5 Nitrogen Chemistry in Flames Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
Observations and Detailed Kinetic Modeling A N T H O N Y M . D E A N , M A U - S O N G C H O U , and D A V I D S T E R N Corporate Research—Science Laboratories, Exxon Research and Engineering Company, Linden, NJ 07036
Spatially resolved concentration measurements of NH, NH2, NH3, NO and OH in atmospheric pressure ammonia flames are compared to predictions obtained with a one-dimensional flame algorithm using a detailed reaction mechanism. Several reactions were observed to be equilibrated, and this informa tion was used to obtain estimates of the oscillator strength for NH2 as well as the heat of formation of NH. Use of a conventional mechanism of ammonia oxidation predicted concentration profiles in marked disagreement with the observations. However, it was possible to obtain much more satisfactory fits to the data by including reactions between various NHi (i = 1-2) species to form N-N bonds; these adducts could then decompose to form ultimately N2. These good fits were obtained with rate constants estimated from unimolecular decomposition theory and used with no adjustments. Recent advances i n b o t h l a s e r d i a g n o s t i c i n s t r u m e n t a t i o n and computer m o d e l i n g a l g o r i t h m s have p r o v i d e d k i n e t i c i s t s w i t h e x c i t i n g new o p p o r t u n i t i e s f o r c h a r a c t e r i z a t i o n o f c o m p l e x chemi c a l s y s t e m s . I n t h i s p a p e r we d e s c r i b e o u r u s e o f t h e s e t o o l s t o e l u c i d a t e t h e k i n e t i c s o f n i t r o g e n s p e c i e s i n f l a m e s . Our e f f o r t s h a v e f o c u s e d upon ammonia o x i d a t i o n s i n c e i t c a n b e shown t o p l a y a k e y r o l e i n t e r m s o f NO p r o d u c t i o n i n f u e l - b o u n d n i t r o g e n f l a m e s ( 1 ) a s w e l l a s NO r e d u c t i o n v i a NH3 a d d i t i o n t o f l u e gas i n t h e T h e r m a l DeNO p r o c e s s ( 2 , 3 ) . A l t h o u g h t h e r e h a v e b e e n a h o s t o f p r e v i o u s s t u d i e s o f ammonia o x i d a t i o n i n b o t h s h o c k t u b e s (4) and f l a m e s ( 5 ) , c o n s i d e r a b l e a m b i g u i t y r e m a i n s w i t h r e s p e c t t o t h e d e t a i l s o f t h e mechanism. We h a v e a t t e m p t e d t o remove some o f t h e s e u n c e r t a i n t i e s b y m e a s u r i n g a b s o l u t e c o n c e n t r a t i o n s o f b o t h s t a b l e s p e c i e s and r e a c t i v e i n t e r m e d i a t e s t h r o u g h t h e f l a m e f r o n t r e g i o n and c o m p a r i n g t h e s e c o n c e n t r a t i o n - d i s t a n c e p r o f i l e s t o those o b t a i n e d by n u m e r i c a l l y x
0097-6156/84/0249-0071 $06.00/0 © 1984 American Chemical Society Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
72
CHEMISTRY OF COMBUSTION PROCESSES
s o l v i n g t h e 1-D f l a m e e q u a t i o n s . A d i s c u s s i o n o f t h e measurement t e c h n i q u e s i s f o l l o w e d by t h e m e c h a n i s t i c a n a l y s i s . P o r t i o n s of t h i s m a t e r i a l h a v e b e e n c o v e r e d i n more d e t a i l i n o u r r e c e n t papers (6-8).
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
Experimental
A r r a n g e m e n t and
Observations
F i g u r e 1 shows a s c h e m a t i c o f t h e a p p a r a t u s . T h i s has been d e s c r i b e d i n d e t a i l i n R e f s . 6 and 7; o n l y an o v e r v i e w i s p r e sented here. The 3.8 cm d i a m e t e r b u r n e r i s d e s i g n e d t o p r o d u c e a f l a t h o r i z o n t a l f l a m e f r o n t s o t h a t one c a n map o u t t h e f l a m e c h e m i s t r y by m e a s u r i n g s p e c i e s c o n c e n t r a t i o n s a t v a r i o u s v e r t i c a l d i s t a n c e s above t h e b u r n e r s u r f a c e . T h i s g e o m e t r y a l l o w s one t h e considerable s i m p l i f i c a t i o n of u t i l i z i n g a one-dimensional flame code f o r t h e k i n e t i c a n a l y s i s . The l a s e r beam i s f o c u s e d t o g i v