% reduction
facility
of sulfur as 12%
sul-
In the next 2 yrs, this plant recovered more of the entering sulfur.
Allied's
technology can now be applied
sulfur
dioxide
to gas streams
containing 4-100% sulfur dioxide, dry basis. Sulfur dioxide reduction
may be used directly to control emissions from
roasters and continuous dioxide
concentration
smelting processes. Where sulfur is below about 4%,
and/or
gas
composition fluctuates widely, the reduction process is combined with a preliminary concentrating
process.
Targe-scale commercialization of technology for sulfur dioxide reduction to sulfur was accomplished by Allied Chemical Corp. in 1970 with the start-up of a prototype facility for a large new metallurgical operation at Falconbridge, Ontario. The technology, used initially for the emission control system at this plant, was developed through a major R & D program in the 1960's. Specifically over 90%
of the sulfur dioxide was removed
from a gas stream resulting from fluidized bed roasting of nickel-containing pyrrhotite ore at rates
up
to
one-half
million tons/year.
The
process installed in the Canadian plant has been discussed in detail in earlier papers ( J , 2).
The single-train plant design, which is capable of
receiving sulfur dioxide equivalent to as much as 500 long tons/day of sulfur, and other operating experience in this unique emission control project have been described in previous publications (3,
4).
23 Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
24
S U L F U R
R E M O V A L
A N D R E C O V E R Y
T h e reliability of A l l i e d Chemical's sulfur dioxide reduction tech n o l o g y w a s p r o v e d d u r i n g 2 yrs of successful o p e r a t i o n i n w h i c h the c a p a b i l i t y o f a c h i e v i n g a 9 0 % o n - s t r e a m factor w a s e s t a b l i s h e d . A l l of t h e o r i g i n a l process d e s i g n a n d p e r f o r m a n c e c r i t e r i a w e r e c o n f i r m e d .
Turn
d o w n characteristics of t h e s y s t e m w e r e d e m o n s t r a t e d d u r i n g e x t e n d e d o p e r a t i o n at as l o w as o n e - t h i r d of d e s i g n c a p a c i t y w i t h n e a r l y constant o p e r a t i n g efficiencies
( i n terms of o v e r a l l s u l f u r d i o x i d e r e m o v a l a n d
r e d u c i n g agent u t i l i z a t i o n ) b e i n g a c h i e v e d at a l l rates. E l e m e n t a l s u l f u r p r o d u c e d i n t h e process w a s u s e d i n t e r c h a n g e a b l y w i t h F r a s c h s u l f u r at v a r i o u s A l l i e d locations to p r o d u c e h i g h q u a l i t y s u l f u r i c a c i d f o r t h e U . S . merchant market. Commercial
Plant
Description
A flow d i a g r a m of the s u l f u r d i o x i d e r e d u c t i o n process as i t is a p p l i e d to a sulfide o r e r o a s t i n g o p e r a t i o n l i k e that at F a l c o n b r i d g e is s h o w n i n F i g u r e 1. T h e h o t s u l f u r d i o x i d e gas f r o m t h e roasters is passed t h r o u g h h o t gas heat exchangers ( 1 ) a n d ( 2 ) w h e r e p a r t of the heat content of the gases is u s e d to reheat other process gas streams.
These w i l l be
d e s c r i b e d i n m o r e d e t a i l later. A t this p o i n t the roaster gas s t i l l contains fine d u s t p a r t i c l e s as w e l l as gaseous c o n t a m i n a n t s w h i c h m u s t b e r e m o v e d before t h e gas reaches t h e r e d u c t i o n reactor. T h i s gas p u r i f i c a t i o n is a c c o m p l i s h e d i n a two-stage aqueous s c r u b b i n g system c o n s i s t i n g of a t w o - l e g gas c o o l i n g t o w e r ( 3 ) a n d a p a c k e d c o n d e n s i n g t o w e r ( 4 ) . T h e b u l k o f the dust a n d other c o n t a m i n a n t s a r e c o l l e c t e d i n t h e gas c o o l i n g SO, GAS
, •v 4
CONDENSING ί TOWER
COLD GAS BY-PASS STEAM
Τ^^ψ]
'
Ί
mm
1 &!
~ u | COALESCER HEATl REGENERATOR:
.
g|
,„ 10
HEAT REGENERATOR
ι
t1 SULFUR
SULFUR \ SULFUR 1 SULFUR
J
TO STORAGE SULFUR HOLDING PIT
Figure
1.
Allied Chemical
sulfur dioxide reduction gas application
technology typical
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
roaster
2.
H U N T E R
E T
Allied
A L .
