The Chemistry of Solid Wood

serving process a n d resulting treated products w i l l be discussed. ... 3.0. Methylnaphthalene. 2.1. Acenaphthene. 9.0. Dimethylnaphthalene. 2.0 ...
0 downloads 0 Views 2MB Size
8 Interaction of Preservatives with Wood D A R R E L D. N I C H O L A S Mississippi State University, Forest Products Utilization Laboratory, Mississippi State, MS 39762

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

A L A N F. P R E S T O N Michigan Technological University, Institute of Wood Research, Houghton, MI 49931 Many of the chemicals used in wood-preservative formulations interact both physically and chemically with the wood substrate. The inorganic salts—principally copper and chromium—are the most chemically reactive components. These compounds undergo complex reactions to form organometallic and inorganic complexes that render them nonleachable. Organic compounds undergo a simple physical interaction with wood, which can be either confined to the gross structure or can involve microdistribution within the cell wall. The type of distribution can significantly affect the performance of preservatives.

^iX^ooD P R E S E R V A T I O N

is T O T A L L Y D E P E N D E N T o n the t r e a t m e n t of w o o d w i t h toxic chemicals. Because w o o d contains c h e m i c a l l y active func­ tional groups, reactions b e t w e e n the w o o d components a n d chemical p r e s e r v a t i v e s y s t e m s a r e p o s s i b l e i n s o m e cases. I n t h i s c h a p t e r t h e s e interactions w i l l be explored and their significance i n the wood-pre­ serving process a n d resulting treated products w i l l be discussed.

Major-Use Wood Preservatives Before proceeding w i t h potential interactions between

preser­

v a t i v e c h e m i c a l s a n d t h e w o o d s u b s t r a t e , it w i l l b e necessary to d e ­ scribe b r i e f l y the pertinent c h e m i c a l a n d physical properties of the c o m m e r c i a l w o o d p r e s e r v a t i v e s as w e l l as s o m e n e w b i o c i d e s t h a t may have future potential i n wood preservation. Pentachlorophenol. I n the p u r e state p e n t a c h l o r o p h e n o l (penta) 1 is a w h i t e , n e e d l e l i k e c r y s t a l l i n e s o l i d . I t is o n l y s l i g h t l y s o l u b l e i n w a t e r , 14 p p m at 2 0 ° C , b u t is r e a d i l y s o l u b l e i n a n u m b e r o f o r g a n i c s o l v e n t s (I). U n d e r a l k a l i n e c o n d i t i o n s , p e n t a c a n b e c o n 0065-2393/84/0207-0307/$06.00/0 © 1984 American Chemical Society In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

308

THE CHEMISTRY OF SOLID W O O D

v e r t e d t o a l k a l i m e t a l salts t h a t a r e r e a d i l y s o l u b l e i n w a t e r . B e c a u s e o f i t s c h l o r i n a t e d r i n g s t r u c t u r e , p u r e p e n t a is c o n s i d e r e d to b e i n e r t

OH

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

CI

1

c h e m i c a l l y a n d d o e s n o t d e c o m p o s e w h e n h e a t e d at t e m p e r a t u r e s u p t o i t s b o i l i n g p o i n t (I). U n l i k e m o s t p h e n o l s , p e n t a is n o t s u b j e c t to easy oxidative c o u p l i n g or e l e c t r o p h i l i c s u b s t i t u t i o n reactions. C o m ­ m e r c i a l l y a v a i l a b l e p e n t a is n o t p u r e a n d u s u a l l y c o n t a i n s a b o u t 8 3 8 4 % penta, 6% of the three isomeric tetrachlorophenols, 6% other c h l o r i n a t e d p h e n o l s , a n d the r e m a i n d e r consists of other c h l o r i n e compounds and inert materials. Creosote. T h e m a j o r p o r t i o n o f c r e o s o t e is d e r i v e d f r o m c o a l a n d is a c o m p l e x m i x t u r e o f a r o m a t i c h y d r o c a r b o n s w i t h c o n d e n s e d r i n g s y s t e m s . T h e r e m a i n i n g c o m p o n e n t s a r e tar acids, w h i c h a r e p h e n o l i c d e r i v a t i v e s o f t h e s e c o m p o u n d s , a n d tar bases, w h i c h a r e heterocyclic compounds containing nitrogen plus some neutral oxy­ g e n a t e d c o m p o u n d s . A t least 200 c h e m i c a l c o m p o u n d s h a v e b e e n identified i n coal-tar creosote, b u t m a n y of these are present i n small a m o u n t s . T h e c h e m i c a l c o m p o s i t i o n is v a r i a b l e , b u t s o m e i d e a o f a t y p i c a l c r e o s o t e is g i v e n i n T a b l e I (2). I n o r g a n i c S a l t s . A n u m b e r o f t h e m e t a l salts h a v e f u n g i c i d a l activity a n d are u s e d to f o r m u l a t e c o m m e r c i a l w o o d p r e s e r v a t i v e s . T h e p r i n c i p a l m e t a l salts u s e d a r e c o m p o u n d s o f a r s e n i c , c h r o m i u m , c o p p e r , a n d z i n c . I n o r d e r to p r o v i d e t h e d e s i r e d f u n g i c i d a l activity, leach resistance, a n d l o w corrosivity, c o m b i n a t i o n s of these c o m ­ pounds are used. A l l of the formulations discussed later are waterb o r n e solutions. O n l y a b r i e f d e s c r i p t i o n of these preservative sys­ tems w i l l be presented here; more detailed presentations can be f o u n d e l s e w h e r e (3). AMMONIACAL