e a c o n s t a n t beam d i a m e t e r o f «"w0.15 mm a c r o s s t h e f l a m e . Again t h i s s i m p l i f i e s the i n t e r p r e t a t i o n of the l i n e - o f - s i g h t absorption measurements. F u r t h e r m o r e , t h i s s m a l l d i a m e t e r p e r m i t s good s p a t i a l r e s o l u t i o n of the flame f r o n t region. I n our atmospheric p r e s s u r e f l a m e s , t h e f l a m e f r o n t was l e s s t h a n 1 mm t h i c k . A v e r a g i n g techniques were used f o r c o l l e c t i o n o f b o t h a b s o r p t i o n and f l u o r e s c e n c e d a t a , w i t h 100 l a s e r p u l s e s p e r d a t a p o i n t b e i n g typical. The l a r g e t e m p e r a t u r e g r a d i e n t s n e a r t h e b u r n e r s u r f a c e c a u s e d some beam s t e e r i n g , b u t d i r e c t measurement showed t h i s d e f l e c t i o n t o be n e g l i g i b l e , i . e . , l e s s t h a n 0.08 mm, a t d i s t a n c e s l a r g e r t h a n 0.3 mm a b o v e t h e s u r f a c e . The gas m i x t u r e s f e d t o t h e b u r n e r w e r e p r e p a r e d i n a s t a i n l e s s s t e e l m a n i f o l d u s i n g e l e c t r o n i c f l o w c o n t r o l l e r s . A range o f r i c h ammonia f l a m e s was s t u d i e d i n w h i c h t h e f u e l e q u i v a l e n c e r a t i o r a n g e d f r o m 1.28 t o 1.81. F l a m e t e m p e r a t u r e s w e r e m e a s u r e d w i t h P t / P t - 1 3 % R h t h e r m o c o u p l e s . The b e a d d i a m e t e r was o n l y 0.12 mm so t h a t t h e r a d i a t i o n c o r r e c t i o n was o n l y 80 K. OH, NH, NH^, and NH3 w e r e measured i n a b s o r p t i o n w h i l e NO was m e a s u r e d i n f l u o r e s c e n c e . The a b s o r p t i o n measurements w e r e reduced to c o n c e n t r a t i o n s v i a curve-of-growth techniques w h i l e t h e NO measurements w e r e c a l i b r a t e d a g a i n s t a b s o r p t i o n i n a l e a n ammonia f l a m e w h e r e t h e NO c o n c e n t r a t i o n was h i g h e r . I t was assumed t h a t t h e e x t e n t o f f l u o r e s c e n c e q u e n c h i n g was t h e same i n t h e r i c h and l e a n f l a m e s ( 7 ) . S u f f i c i e n t s p e c t r o s c o p i c i n f o r m a t i o n was a v a i l a b l e f o r a l l b u t NH2 t o a l l o w a b s o l u t e c o n c e n t r a t i o n a s s i g n m e n t s . N H d a t a c o u l d o n l y be o b t a i n e d a s [NH^] f , w h e r e f ^ was t h e unknown o s c i l l a t o r s t r e n g t h . S i n c e t h e OH a b s o r p t i o n measurements w e r e made o n i n d i v i d u a l r o t a t i o n a l l i n e s , i t was p o s s i b l e t o o b t a i n [ 0 H ] j . A s s u m i n g a B o l t z m a n n d i s t r i b u t i o n f o r t h e r o t a t i o n a l e n e r g y l e v e l s , one c a n o b t a i n the r o t a t i o n a l temperature from a p l o t of ln[0H]j versus Ε . An example o f s u c h d a t a i s shown i n F i g u r e 2. #
2
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
YAG-PUMPED DYE LASER/WEX
REF. DETECTOR
SPECTROMETER
FLAT FLAME
P.M.T.
SAMPLE DETECTOR
BOX-CAR AVERAGER
RATIOMETER/ AVERAGER
F i g u r e 1. S c h e m a t i c d i a g r a m o f t h e e x p e r i m e n t a l a r r a n g e m e n t s f o r l a s e r absorption and l a s e r - i n d u c e d f l u o r e s c e n c e . (Reproduced w i t h p e r m i s s i o n f r o m R e f . 7· C o p y r i g h t 19Ô3, J . Chem. P h y s . )
X
BEAM SPLITTER
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
CHEMISTRY OF COMBUSTION PROCESSES
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
74
-4.8 H
ψ=
1.28 ζ = .9 mm T , = 2239 Κ ± 20 Κ rn
-6.4 H
1 0
500
1
1
I
1
1 1—
1000 1500 2000 2500 3000
3500
-1
ROTATIONAL ENERGY (cm ) F i g u r e 2 . Measurement o f OH r o t a t i o n a l t e m p e r a t u r e a t a h e i g h t o f 0 . 9 mm above t h e b u r n e r f o r an ammonia f l a m e w i t h a n e q u i v a l e n c e r a t i o o f 1 . 2 8 . (Reproduced w i t h p e r m i s s i o n from Ref. 6 . C o p y r i g h t 1 9 8 2 , J . Chem. P h y s . )
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
5.
DEAN ET AL.