Chemical
Reduction
25
Process
t o w e r w h i l e the gas is c o o l e d a n d s a t u r a t e d b y a r e c i r c u l a t e d w e a k s u l f u r i c a c i d s o l u t i o n . T h e d e m i s t e r p a d at t h e t o w e r outlet is c o n t i n u o u s l y sprayed w i t h weak a c i d from the condensing tower. T h e underflow from the gas c o o l i n g t o w e r is t r e a t e d w i t h l i m e to p r e c i p i t a t e d i s s o l v e d m e t a l l i c impurities removed
f r o m the gas a n d to n e u t r a l i z e t h e a c i d i t y b e f o r e
b e i n g d e l i v e r e d to a waste p o n d w h e r e the solids are a l l o w e d to settle. T h e process gas is f u r t h e r c o o l e d i n the c o n d e n s i n g t o w e r ( 4 )
by
c i r c u l a t i n g w e a k a c i d w h i c h is c o o l e d e x t e r n a l l y i n i m p e r v i o u s g r a p h i t e heat exchangers ( 5 ) .
E n t r a i n e d droplets of a c i d m i s t are r e m o v e d f r o m
the gas i n electrostatic p r e c i p i t a t o r s ( 6 ) .
D r i p s f r o m the p r e c i p i t a t o r s
are r e t u r n e d to the gas c o o l i n g tower. T h e t e m p e r a t u r e of the c l e a n gas is t h e n r a i s e d a b o v e the d e w p o i n t of s u l f u r i c a c i d b y a d m i x i n g w i t h a r e h e a t e d s t r e a m of t h e same gas i n the mist tower
(7).
T h i s r e c y c l e gas stream is h e a t e d b y c i r c u l a t i o n
t h r o u g h the h o t gas heat exchanger
(2).
T h e process gas is d r a w n
t h r o u g h the w e t p u r i f i c a t i o n system a n d t h e n f o r c e d b y a c e n t r i f u g a l blower (8)
t h r o u g h the b a l a n c e of the p l a n t . N a t u r a l gas, w h i c h serves
as t h e r e d u c i n g agent, is i n t r o d u c e d i n t o t h e process gas s t r e a m at the b l o w e r d i s c h a r g e , a n d the m i x t u r e is passed t h r o u g h the h o t gas exchanger
(1)
heat
to raise its t e m p e r a t u r e a b o v e the d e w p o i n t of s u l f u r
before e n t e r i n g the r e d u c t i o n reactor system. T h e p r i n c i p a l f u n c t i o n of the c a t a l y t i c r e d u c t i o n system is to m a x i m i z e use of the r e d u c t a n t w h i l e p r o d u c i n g b o t h s u l f u r a n d
hydrogen
sulfide, so the h y d r o g e n s u l f i d e / s u l f u r d i o x i d e r a t i o i n t h e gas s t r e a m l e a v i n g the system is essentially that r e q u i r e d for the subsequent C l a u s reaction.
A l t h o u g h the c h e m i s t r y of
the p r i m a r y r e a c t i o n system
is
e x t r e m e l y c o m p l e x a n d i n c l u d e s reactions i n v o l v i n g 11 different elements a n d c o m p o u n d s , i t m a y be s u m m a r i z e d i n the f o l l o w i n g e q u a t i o n s :
CH
+
4
2
S0
4 C H + 6 S0 4
2
2
C0
2
+
2
H 0 + S 2
2
4 C0 + 4 H 0 + 4 H S + S 2
2
2
2
T h e p r e h e a t e d process a n d n a t u r a l gas m i x t u r e enters the c a t a l y t i c r e d u c t i o n system t h r o u g h a f o u r - w a y
flow
reversing valve (9)
a n d is
f u r t h e r p r e h e a t e d as it flows u p w a r d t h r o u g h a p a c k e d - b e d heat r e g e n erator ( 1 0 ) b e f o r e e n t e r i n g the r e d u c t i o n reactor T h e r m a l l y stable catalysts d e v e l o p e d
(11).
b y A l l i e d C h e m i c a l f o r this
f a c i l i t y cause r a p i d a n d efficient r e a c t i o n of the n a t u r a l gas w i t h the s u l f u r d i o x i d e to f o r m h y d r o g e n sulfide a n d e l e m e n t a l s u l f u r v a p o r w h i l e s u b s t a n t i a l l y e l i m i n a t i n g the f o r m a t i o n of u n d e s i r a b l e side r e a c t i o n p r o d ucts ( 5 , 6).
T h e t e m p e r a t u r e of the gases e n t e r i n g the reactor is h e l d
constant b y c o n t i n u o u s l y b y p a s s i n g a v a r y i n g q u a n t i t y of c o l d process gas a r o u n d the u p f l o w heat regenerator.