COPPER ARSENATE

(ACA).

T h i s p r e s e r v a t i v e is

a

combination of copper carbonate, arsenic trioxide, and ammonia. T h e a m m o n i a s e r v e s as b o t h a s o l u b i l i z i n g a n d a n t i c o r r o s i o n a g e n t . C H R O M A T E D C O P P E R A R S E N A T E ( C C A ) . T h i s p r e s e r v a t i v e is f o r ­ m u l a t e d e i t h e r as a salt-type o r salt-free s y s t e m , w i t h t h e l a t t e r b e i n g

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

8.

N I C H O L A S A N D PRESTON

Interaction of Preservatives

309

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

T a b l e I. C h e m i c a l C o m p o s i t i o n o f a T y p i c a l U.S. Creosote Component

%

Naphthalene Methylnaphthalene Acenaphthene Dimethylnaphthalene Dibenzofuran Fluorene-related compounds Methylfluorenes Phenanthrene Anthracene Carbazole Methylphenanthrene Methylanthracenes Fluoranthene Pyrene Benzofluorene Chrysene

3.0 2.1 9.0 2.0 5.0 10.0 3.0 21.0 2.0 2.0 3.0 4.0 10.0 8.5 2.0 3.0

the m o s t f r e q u e n t l y u s e d . T h e salt-type is f o r m u l a t e d f r o m p o t a s s i u m d i c h r o m a t e , c o p p e r sulfate, a n d arsenic pentoxide, whereas t h e saltfree s y s t e m is f o r m u l a t e d f r o m c h r o m i c a c i d , c o p p e r o x i d e , a n d a r ­ senic acid. ACID COPPER CHROMATE ( A C C ) .

T h i s p r e s e r v a t i v e is f o r m u l a t e d

b y m i x i n g c o p p e r sulfate, s o d i u m d i c h r o m a t e , a n d c h r o m i c acid. CHROMATED ZINC CHLORIDE.

T h i s p r e s e r v a t i v e is f o r m u l a t e d b y

mixing sodium dichromate a n dzinc chloride.

Minor-Use Wood Preservatives There are several organometallic compounds used commercially on a l i m i t e d basis for w o o d p r e s e r v a t i o n . T h e c h e m i c a l a n d p h y s i c a l properties of these compounds are discussed here. C o p p e r Naphthenate. W h e n n a p h t h e n i c acids are n e u t r a l i z e d w i t h a l k a l i , t h e y r e a c t w i t h a n u m b e r o f m e t a l salts t o f o r m n a p h t h e n ates. B e c a u s e o f its f u n g i c i d a l p r o p e r t i e s , c o p p e r is n o r m a l l y t h e m e t a l u s e d . T h e n a p h t h e n i c a c i d s 2 a r e s t r u c t u r a l l y v a r i a b l e (3). T h e

a

(CH ) 2

(CH ) 3

3

COOH

2

2

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

310

T H E CHEMISTRY O F SOLID WOOD

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

c o p p e r salts a r e v i s c o u s , w a x y c o m p o u n d s a n d g e n e r a l l y a r e d i l u t e d w i t h petroleum solutions. C o p p e r 8-Quinolinolate (Copper-8). C o p p e r 8-quinolinolate 3 is d e r i v e d b y r e a c t i n g c o p p e r w i t h q u i n o l i n o l . T h i s c o m p o u n d is

f o r m u l a t e d i n b o t h w a t e r a n d h y d r o c a r b o n s o l v e n t s . B e c a u s e o f its p o o r s o l u b i l i t y , c o s o l v e n t s s u c h as n i c k e l 2 - e t h y l h e x a n o a t e a n d d o decylbenzenesulfonic a c i d are used i n c o m m e r c i a l formulations. Tributyltin Oxide. U n d e r ambient conditions, tributyltin oxide ( Τ Β Τ Ο ) 4 is a l i q u i d a n d is s o l u b l e i n m a n y o r g a n i c s o l v e n t s . S o l u t i o n s 2