75
Nitrogen Chemistry in Flames
R e s u l t s and D i s c u s s i o n
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
NH2 O s c i l l a t o r S t r e n g t h . As mentioned e a r l i e r , l a c k o f a r e l i a b l e o s c i l l a t o r s t r e n g t h f o r NH2 p r e v e n t e d a s s i g n m e n t o f a b s o l u t e c o n c e n t r a t i o n s . However, we w e r e a b l e t o combine a b s o l u t e measurements o f OH, NH, a n d NH3 w i t h r e l a t i v e measurements o f NH^ to demonstrate t h a t t h e r e a c t i o n s NH
3
+ OH = N H
NH
2
+ OH = NH + H 0
2
+ H 0
(1)
2
(2)
2
were p a r t i a l l y e q u i l i b r a t e d . T h i s f a c t allowed us t o c a l c u l a t e a b s o l u t e NH2 c o n c e n t r a t i o n s a n d t h u s o b t a i n f ^ . The u s e o f two r e a c t i o n s n o t o n l y allowed a c o n s i s t e n c y check, b u t a l s o served t o p r o v i d e an e s t i m a t e f o r AH °(NH). The a p p r o a c h u s e d assumes t h a t H2O r a p i d l y assumes a n e q u i l i brium c o n c e n t r a t i o n i n flames. W i t h ^ 0 f i x e d i n t h i s way, one can e x p l i c i t l y v e r i f y whether o r n o t R e a c t i o n s 1 and 2 a r e e q u i l i b r a t e d by computing t h e r a t i o s : f
[NH ].f /C[NH ].[OH])
(3)
[ΝΗ]/([ΝΗ ].ί..[ΟΗ])
(4)
2
x
3
2
R e p r e s e n t a t i v e v a l u e s o f ( 3 ) a n d (4) a r e t a b u l a t e d i n T a b l e I . Although t h e i n d i v i d u a l c o n c e n t r a t i o n s v a r y w i d e l y , each o f these r a t i o s i s constant w i t h i n experimental e r r o r a t d i f f e r e n t heights above t h e b u r n e r , i n d i c a t i n g t h a t e a c h o f t h e r e a c t i o n s i s e q u i librated. C a l c u l a t i o n o f K e q i s more u n c e r t a i n f o r R e a c t i o n 2 b e c a u s e o f t h e u n c e r t a i n h e a t o f f o r m a t i o n o f NH. G i v e n t h i s u n c e r t a i n t y , one c a n v a r y AHf°(NH) u n t i l f i o b t a i n e d f r o m R e a c t i o n 2 a g r e e s w i t h t h a t o b t a i n e d f r o m R e a c t i o n 1. Such a n a p p r o a c h y i e l d s f i = 5.05 χ 1 0 w i t h A H f ( N H ) = 89 k c a l / m o l e . T h i s v a l u e o f AHf ( N H ) i s c o n s i s t e n t w i t h t h e JANAF v a l u e o f 90+4 k c a l / m o l e ( 9 ) b u t h i g h e r t h a n t h e 84.2±2.3 k c a l / m o l e p r o p o s e d by P i p e r ( 1 0 ) . S i n c e t h e r e a r e a d d i t i o n a l u n c e r t a i n t i e s i n AHf°(NH ) a n d t h e a b s o l u t e c o n c e n t r a t i o n o f NH3, NH, a n d OH, t h e s e v a l u e s o f f ^ a n d AHf°(NH) c a n n o t be t a k e n a s d e f i n i t i v e a s s i g n m e n t s , b u t t h e y do r e p r e s e n t s i g n i f i c a n t i m p r o v e m e n t s o v e r e a r l i e r work. - 5
0
0
2
R o t a t i o n a l E x c i t a t i o n o f OH. One o f t h e most s u r p r i s i n g a s p e c t s o f o u r d a t a was t h e o b s e r v a t i o n o f r o t a t i o n a l l y h o t OH i n t h e f l a m e f r o n t o f φ = 1.28 a n d φ = 1.50 f l a m e s . R o t a t i o n a l t e m p e r a t u r e s ^200 Κ h i g h e r t h a n r a d i a t i o n c o r r e c t e d t h e r m o c o u p l e measurements w e r e o b s e r v e d ; t h e s e w e r e n o t e x p e c t e d s i n c e r o t a t i o n a l energy t r a n s f e r i s so f a s t a t atmospheric p r e s s u r e . Such e x c i t a t i o n was n o t o b s e r v e d b e y o n d t h e f l a m e f r o n t i n a n y o f o u r ammonia f l a m e s a n d n o t e v e n w i t h i n t h e f l a m e f r o n t o f a methane
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983. 1.58 8.08
0.79
0.54
0.724
8.46
1935
1929
2.5
3.0
^Reference 6.
d i s t a n c e above burner s u r f a c e .
m
1.55
8.32
0.69
m m in
m
Ο ο
"0 73
c m H δ ζ
00
Ο ηΊ} ο
3
in H
π χ
1.50
8.20
1.11 0.90
0.91
1.37
0.986
+3
9.22
C m
—12
10.0
/10
1938
[NH] [NH,,]»fJOH]
2;0
+3
1.52
C m
22 "
1.40
/10
1.40
^^2^ * ^ i [OH][NH,1
2.56
3
12.0
17
e [NHJ/10 cm~
1941
b
1.5
3
1.45
11
8.33
i
[NIL.]»f /10 cm" 8.71
b
2.04
3
2.54
14
[NH]/10 cm"
5.28
b
= 4.79/2.81/1.00)
14.3
3
2
1938
14
2
1.0
a
Z/mm T/K [OH]/10 cm~
3
φ - 1.28 (NH /0 /N
Table I . P a r t i a l E q u i l i b r i u m i n Ammonia Flames
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
5.
Nitrogen Chemistry in Flames
DEAN ET AL.