T h e heat that is g e n e r a t e d i n
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
26
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
reactor ( 11 ) b y the e x o t h e r m i c reactions sustains t h e o v e r a l l heat i n t h e system. A f t e r l e a v i n g the reactor, the m a i n gas flow passes d o w n t h r o u g h a s e c o n d heat regenerator ( 1 2 ) , g i v i n g u p its heat to t h e p a c k i n g i n t h a t vessel before l e a v i n g the c a t a l y t i c r e d u c t i o n system t h r o u g h flow reversi n g v a l v e ( 9 ). A t h e r m a l b a l a n c e is m a i n t a i n e d i n the system b y p a s s i n g a m i n o r flow of the hot gases f r o m the reactor ( 1 1 ) , a r o u n d the d o w n f l o w regenerator a n d the flow r e v e r s i n g v a l v e ( 9 ) , a n d r e m i x i n g i t w i t h t h e m a i n stream b e f o r e e n t e r i n g s u l f u r condenser ( 17 ). T h e p r i m a r y f u n c t i o n of the heat regenerators ( 1 0 )
and (12), then,
is to r e m o v e heat f r o m the gases l e a v i n g the c a t a l y t i c reactor ( 1 1 )
and
to use this heat to raise the t e m p e r a t u r e of the i n c o m i n g gases to the p o i n t w h e r e the s u l f u r d i o x i d e - n a t u r a l gas r e a c t i o n w i l l b e g i n .
The
d i r e c t i o n of flow t h r o u g h the t w o regenerators is p e r i o d i c a l l y r e v e r s e d to i n t e r c h a n g e t h e i r functions of h e a t i n g a n d c o o l i n g the gases b y u s i n g the flow r e v e r s i n g v a l v e ( 9 ) a n d f o u r w a t e r - c o o l e d b u t t e r f l y valves (14),
(15), and (16).
T h e v a l v e a r r a n g e m e n t s h o w n i n the
(13),
flow
dia-
g r a m is s p e c i a l l y d e s i g n e d to m a i n t a i n the gas flow t h r o u g h t h e c a t a l y t i c reactor (11)
i n one d i r e c t i o n o n l y . A l l five valves are o p e r a t e d f r o m a
c e n t r a l c o n t r o l system w h i c h s y n c h r o n i z e s t h e i r m o v e m e n t so t h a t e a c h flow r e v e r s a l is c o m p l e t e d i n less t h a n 1 sec. T h e e l e m e n t a l s u l f u r t h a t is f o r m e d i n the p r i m a r y reactor system is c o n d e n s e d
i n a horizontal shell-and-tube steaming condenser
(17).
T h i s represents over 4 0 % of t h e t o t a l r e c o v e r e d s u l f u r . T h e process gas s t r e a m t h e n enters the first stage ( 18 ) of a two-stage C l a u s reactor system w h e r e the f o l l o w i n g e x o t h e r m i c r e a c t i o n o c c u r s : 2 H S + 2
S0
> 3/2 S
2
2
+
2 H 0 2
A f t e r the first stage of C l a u s c o n v e r s i o n , the gas is c o o l e d i n a v e r t i c a l s t e a m i n g condenser
(19)
v e r s i o n of h y d r o g e n i n the second
to condense a d d i t i o n a l sulfur.
Further con-
sulfide a n d s u l f u r d i o x i d e to s u l f u r takes
stage C l a u s reactor
a third steaming unit (21).
(20).
A coalescer
place
T h i s s u l f u r is c o n d e n s e d (22)
containing a mesh
in pad
t h e n removes e n t r a i n e d l i q u i d f r o m the gas stream. M o l t e n s u l f u r f r o m t h e three condensers a n d the coalescer is c o l l e c t e d i n a s u l f u r h o l d i n g p i t (23)
f r o m w h i c h i t is p u m p e d to storage.
R e s i d u a l h y d r o g e n sulfide i n
the gas f r o m the process is o x i d i z e d to s u l f u r d i o x i d e i n the presence
of
excess a i r i n a n i n c i n e r a t o r ( 24 ) b e f o r e b e i n g e x h a u s t e d to t h e a t m o s p h e r e t h r o u g h a stack
(25).
T h i s r e a c t o r - h e a t r e g e n e r a t o r system offers s e v e r a l i m p o r t a n t b e n e fits.
T e m p e r a t u r e profiles i n h e r e n t l y f a v o r a p p r o a c h to c h e m i c a l e q u i -
l i b r i u m a n d m a x i m u m use of t h e gaseous r e d u c i n g agent over a w i d e r a n g e of o p e r a t i n g rates. Y e t , w i t h t h e c o n s i d e r a b l e heat c a p a c i t y of t h e
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
H U N T E R
E T
A L .