11
flame. I t a p p e a r e d t h a t t h e s o u r c e o f t h i s e x c i t e d OH was a n e x o t h e r m i c r e a c t i o n w h i c h was u n i q u e t o t h e f l a m e f r o n t r e g i o n o f t h e ammonia f l a m e . A r a t e a n a l y s i s o f t h e mechanism w h i c h i s d i s c u s s e d l a t e r i n d i c a t e s two r e a c t i o n s w h i c h s a t i s f y t h e s e criteria:
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
NH
2
+ 0
NH + NO
NH + OH
ΔΗ = -14 k c a l / m o l e
N
ΔΗ = -96 k c a l / m o l e
0
+ OH
Both o f these r e a c t i o n r a t e s peak i n t h e flame f r o n t r e g i o n , and b o t h h a v e t h e p o t e n t i a l t o p r o d u c e v i b r a t i o n a l l y e x c i t e d OH. S i n c e v i b r a t i o n a l r e l a x a t i o n i s much s l o w e r t h a n r o t a t i o n a l r e l a x a t i o n , a p p r e c i a b l e q u a n t i t i e s o f v i b r a t i o n a l l y e x c i t e d OH c o u l d b e f o r m e d . The o b s e r v e d r o t a t i o n a l e x c i t a t i o n c o u l d r e s u l t from cascading o f t h i s e x c i t a t i o n i n t o h i g h r o t a t i o n a l l e v e l s o f the ground v i b r a t i o n a l l e v e l d u r i n g t h e r e l a x a t i o n p r o c e s s . D e t a i l e d K i n e t i c Modeling. Recent advances i n computation t e c h n i q u e s ( 1 1 ) h a v e made i t much e a s i e r t o compute c o n c e n t r a t i o n d i s t a n c e p r o f i l e s f o r f l a m e s p e c i e s . The o n e - d i m e n s i o n a l i s o b a r i c flame equations a r e solved v i a a steady s t a t e s o l u t i o n using f i n i t e difference expressions. A n added s i m p l i f i c a t i o n i s t h a t the energy e q u a t i o n c a n be r e p l a c e d w i t h t h e measured t e m p e r a t u r e profile. I n t h e a d a p t i v e mesh a l g o r i t h m , t h e e q u a t i o n s a r e f i r s t s o l v e d on a r e l a t i v e l y c o a r s e g r i d . Then a d d i t i o n a l g r i d p o i n t s c o u l d be i n c l u d e d i f n e c e s s a r y , and t h e p r e v i o u s s o l u t i o n i n t e r p o l a t e d o n t o t h e new mesh w h e r e i t s e r v e d a s t h e i n i t i a l s o l u t i o n estimate. T h i s p r o c e s s was c o n t i n u e d u n t i l s e v e r a l t e r m i n a t i o n c r i t e r i a were s a t i s f i e d . The s t a r t i n g p o i n t i n d e v e l o p m e n t o f a n ammonia f l a m e mech a n i s m was a mechanism p r e v i o u s l y u s e d t o m o d e l ammonia o x i d a t i o n i n a f l o w t u b e n e a r 1300 Κ ( 3 ) . A d d i t i o n a l r e a c t i o n s w e r e added t h a t were thought t o be important a t t h e h i g h e r flame t e m p e r a t u r e s . C a l c u l a t i o n s w i t h t h i s mechanism p r o d u c e d p r o f i l e s i n marked d i s agreement w i t h o u r d a t a . The p r e d i c t i o n s w e r e s l o w e r t h a n o b s e r v e d ; d e c a y o f NH^ s p e c i e s was much t o o s l o w , a n d OH p e a k e d t o o l a t e b y a b o u t 2.5 mm. To make m a t t e r s w o r s e , f a r t o o much NO was f o r m e d . The NO p r o b l e m was e s p e c i a l l y t r o u b l e s o m e i n t h a t attempts t o i n c r e a s e t h e r a t e o f N H i decay o n l y served t o produce e v e n more NO, s i n c e NO was t h e p r i m a r y d e c a y c h a n n e l f o r t h e N H i s p e c i e s . A p o s s i b l e r e s o l u t i o n o f t h i s dilemma i n v o l v e s r e a c t i o n s o f t h e N H i s p e c i e s w i t h e a c h o t h e r t o f o r m N-N b o n d s . These c o m p l e x e s c o u l d t h e n s p l i t o f f Η atoms t o u l t i m a t e l y f o r m N2I n t h i s way one c o u l d a c h i e v e a n o v e r a l l f a s t e r d e c a y o f NH^ w i t h o u t p r o d u c i n g more NO. I n d e e d , c a l c u l a t i o n s u s i n g s u c h a mechanism showed much b e t t e r a g r e e m e n t w i t h o u r d a t a . Table I I l i s t s t h e " c o n v e n t i o n a l " mechanism a s w e l l a s t h e a d d i t i o n a l NHi + N H i r e a c t i o n s which d r a m a t i c a l l y improve t h e f i t . F i g u r e 3
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
78
CHEMISTRY OF COMBUSTION PROCESSES
T a b l e I I . M e c h a n i s m f o r R i c h Ammonia F l a m e s k = AT Reaction
n
exp(-E/RT) Α
η
Ε(kcal/mole) Comments
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
UPDATED FLOW REACTOR MECHANISM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
NH 3+M=NH 2+H+M NH +H=NH2+H2 NH +0=NH2+OH NH +OH=NH + H 0 NH +0=NH+OH NH +0H=NH+H 0 NH2+H=NH+H2 NH +0 =HNO+OH NH 2+N0=NNH+0H NH +NO=N +H 0 NH +NO=N20+H2 NIT +HNO=NH +NO NH +NNH=N +NH NH+0 =HN0+0 NH+N0=N2+0H NH4OH=N+H20 NH4OH=HN0+H NH+H=N+H2 NH+0=N0+H NH+0=N+0H NH+N=N2+H HN0+M=N0+H+M HN0+0H=N0+H 0 HN0+H=N0+H2 HN0+0=N0+0H HN0+N=N0+NH HN0+N=H+N 0 NNH+M=N 2+H+M NNH+0H=N +H20 NNH+N0=N 2+HNO N+N0=N +0 N+0 =NO+0 N+OH=NO+H N 0+M=N +0+M N 0+H=NH+N0 N 0+H=N +OH N CHO=N +0 N20+0=N0+N0 H +OH=H 0+H H+0 =0H+0 0+H =0H+H H+H0 =0H+0H 0+HO =O +OH OH+H0 =H 0+0 3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4.80E+16 2.46E+13 1.50E+12 3.26E+12 2.00E+13 3.00E+10 1.00E+12 5.10E+13 6.10E+19 9.10E+19 5.00E+13 1.75E+14 1.00E+13 6.00E+12 1.20E+13 5.00E+11 5.00E+11 3.00E+13 6.30E+11 6.30E+11 6.30E+11 1.86E+16 3.60E+13 4.80E+12 5.00E+11 1.00E+11 5.00E+10 1.50E+15 3.00E+13 2.50E+12 1.60E+13 6.40E+09 6.30E+11 2.70E+14 3.80E+14 7.60E+13 1.00E+14 1.00E+14 2.20E+13 3.70E+17 1.80E+10 2.50E+14 4.80E+13 5.00E+13
0. 0. 0. 0. 0. 0.68 0.5 0. -2.46 -2.46 0. 0. 0. 0. 0. 0.5 0.5 0. 0.5 0.5 0.5 0. 0. 0. 0.5 0.5 0.5 0. 0. 0. 0. 1.0 0.5 0. 0. 0. 0. 0. 0. -1.0 1.0 0. 0. 0.