Allied
Chemical
Reduction
27
Process
p a c k e d beds, the system is n o t seriously upset b y flow rate changes a n d m i n o r v a r i a t i o n s i n f e e d gas c o m p o s i t i o n . A t the same t i m e , the r e a c t o r heat regenerator d e s i g n solves the e n g i n e e r i n g m a t e r i a l s p r o b l e m s c a u s e d b y the h i g h l y corrosive n a t u r e of the s t r o n g l y r e d u c i n g sulfurous gases. I n fact, at the e l e v a t e d temperatures i n v o l v e d , the use of m e t a l l i c c o n s t r u c t i o n materials is i m p r a c t i c a l . C o m b i n i n g the regenerator f u n c t i o n of r e a c t i o n heat storage a n d use w i t h the fixed b e d single—stage reactor, t h e n , results i n a r u g g e d a n d efficient d e s i g n ( 7 ) .
T h i s system is p a r -
t i c u l a r l y advantageous for l a r g e process gas v o l u m e s s u c h as those e x p e r i e n c e d i n the F a l c o n b r i d g e f a c i l i t y . Continuing
Technology
Development
I n v i e w of the c o n s i d e r a b l e interest i n s u l f u r d i o x i d e r e d u c t i o n to s u l f u r b o t h i n this c o u n t r y a n d a b r o a d , A l l i e d C h e m i c a l e x t e n d e d t h e use of this t e c h n o l o g y to c o n t r o l s u l f u r d i o x i d e emissions f r o m other m e t a l l u r g i c a l operations as w e l l as f r o m fossil f u e l c o m b u s t i o n . T h e experience g a i n e d i n d e s i g n , c o n s t r u c t i o n , a n d o p e r a t i o n of facility p r o v i d e d the perspective
the large C a n a d i a n
for c o n t i n u i n g process research a n d
parallel engineering development. A t the outset, t w o major goals w e r e e s t a b l i s h e d to a c h i e v e a p p l i c a b i l i t y for s u l f u r d i o x i d e r e d u c t i o n i n emission c o n t r o l .
broad
The
first
g o a l was to d e v e l o p process c a p a b i l i t y e n c o m p a s s i n g the w i d e s t p r a c t i c a l r a n g e of i n l e t s u l f u r d i o x i d e concentrations w h i l e the s e c o n d w a s
to
d e v e l o p process modifications so that v a r i o u s gaseous a n d l i q u i d h y d r o carbons c o u l d be u s e d as r e d u c i n g agents. T h e first g o a l has b e e n a c h i e v e d , a n d the s p e c t r u m of f e e d sources
gas
to w h i c h t h e A l l i e d C h e m i c a l s u l f u r d i o x i d e r e d u c t i o n t e c h -
n o l o g y m a y n o w b e a p p l i e d is the p r i n c i p a l subject of d i s c u s s i o n i n this p a p e r . T h e effort to use r e d u c i n g agents other t h a n n a t u r a l gas i n these systems has also a d v a n c e d t h r o u g h f e a s i b i l i t y studies i n t o t h e m e n t stage, i n v o l v i n g alternatives r a n g i n g f r o m p r o p a n e
and
developbutane
t h r o u g h m i d d l e distillates s u c h as N o . 2 f u e l o i l . A l l i e d C h e m i c a l n o w expects to offer a f a m i l y of processes p e r m i t t i n g s u l f u r d i o x i d e r e d u c t i o n operations to b e t a i l o r e d to t h e specific r e q u i r e m e n t s of i n d i v i d u a l l o c a tions a n d projects. W h i l e the C a n a d i a n p l a n t o p e r a t i o n w a s d o c u m e n t i n g process p e r f o r m a n c e w i t h a 1 2 - 1 3 % s u l f u r d i o x i d e source, w o r k w a s b e i n g d o n e to establish the basis for designs of systems to process m o r e
concentrated
f e e d streams, c o n t a i n i n g u p to 1 0 0 % s u l f u r d i o x i d e ( d r y b a s i s ) .