93929. 17071. 6040. 2120. 1000. 1290. 2000. 30000. 1866. 1866. 24800. 1000. 0. 3400. 0. 2000. 2000. 0. 0. 8000. 0. 48680. 0. 0. 0. 2000. 3000. 35000. 0. 0. 0. 6300. 0. 54100. 34500. 15100. 28020. 28020. 5150. 17500. 8900. 1900. 1000. 1000.
Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.
3 3 3 3 3 3 8 3 3 3 15 3 3 8 8 16 16 1 16 16 16 3 3 16 16 16 16 8 3 3 16 16 16 17 18 19 19 19 3 20 3 3 3 3
Continued Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
5.
Table I I .
M e c h a n i s m f o r R i c h Ammonia F l a m e s
A
Reaction
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
79
Nitrogen Chemistry in Flames
DEAN ET A L .
45. 46. 47.
OH+OH=0+H 0 H0 +NO=N02+OH H+N0 =NO+OH
48. 49.
0+N0 =N04O2 H+0 +M=H0 +M H 0/21./*** N02+M=N0+0+M 0+0+M=02+M H+H+M=H2+M H /2.5/ H 0/15./ H+0H+M=H 0+M Η /2.57 H 0/15./
2
2
2
2
2
η
(Continued)
Ε ( k c a l / m o l e ) Comments 3 3 3 3 3
0. 0. 0. 0. 0.
1090. -260. 1500. 600. -995.
1.10E+16 1.38E+18 3.60E+16
0. -1.0 -0.6
66000. 340. 0.
Ref. 3 Ref. 3 R e f . 21
8.80E+21
-2.0
0.
R e f . 21
2
2
50. 51. 52.
Ret. Ref. Ref. Ref. Ref.
6.30E+12 3.43E+12 3.50E+14 1.00E+13 1.50E+15
2
2
53.
2
2
INCLUSION OF NH + NH REACTIONS 16100. 0. 2000.
54. 55. 56.
NH +NH =N H +H NH +NH =N H N H +H=N H +H
1.00E+13 5.00E+12 1.00E+12
0. 0. 0.5
57.
Ν H+OH=N Η +H 0 2 4 2 3 2
3.00E+10
0.68
1290.
58.
N H.+0=N H-+0H 2 4 2 3
2.00E+13
0.
1000
59. 60.
N H =N H +H Ν Η +H=N H +H 2 3 2 2 2
1.20E+13 1.00E+12
0. 0.5
61.
N H^+0H=N H +H 0 2 3 2 2 2
3.00E+10
0.68
1290.
62.
N H +0=N H +OH 2 3 2 2
2.00E+13
0.
1000.
63. 64.
N H =NNH+H Ν H+H=NNH+H 2 2 2
3.40E+12 1.00E+12
0. 0.5
2
2
2
2
2
2
4
2
o
3
2
4
3
2
o
2
3
2
2
0
o
n
0
0
2
0
0
0
0
o
o
0
2
0
58000. 2000.
Ref. 8 Ref. 8 Same a s H+NH2 Same a s OH+NH2 Same a s 0+NH2 Ref. 8 Same a s H+NH2 Same a s 0H+NH2 Same a s 0+NH Ref. 8 Same a s H+NH ?
65000. 2000.
2
65.
N H +OH=NNH+H 0
3.00E+10
0.68
1290.
Same a s 0H+NH2
66.
N H -K)=NNH+OH
2.00E+13
0.
1000.
Same a s 0+NH
67. 68
NH+NH=NNH+H NH+NH =N H +H
5.00E+13 5.00E+13
0. 0.
0. 0.
2
2
2
2
2
2
NOTE :
2
2
2
Réf. S Ref. 8
R a t e c o n s t a n t u n i t s a r e m o l e , cm, s e c ,K.
*** i . e . , r a t e c o n s t a n t i n c r e a s e d b y a f a c t o r o f 21 f o r H 0 a s t h e t h i r d body. 2
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
80
CHEMISTRY OF COMBUSTION PROCESSES
Distance Above Burner (mm)
Figure 3. Comparison o f ( l e f t ) observed and ( r i g h t ) c a l c u l a t e d p r o f i l e s f o r an ammonia flame with an equivalence r a t i o o f 1.50.
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
DEAN ET AL.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
5.
Nitrogen Chemistry in Flames
81
compares t h e s e p r e d i c t i o n s w i t h t h e expanded mechanism t o o u r o b s e r v a t i o n s f o r t h e φ = 1.50 f l a m e . Both c a l c u l a t i o n s and o b s e r v a t i o n s c o n t a i n p o t e n t i a l sources o f e r r o r , a n d d e t a i l e d c o m p a r i s o n s s h o u l d b e made w i t h t h e s e i n m i n d . The c o n c e n t r a t i o n measurements o f NH a n d OH a r e p r o b a b l y a c c u r a t e t o ±20%, e x c e p t t h a t OH i n t h e f l a m e f r o n t r e g i o n c o u l d be l o w i f t h e r e w e r e a p p r e c i a b l e v i b r a t i o n a l e x c i t a t i o n . NO measurements w e r e c a l i b r a t e d v i a a b s o r p t i o n ( 7 ) a n d s h o u l d a l s o be a c c u r a t e t o ±20%. NH3 i s more u n c e r t a i n , ±30%, s i n c e t h e r e i s a l a r g e r u n c e r t a i n t y i n t h e e x t i n c t i o n c o e f f i c i e n t used (12). N H i s p r o b a b l y o n l y a c c u r a t e t o w i t h i n a f a c t o r o f two b e c a u s e of t h e u n c e r t a i n t i e s i n f j _ . Uncertainty i s introduced into the c a l c u l a t i o n s b y t h e u n c e r t a i n h e a t s o f f o r m a t i o n o f NH and NH2. W i t h t h e s e u n c e r t a i n t i e s , major emphasis s h o u l d be p l a c e d upon comparison o f t h e shapes o f t h e c o n c e n t r a t i o n p r o f i l e s . Using these g u i d e l i n e s , t h ecomparisions i n F i g u r e 3 a r e generally quite satisfactory. N o t e t h a t NH i s p r o p e r l y d e s c r i b e d i n terms o f b o t h p r o f i l e shape a s w e l l as a b s o l u t e c o n c e n t r a t i o n . The c a l c u l a t e d NO p r o f i l e n e a r t h e b u r n e r i s t o o h i g h , b u t t h e o v e r a l l d e c a y seems t o b e r e a s o n a b l y w e l l d e s c r i b e d . This d i s crepancy c l o s e t o t h e burner s u r f a c e c a n be r e s o l v e d by u s i n g a l a r g e r r a t e constant f o rthe r e a c t i o n 2
NH + NO + N
2
+ OH
However, c o n s i d e r i n g t h e u n c e r t a i n t y i n a b s o l u t e c o n c e n t r a t i o n s , i t was f e l t t h a t t h i s was i n s u f f i c i e n t j u s t i f i c a t i o n f o r u s e o f a higher value. OH i s a l s o p r o p e r l y p r e d i c t e d , w i t h t h e e x c e p t i o n o f t h e r e g i o n n e a r t h e p e a k , a n d t h i s d i s c r e p a n c y may w e l l b e a m a n i f e s t a t i o n o f v i b r a t i o n a l l y e x c i t e d OH a s d e s c r i b e d e a r l i e r . NH c a n be seen t o have t h e proper shape, and t h e a b s o l u t e concentration p r e d i c t i o n s a r e probably acceptable considering t h e large e r r o r bars here. The p r e d i c t e d ammonia d e c a y r a t e a t l a r g e r d i s t a n c e s a b o v e t h e b u r n e r i s somewhat s l o w e r t h a n o b s e r v e d . However, e v e n i n t h i s c a s e w h e r e t h e f i t l e a v e s some t h i n g t o b e d e s i r e d , i t i s v a s t l y i m p r o v e d o v e r what i t was f o r t h e c a s e where t h e NH. + NH. r e a c t i o n s w e r e e x c l u d e d . In general, theJits i l l u s t r a t e d i n Figure 3 a r e s i m i l a r t o t h o s e o b s e r v e d a t t h e o t h e r two e q u i v a l e n c e r a t i o s ( 8 ) . A p a r t i c u l a r l y encouraging aspect of t h e c a l c u l a t i o n s a t a l l three equivalence r a t i o s i s that they p r o p e r l y p r e d i c t t h e v a r i a t i o n of b o t h peak h e i g h t and peak l o c a t i o n o f t h e r a d i c a l s p e c i e s w i t h r e s p e c t t o changes i n t h e e q u i v a l e n c e r a t i o . Thus, i t a p p e a r s t h a t t h e mechanism g i v e n i n T a b l e I I p r o p e r l y a c c o u n t s f o r most o f o u r e x t e n s i v e d a t a b a s e o n r i c h ammonia f l a m e s . Although i t i s impossible t o prove that t h i s i s t h e c o r r e c t mechanism, t h e p r o p e r p r e d i c t i o n o f s o many s p e c i e s o v e r a r a n g e o f c o n d i t i o n s s t r o n g l y s u g g e s t s t h a t t h e scheme u s e d i s a r e a s o n able approximation t o r e a l i t y . I t i s e v i d e n t t h a t t h e NH-^ + NH^ r e a c t i o n s a r e t h e k e y i n g r e d i e n t t o o b t a i n i n g t h i s good f i t . As 2
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
82
CHEMISTRY OF COMBUSTION
PROCESSES
mentioned e a r l i e r , omission o f these r e a c t i o n s l e d t o p r e d i c t i o n s w h i c h b o r e no r e s e m b l a n c e t o o u r d a t a ( 8 ) . Figure 4 o u t l i n e s the important r e a c t i o n s of the n i t r o g e n s p e c i e s i n r i c h ammonia f l a m e s . The most i m p o r t a n t r e a c t i o n s p r o d u c i n g N a r e NNH d i s s o c i a t i o n a n d NH + NO. I n t u r n , most o f t h e NNH i s p r o d u c e d f r o m N H2 d i s s o c i a t i o n w h i c h i s p r o d u c e d v i a t h e r e a c t i o n NH + NH2. O t h e r N H i + N H i r e a c t i o n s a r e l e s s i m p o r tant. Thus, t h e N H i ^ i r e a c t i o n s a r e p r i m a r i l y r e s p o n s i b l e f o r Ν 2 p r o d u c t i o n ; i t i s now c l e a r why o m i s s i o n o f t