Lower
s u l f u r d i o x i d e concentrations a n d the i n f l u e n c e of o x y g e n i n f e e d gases were
also b e i n g s t u d i e d so the l o w e r l i m i t b o u n d a r y c o n d i t i o n s
process a p p l i c a b i l i t y c o u l d b e
identified.
for
This was realized through
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
28
S U L F U R
R E M O V A L
AND
R E C O V E R Y
d e t a i l e d i n v e s t i g a t i o n of the k i n e t i c s of the c o m p l e x r e a c t i o n c h e m i s t r y i n this system. A c o m p r e h e n s i v e m a t h e m a t i c a l m o d e l of the system w a s subsequently
developed
w h i c h incorporated the unsteady
state
heat
transfer f u n c t i o n s i n a d d i t i o n to c h e m i c a l k i n e t i c s a n d t h e r m o d y n a m i c s . B e c a u s e of these efforts i t is n o w p o s s i b l e to evaluate p r e c i s e l y a b r o a d r a n g e of process alternatives a n d m o d i f i c a t i o n s , as w e l l as to c o n d u c t d y n a m i c s i m u l a t i o n s o n m o d e l s of p a r t i c u l a r interest. P r e s e n t e n g i n e e r i n g d e s i g n c a p a b i l i t y a l l o w s efficient process profiles to b e
estab-
l i s h e d over a w i d e s p e c t r u m of f e e d gas c o m p o s i t i o n s w h i l e o p t i m i z i n g m a j o r p a r a m e t e r s , i n c l u d i n g r e d u c i n g agent use, o v e r a l l s u l f u r r e c o v e r y , a n d m a j o r e q u i p m e n t duties. O p e r a t i n g considerations s u c h as t u r n d o w n a n d the influence of p o t e n t i a l system upsets m a y also b e e v a l u a t e d . Feed Gas
Considerations
M o s t s u l f u r d i o x i d e f e e d streams, a n d e s p e c i a l l y m e t a l l u r g i c a l sources, c o n t a i n dust p a r t i c l e s a n d other i m p u r i t i e s s u c h as arsenic a n d s e l e n i u m oxides. I n o r d e r to p r o d u c e h i g h q u a l i t y s u l f u r , t h e gases m u s t b e c l e a n e d as t h o r o u g h l y as i f s u l f u r i c a c i d w e r e to b e p r o d u c e d . T h i s c a n b e r e l i a b l y a c c o m p l i s h e d i n a w e t p u r i f i c a t i o n system s i m i l a r to t h a t u s e d i n t h e F a l c o n b r i d g e p l a n t . N o t o n l y c a n the gases be f r e e d of most c o n t a m i nants, b u t the s c r u b b i n g t r e a t m e n t recovers a n y v a l u a b l e m i n e r a l content w h i c h m a y h a v e b e e n c a r r i e d b y the e n t e r i n g gas. O n c e the f e e d stream has b e e n p u r i f i e d , the s u l f u r d i o x i d e a n d o x y g e n d i m e n s i o n s m u s t b e defined.
D e p e n d i n g u p o n its source, the s u l f u r d i -
o x i d e m a y v a r y f r o m a f e w tenths of 1 % to 1 0 0 %
(dry basis), in com-
b i n a t i o n s w i t h o x y g e n f r o m 0 % u p to the l i n e s h o w n o n F i g u r e 2.
The
d o t t e d l i n e represents the gas c o m p o s i t i o n that results w h e n 1 0 0 % s u l f u r d i o x i d e ( d r y b a s i s ) is d i l u t e d w i t h a i r . T h e o n l y gas c o m p o s i t i o n s
to
w h i c h A l l i e d C h e m i c a l s u l f u r d i o x i d e r e d u c t i o n t e c h n o l o g y is not d i r e c t l y a p p l i c a b l e are those i n t h e s h a d e d area at the l o w e r left of this d i a g r a m . T h i s l o w e r b o u n d a r y represents a p r a c t i c a l l i m i t w h i c h has b e e n establ i s h e d b y heat b a l a n c e a n d t h e r m o d y n a m i c considerations r a t h e r t h a n b y e c o n o m i c factors. I n the A l l i e d process, b o t h o x y g e n a n d s u l f u r d i o x i d e i n the f e e d gas react c h e m i c a l l y w i t h t h e r e d u c i n g agent i n i d e n t i c a l v o l u m e t r i c p r o p o r t i o n s . H o w e v e r , the heat released i n the r e d u c t i o n o f s u l f u r d i o x i d e is o n l y a f r a c t i o n of that l i b e r a t e d b y the r e a c t i o n of the r e d u c t a n t w i t h oxygen.
C o n s e q u e n t l y , the process d e s i g n m u s t not o n l y o b t a i n the o p t i -
m u m r e a c t i o n p r o d u c t c o m p o s i t i o n b u t also m u s t c o n t r o l t h e temperatures t h r o u g h o u t the system.
E v a l u a t i o n of t h e effects of v a r y i n g b o t h the
o x y g e n a n d s u l f u r d i o x i d e contents d u r i n g o p e r a t i o n is therefore i m p o r tant.
E x c e p t f o r cases i n v o l v i n g v e r y w e a k s u l f u r dioxide—oxygen
con-
centrations, the q u a n t i t y of gas b e i n g t r e a t e d is not a m a j o r factor because
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
H U N T E R
Allied
E T A L .
Chemical
Reduction
29
Process
loo r v 100% S 0 Diluted With Air 2
60 h
%so
Operating Range
2
Direct S O 2 Reduction 40 h
Falconbridge
20 h
' 0 2
4
6
%o Figure 2.
8
10
2
Allied Chemical sulfur dioxide reduction, positions in volume % (dry basis)
gas com-
the d e s i g n a n d o p e r a t i o n c a n b e adjusted to a c h i e v e a w o r k a b l e heat b a l a n c e for duties as s m a l l as 5 - 1 0 t o n s / d a y o f s u l f u r i n the feed. T h e gas c o m p o s i t i o n f r o m the fluidized b e d roasters at F a l c o n b r i d g e w a s a s o m e w h a t s p e c i a l c i r c u m s t a n c e i n that the o x y g e n content
was
q u i t e l o w , a p p r o x i m a t e l y 1 % , a n d the s u l f u r d i o x i d e c o n c e n t r a t i o n a p proached
t h e t h e o r e t i c a l m a x i m u m f o r p y r r h o t i t e o r e roasting. T h e
A l l i e d r e a c t o r - r e g e n e r a t o r system was i d e a l l y s u i t e d t o this gas c o m position. Combination
with Sulfur
Dioxide
Concentration
S i n c e the p r o p o r t i o n o f r e d u c i n g agent i n t r o d u c e d s h o u l d b e r e g u l a t e d p r e c i s e l y to a c h i e v e t h e d e s i r e d p r o d u c t gas c o m p o s i t i o n , t h e s u l f u r d i o x i d e a n d o x y g e n concentrations i n the f e e d gas t o the r e d u c t i o n u n i t s h o u l d b e f a i r l y stable.
A c c o r d i n g l y , the direct application of sulfur
d i o x i d e r e d u c t i o n to gases f r o m the c y c l i c o p e r a t i o n o f the converters u s e d i n c o n v e n t i o n a l c o p p e r s m e l t i n g is not c o n s i d e r e d p r a c t i c a l . I n these cases, s u l f u r d i o x i d e s h o u l d b e r e m o v e d b y a regenerable r e c o v e r y system a n d s u b s e q u e n t l y released i n c o n c e n t r a t e d , l o w o x y g e n f o r m at a c o n t r o l l e d rate. Some s u l f u r d i o x i d e c o n c e n t r a t i n g systems c a n b e d e s i g n e d t o a c c e p t gases w i t h
fluctuating
volumes a n d sulfur loadings.
T h e sulfur dioxide
is either p h y s i c a l l y o r c h e m i c a l l y b o u n d i n a s o l i d o r l i q u i d m e d i u m i n
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
30
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
these systems a n d is r e t a i n e d i n i n v e n t o r y . T h e m a t e r i a l is t h e n t h e r m a l l y r e g e n e r a t e d or steam s t r i p p e d , a n d the s u l f u r d i o x i d e is d e l i v e r e d to the final p r o c e s s i n g step at a constant rate. O n l y m i n o r modifications of the F a l c o n b r i d g e process are t h e n necessary to r e d u c e s u c h r e g e n e r a t e d gas streams c o n t a i n i n g u p to 1 0 0 % s u l f u r d i o x i d e ( d r y b a s i s ) to elemental sulfur. T h e a d a p t a b i l i t y of this s u l f u r d i o x i d e r e d u c t i o n t e c h n o l o g y
to a
f e e d gas c o n t a i n i n g 1 0 0 % s u l f u r d i o x i d e ( d r y basis) w i l l be d e m o n s t r a t e d at t h e D . H . M i t c h e l l S t a t i o n of the N o r t h e r n I n d i a n a P u b l i c S e r v i c e C o . ( N I P S C O ) at G a r y , I n d i a n a ( 8 ) .
I n this a p p l i c a t i o n the process w i l l be
c o m b i n e d w i t h t h e W e l l m a n — L o r d s u l f u r d i o x i d e recovery provide
a complete
flue
gas
d e s u l f u r i z a t i o n system
for
process a
to
115-MW
coal-fired b o i l e r i n a project j o i n t l y f u n d e d b y N I P S C O a n d the E n v i r o n mental Protection Agency. As
is the case i n c y c l i c c o p p e r
converter operations, s u b s t a n t i a l
changes i n s u l f u r l o a d i n g are e n c o u n t e r e d i n emissions f r o m fossil f u e l fired boilers. V a r i a t i o n s i n gas v o l u m e , a n d hence i n the s u l f u r l o a d i n g , w i l l be accommodated
at N I P S C O b y p r o v i d i n g l a r g e storage c a p a c i t y
for the sodium sulfite-bisulfite scrubbing solution. T h e sulfur dioxide w i l l b e d e s o r b e d f r o m the s o l u t i o n b y h e a t i n g , a n d a steady flow of s u l f u r d i o x i d e gas w i l l be d e l i v e r e d to the r e d u c t i o n u n i t . E n g i n e e r i n g , p r o c u r e m e n t , a n d c o n s t r u c t i o n of the entire f a c i l i t y at N I P S C O is t h e r e s p o n s i b i l i t y of D a v y P o w e r g a s , I n c . A l l i e d C h e m i c a l is p r o v i d i n g the s u l f u r d i o x i d e r e d u c t i o n process
Figure 3.