h e s e c h a n n e l s l e d t o s u c h marked changes i n t h e p r e d i c t e d p r o f i l e s . One w o u l d n o t e x p e c t s u c h c h a n g e s i n p r e d i c t e d p r o f i l e s i n l e a n ammonia f l a m e s ; h e r e [NH^] w o u l d b e s u f f i c i e n t l y l o w t h a t t h e N H i + N H i r e a c t i o n s could s a f e l y by omitted. Figure 4 a l s o o u t l i n e s a p o s s i b l e reason f o r the continuing c o n t r o v e r s y a s t o t h e i d e n t i t y o f t h e N H i s p e c i e s w h i c h was r e s p o n s i b l e f o r t h e NH^ + NO r e a c t i o n when e x a m i n i n g NO p r o d u c t i o n i n t h e c o m b u s t i o n o f n i t r o g e n doped f u e l s . An a n a l y s i s o f t h e reactions i n Figure 4 indicates that ther e l a t i v e concentration of N H i s p e c i e s w i l l v a r y w i t h c o n d i t i o n s . I n t h i s work where l a r g e q u a n t i t i e s o f NH a n d NH2 a r e p r e s e n t , N2 p r o d u c t i o n o c c u r s via NHi NHi d i s c u s s e d a b o v e . However, i n t h e more t y p i c a l c a s e o f s m a l l amounts o f n i t r o g e n o u s d i l u e n t , t h e NH^ c o n c e n t r a t i o n s should be t o o l o w f o r these r e a c t i o n s t o be s i g n i f i c a n t . There t h e r e l a t i v e p o p u l a t i o n o f the N H i species w i l l be governed by t h e c o m p e t i t i o n b e t w e e n t h e v a r i o u s NH^ + NO r e a c t i o n s a n d t h e hydrogen a b s t r a c t i o n s : 2
2
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
+
+
a
s
X + NH. ·> HX + NH. .. ι l - l L a r g e r r a d i c a l c o n c e n t r a t i o n s (X) w o u l d f a v o r h i g h e r concentra t i o n s o f Ν atoms; t h e n Ν + NO w o u l d b e i m p o r t a n t . Lower r a d i c a l c o n c e n t r a t i o n s w o u l d t e n d t o i n c r e a s e t h e i m p o r t a n c e o f NH + NO. F i n a l l y , much l o w e r t e m p e r a t u r e s , i . e . , 1200 Κ f o r t h e T h e r m a l DeNO p r o c e s s , w o u l d make NH^ + NO a k e y r e a c t i o n . x
E s t i m a t i o n o f R a t e C o n s t a n t s f o r N ^ + NH^^ a n d N Q J D i s s o c i a t i o n . The k e y s t o t h e s u c c e s s o f t h e mechanism a r e t h e NH^ + NH^ r e a c t i o n s as w e l l as t h e subsequent u n i m o l e c u l a r d i s s o c i a t i o n o f t h e N^H^ s p e c i e s f o r m e d f r o m t h e s e r e a c t i o n s . A t y p i c a l scheme i s t h e f o l l o w i n g : H
k
NH + N H
f 1T
H H^NNH „NNH
2
— —H N N H
+ Η
r kjM]
H^NNH
lk
d
NNH + Η
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
DEAN ET AL.
Nitrogen Chemistry in Flames
NH
2
NH
3
OH
HNO
NH
2
NH
NH
2
2
NKL
I
NH 2
NO 0
H NO
2
NH NH
2
NH NO
NH
2
NO
2
NH
2
NH, NH
NO
i
2
(
Γ
3
NH
I NO
i Ni 0
4
IH,0
M,H
NNH 1 M,NH
2
Figure k. Important r e a c t i o n s o f n i t r o g e n species i n r i c h amnioni a f1ame s.
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
2
84
CHEMISTRY OF COMBUSTION PROCESSES
T h i s i s w r i t t e n i n t h e mechanism a s t h e f o l l o w i n g NH + N H N H 2
2
= N H
2
= NNH + H
2
sequence: (68)
+ H
2
(63)
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
with "68
+
*H
k
+
r
k
s
M
and "63 One t h u s o b t a i n s t h e a p p a r e n t r a t e c o n s t a n t s IC53 a n d k 6 3 b y e v a l u a t i o n o f t h e r a t e constants f o r t h e elementary steps ( k f , k , k g , and k ) a n d u s i n g t a b l e s o f t h e K a s s e l i n t e g r a l ( 1 3 ) t o estimate t h e degree o f f a l l - o f f (I) from t h e l i m i t i n g h i g h p r e s s u r e r a t e c o n s t a n t , k^. k c a n b e t a k e n t o b e t h e h i g h p r e s s u r e recombination r a t e constant; k i s the c o l l i s i o n a l s t a b i l i z a t i o n r a t e c o n s t a n t ; k and k a r e t h e u n i m o l e c u l a r r a t e c o n s t a n t s c o r r e s p o n d i n g t o N-N a n d N-H bond f i s s i o n , r e s p e c t i v e l y , o f t h e c o l l i s i o n complex. These decay r a t e c o n s t a n t s were e s t i m a t e d f r o m t h e RRK e x p r e s s i o n . r
s
f
s
r
H
S-l
w h e r e A i s t h e p r e e x p o n e n t i a l f a c t o r , ε-ε* i s t h e amount o f v i b r a t i o n a l e n e r g y i n e x c e s s o f t h a t r e q u i r e d t o b r e a k t h e bond o f interest, ε i s t h e t o t a l energy o f t h e complex, and S i s t h e e f f e c t i v e number o f o s c i l l a t o r s ( 1 4 ) . S i s computed v i a t h e relation C Q b
"
vib R
F o r t h i s p a r t i c u l a r c a s e o f HNNR^, t h e N-H bond i s o n l y ^ 5 5 k c a l / m o l e w h i l e N-N i s ^ 8 5 k c a l / m o l e . Hence k n » k and k >> k [ M ] a t f l a m e t e m p e r a t u r e s a n d k£g ^ k f = 5 χ 1 0 ^ m^ m o l e " ! s " l , a t y p i c a l recombination r a t e constant. T h u s , t h i s pathway t o N-N bond f o r m a t i o n i s v e r y r a p i d a n d t h i s r e a c t i o n p l a y s a k e y r o l e in the kinetics. r
H
s
C
Summary By c o m b i n i n g l a s e r d i a g n o s t i c s w i t h i m p r o v e d c o m p u t e r a l g o r i t h m s f o r m o d e l i n g l a b o r a t o r y f l a m e s , we h a v e b e e n a b l e t o
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
5.