technology
Typical compositions of gases from metallurgical
as w e l l as
operations
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
Allied
HUNTER E T A L .
Chemical
Reduction
Process
31
Total Reductant Requirement M SCF CH4/LT. Sulfur 48 r
12
!
GAS
ι 1
L
COMPOSITION IN VOLUME % (DRY BASIS)
0% 02 S O 2 Requirement Only
8 4 0 5
Figure 4.
%
SO
10
15
Gases from roasters and continuous smelting processes
t e c h n i c a l a n d start-up services u n d e r contract w i t h D a v y P o w e r g a s . T h e n , u n d e r a separate agreement w i t h N I P S C O , A l l i e d w i l l operate t h e entire flue gas d e s u l f u r i z a t i o n system a n d w i l l m a r k e t salable b y - p r o d u c t s o n a c o n t i n u i n g basis. Metallurgical
Applications
T h e selection of processes f o r c o n t r o l l i n g s u l f u r d i o x i d e emissions f r o m m e t a l l u r g i c a l sources is l a r g e l y g o v e r n e d b y t h e c o m p o s i t i o n o f t h e gases b e i n g treated.
T y p i c a l gas compositions f r o m non-ferrous m e t a l
l u r g i c a l operations w h i c h h a v e r e l a t i v e l y constant s u l f u r d i o x i d e a n d o x y g e n contents a r e s h o w n i n F i g u r e 3. A l l i e d C h e m i c a l s u l f u r d i o x i d e r e d u c t i o n t e c h n o l o g y c a n b e a p p l i e d d i r e c t l y to m e t a l l u r g i c a l gases across the e n t i r e range of compositions
represented b y t h e w i d e b a n d . T h e
A l l i e d t e c h n o l o g y is n o t d i r e c t l y a p p l i c a b l e to gases f r o m r e v e r b e r a t o r y furnace operations i n w h i c h b o t h t h e s u l f u r d i o x i d e a n d oxygen contents are g e n e r a l l y less t h a n 3 % . B e c a u s e of the l o w s u l f u r d i o x i d e c o n c e n t r a t i o n a n d large v o l u m e of gases f r o m these sources, a c o n c e n t r a t i n g system w o u l d b e used to recover the s u l f u r d i o x i d e f o r subsequent r e d u c t i o n . A i r d i l u t i o n of t h e gas at t h e source s h o u l d b e r e s t r i c t e d w h e r e v e r possible, as this m i n i m i z e s t h e v o l u m e o f gas to b e h a n d l e d i n the system
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
32
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
Figure 5.
Composition of gases from sulfur dioxide trating systems (dry basis)
Figure 6.
Gas compositions in emission control systems (dry basis)
concen-
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
H U N T E R
E T
Allied
A L .
Chemical
Reduction
33
Process
a n d the q u a n t i t y of r e d u c t a n t r e q u i r e d as s h o w n i n F i g u r e 4 . T h e s h a d e d a r e a represents the r a n g e of c o m p o s i t i o n s n o r m a l l y f o u n d i n gases f r o m roasters a n d c o n t i n u o u s s m e l t i n g processes. T h e r e is o b v i o u s l y a cost p e n a l t y i n terms of a d d i t i o n a l r e d u c i n g agent c o n s u m p t i o n associated w i t h the d i r e c t r e d u c t i o n of gases h a v i n g h i g h e r o x y g e n contents.
A l t h o u g h there p r o b a b l y w i l l b e situations i n
w h i c h i t w i l l b e advantageous to a c c e p t a h i g h e r r e d u c i n g agent
con-
s u m p t i o n , the p e n a l t y m u s t be w e i g h e d against t h e t o t a l costs w h i c h w o u l d b e i n c u r r e d i f a s u l f u r d i o x i d e p r e c o n c e n t r a t i o n f a c i l i t y w e r e to be used. T h e c o m p o s i t i o n of gases o b t a i n e d f r o m s e v e r a l types of s u l f u r d i o x i d e r e c o v e r y a n d c o n c e n t r a t i n g systems is s h o w n i n F i g u r e 5. O n e of the features of the A l l i e d C h e m i c a l s u l f u r d i o x i d e r e d u c t i o n system is that i t is c a p a b l e of p r o c e s s i n g t h e gases f r o m these s u l f u r d i o x i d e c o n c e n t r a t i n g systems d i r e c t l y w i t h o n l y the r e d u c t a n t a d d e d .
A s a result,
e q u i p m e n t size is m i n i m i z e d . B y contrast, i n m a n u f a c t u r i n g s u l f u r i c a c i d , the gases f r o m these c o n c e n t r a t i n g systems t y p i c a l l y w o u l d be d i l u t e d w i t h a i r to g i v e a n o x y g e n / s u l f u r d i o x i d e r a t i o of 1.3:1 to o b t a i n satisf a c t o r y c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r t r i o x i d e .
The resulting
gas v o l u m e s are c o m p a r e d i n T a b l e I. I n the soda s c r u b b i n g case ( t h e system to b e d e m o n s t r a t e d at N I P S C O )
the gas v o l u m e to the s u l f u r
d i o x i d e r e d u c t i o n u n i t is less t h a n one q u a r t e r the v o l u m e to the a c i d plant. Table I.
Relative Process Gas Volumes" Total Gas Volume—M
Sulfur
Dioxide
Recovery
From Recovery Unit
System
0
M a g n e s i u m oxide s c r u b b i n g 12% S 0 , 1% 0 C a r b o n sorption 40%SO ,0%O S o d a s c r u b b i n g or organic solvent 1 0 0 ^% SO S0 2
2
2
2
f 2t
a b c d e
To Reduction Unit d
SCFM
b
To Acid Plant
6
12.1
13.0
21.2
3.6
4.4
12.7
1.5
2.3
10.6
Basis 100 long tons/day sulfur equivalent in process gas. D r v basis at 60°F. and 14.7 psig. S 0 volume 1.46 M S C F M (standard cubic ft/min). Includes reductant as 100% C H . Includes dilution air to give 1.3:1 0 / S 0 ratio. 2
4
2
2
I n s u m m a r y , A l l i e d C h e m i c a l t e c h n o l o g y for r e d u c i n g s u l f u r d i o x i d e to e l e m e n t a l s u l f u r c a n be a p p l i e d d i r e c t l y to a b r o a d range of s u l f u r d i o x i d e concentrations. A s i l l u s t r a t e d i n F i g u r e 6, the p r a c t i c a l range f o r a p p l i c a t i o n of this t e c h n o l o g y extends f r o m a b o u t 4 % u p to 1 0 0 %
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(dry
34
S U L F U R
R E M O V A L
A N D R E C O V E R Y
b a s i s ) w i t h o x y g e n contents u p to t h e a f o r e m e n t i o n e d e c o n o m i c b r e a k p o i n t . I n some instances, process considerations m a y j u s t i f y d i r e c t s u l f u r dioxide
reduction with
higher oxygen
attendant higher reductant consumption.
contents
i n the feed
gas a n d
H o w e v e r , w i t h sulfur dioxide
contents of less t h a n a b o u t 4 % , use of a s u l f u r d i o x i d e p r e c o n c e n t r a t i n g system w i t h t h e s u l f u r d i o x i d e r e d u c t i o n process a p p l i e d d i r e c t l y t o t h e p r o d u c t gas is r e c o m m e n d e d . Literature
Cited
1. Wright, J. P., "Reduction of Stack Gas S O to Elemental Sulphur," Sulphur (May/June, 1972) No. 100, 72. 2. Hunter, W . D., Jr., "Application of S O Reduction in Stack Gas Desulfurization Systems," E P A Flue Gas Desulfurization Symposium, New Orleans, May 1973. 3. Hunter, W . D . , Jr., Michener, A. W . , "New Elemental Sulphur Recovery System Establishes Ability to Handle Roaster Gases," E/MJ (June 1973) 174 (6), 117. 4. Hunter, W . D . , Jr., "Reducing S O in Stack Gas to Elemental Sulfur," Power (September, 1973) 117 (9), 63. 5. U.S. Patent 3,653,833 (April 4, 1972). 6. U.S. Patent 3,755,551 (August 28, 1973). 7. Bierbower, R. G . , VanSciver, J. H . , "Design of Allied Chemical S O Reduction System Circumvents Major Corrosion Problems," Chem. Eng. Prog. (Aug. 1974) 70 (8), 60. 8. Mann, E . L . , " S O Abatement System Builds on Success," Elec. World (November 1, 1972) 70. 2
2
2
2
2
R E C E I V E D A p r i l 4, 1974
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.