DEAN ET AL.
Nitrogen Chemistry in Flames
85
develop an improved mechanism f o r ammonia o x i d a t i o n at high temp eratures. The combination of absorption and l a s e r induced f l u o r escence have y i e l d e d absolute concentrations of important flame species. The s u b - m i l l i m e t e r s p a t i a l r e s o l u t i o n allowed us to monitor species w i t h i n the flame f r o n t , and the sub-ppm s e n s i t i v i t y allowed us to measure key r e a c t i v e i n t e r m e d i a t e s . These concentration p r o f i l e s provided us with the necessary data base f o r development of a d e t a i l e d mechanism. Since the a l g o r i t h m used a c c u r a t e l y and e f f i c i e n t l y accounted f o r the e f f e c t of d i f f u s i v e transport w i t h i n the flame, we had the luxury of doing a r e l a t i v e l y simple, steady s t a t e experiment where we could s i g n a l average to o b t a i n adequate s e n s i t i v i t y f o r r a d i c a l s . Since transport was p r o p e r l y handled, we could focus e x c l u s i v e l y upon the k i n e t i c s . In t h i s sense the modeling was s i m i l a r to modeling a shock wave experiment, but here we had the opportunity to monitor r e a c t i v e intermediates. There are a host of h i g h temperature systems which should now be amenable to t h i s combined d i a g n o s t i c / m o d e l i n g approach. It should g i v e k i n e t i c i s t s an e x t r a weapon w i t h which to approach complex systems.
Literature Cited 1. Morley, C., Eighteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1981), p. 23, and references therein. 2. Lyon, R. Κ., U.S. Patent No. 3,900,554 (1975). 3. Dean, A. M.; Hardy, J. E.; Lyon, R. K.; Nineteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (182), p. 97. 4. Fujii, N.; Miyama, H.; Koshi, M.; Asaba, T.; Eighteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1981), p. 873, and references therein. 5. Fisher, C. J., Combust. Flame, 30, 143 (1977), and references therein. 6. Chou, M.S.; Dean, A. M.; Stern, D.; J. Chem. Phys., 76, 5334 (1982). 7. Chou, M. S.; Dean, Α. M.; Stern, D.; J. Chem. Phys., 78, 5962 (1983). 8. Dean, A. M.; Chou, M. S.; Stern, D.; Int. J. Chem. Kinetics (submitted). 9. Chase, M. W., Jr.; Curnutt, J. L.; Downey, J. R., Jr.; McDonald, R. Α.; Syverud, A. N.; Valenzuela, Ε. Α.; J. Phys. Chem. Ref. Data, 11. 695 (1982). 10. Piper, L. G.; J. Chem. Phys., 70, 3417 (1979). 11. Smooke, M. D., "Solution of Burner Stabilized Pre-Mixed Laminar Flames by Boundary Value Methods," Sandia National Laboratories Report 81-8040 (1982). 12. Menon, P.G.; Michel, K. W.; J. Phys. Chem., 71, 3280 (1967).
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 22, 2016 | http://pubs.acs.org Publication Date: April 16, 1983 | doi: 10.1021/bk-1983-0249.ch005
86
CHEMISTRY OF COMBUSTION PROCESSES
13. Emanuel, G., "Table of the Kassel Integral," Aerospace Report No. TR-0200(4240-20)-5 (1969). 14. Benson, S.W., Thermochemical Kinetics, 2nd Edition, Wiley, New York (1976). 15. Roose, T. R., Ph.D. thesis, Stanford University (1981). 16. Westley, F., "Table of Recommended Rate Constants for Chemical Reactions Occurring in Combustion," NSRDS-NSB 67 (1980). 17. Dean, A. M.; Steiner, D. C.; J. Chem. Phys., 66, 598 (1977). 18. Cattolica, R. J.; Dean, A. M.; Smooke, M. D.; "A HydrogenNitrous Oxide Flame Study," Sandia Report SAND 82-8776 (1982). 19. Baulch, D. L . ; Drysdale, D. D.; Home, D. G.; Evaluated Kinetic Data for High Temperature Reactions, Vol. 2, Butterworth, London (1973). 20. Cohen, N.; Westberg, K. R.; "Chemical Kinetic Data Sheets for High Temperature Chemical Reactions," Aerospace Report No. ATR-82(7888)-3. 21. Warnatz, J.; Eighteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1981), p. 369. RECEIVED November
10, 1983
Sloane; The Chemistry of Combustion Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1983.