2

T h e formation of this c o m p l e x provides a significant a m o u n t of water r e p e l l e n c y , w h i c h u n d o u b t e d l y c o n t r i b u t e s to t h e efficacy o f C C A treated w o o d against degradative elements. D i s t r i b u t i o n studies of c h r o m i u m w i t h i n the cell wall show h i g h c o n c e n t r a t i o n s i n t h e p r i m a r y w a l l a n d S j l a y e r (areas o f h i g h l i g n i n content), w h i c h again suggests p r e f e r e n t i a l association w i t h l i g n i n (50). W h e n c h r o m i u m is r e d u c e d f r o m t h e h e x a v a l e n t t o t h e t r i v a l e n t state i t r e a c t s r e a d i l y w i t h a r s e n i c t o f o r m C r A s 0 , w h i c h , i n t u r n , has t h e a b i l i t y t o c o m p l e x w i t h t h e l i g n i n a n d c e l l u l o s e . I n t r e a t e d w o o d , a p p r o x i m a t e l y 8 5 % of the arsenic reacts w i t h c h r o m i u m ; the r e m a i n i n g arsenic forms fairly soluble complexes w i t h lignin and cel­ l u l o s e (52). 4

A l t h o u g h the interaction of C C A w i t h w o o d results i n the desir-

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

8.

N I C H O L A S A N D PRESTON

Interaction of Preservatives

317

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

able c o n v e r s i o n o f t h e c h e m i c a l s f r o m a w a t e r - s o l u b l e m i x t u r e to a h i g h l y w a t e r - i n s o l u b l e c o m p l e x , it also has a n u n d e s i r a b l e effect, n a m e l y , a d e c r e a s e i n s t r e n g t h p r o p e r t i e s (see C h a p t e r 5). F o r e x ­ a m p l e , t h e toughness o f w o o d has b e e n s h o w n to b e r e d u c e d signif­ i c a n t l y a f t e r t r e a t m e n t a n d r e d r y i n g (41). I n t e r e s t i n g l y , t h e d e g r e e o f s t r e n g t h loss is d e p e n d e n t o n t h e C C A r e t e n t i o n , w i t h a h i g h e r loss b e i n g i n c u r r e d i n m a t e r i a l t r e a t e d t o h i g h e r r e t e n t i o n s . T h e e x a c t r e a s o n f o r t h i s s t r e n g t h loss i s u n k n o w n , b u t m a y b e a s s o c i a t e d w i t h t h e d e c r e a s e i n p H a s s o c i a t e d w i t h t h e first stage o f f i x a t i o n . T h i s c o n t e n t i o n is s u p p o r t e d b y t h e fact that a l o w e r p H a n d h i g h e r s t r e n g t h loss w a s o b t a i n e d at h i g h e r C C A r e t e n t i o n s (41). T h e c h e m i c a l r e a c t i o n s a n d m e c h a n i s m o f fixation o f t h e a m ­ m o n i a c a l p r e s e r v a t i v e s s u c h as A C A h a v e n o t b e e n s t u d i e d e x t e n ­ s i v e l y . T h e m a i n m e c h a n i s m o f fixation is b e l i e v e d t o b e t h e f o r m a t i o n of insoluble c o p p e r arsenate u p o n evaporation of the a m m o n i a . H o w ­ ever, t h e o v e r a l l m e c h a n i s m is u n d o u b t e d l y m o r e c o m p l e x b e c a u s e c u p r a m m o n i u m ions react b y i o n exchange w i t h functional groups, s u c h as c a r b o x y l , i n w o o d (52). I n a d d i t i o n , c o p p e r c o m p l e x e s c a n b e f o r m e d w i t h c e l l u l o s e (52). N e e d l e s s t o say, t h e fixation o f i n o r g a n i c c h e m i c a l s i n w o o d b y interaction w i t h t h e w o o d substrate a n d extractives is beneficial a n d greatly i m p r o v e s t h e d u r a b i l i t y of these preservatives. Contrarily, o t h e r i n t e r a c t i o n s p r o v i d e less d e s i r a b l e reactions. F o r e x a m p l e , u n d e r c e r t a i n c i r c u m s t a n c e s c o p p e r a n d z i n c c a n b e c o m e so t i g h t l y b o u n d t o t h e w o o d t h a t t h e i r e f f i c a c y as w o o d p r e s e r v a t i v e s is r e ­ d u c e d . T h i s r e s u l t occurs w h e n c o p p e r acetate a n d z i n c acetate are u s e d t o t r e a t w o o d (53). I n t h i s f o r m , t h e s e e l e m e n t s a r e salts o f acetic acid a n d they form ion-exchange bonds w i t h t h e w o o d c o m ­ ponents that a r e stable i n t h e w e a k a c i d e n v i r o n m e n t a n d cannot b e i o n i z e d r e a d i l y b y w a t e r . C o n v e r s e l y , t h i s r e d u c t i o n i n efficacy d o e s not o c c u r w h e n c o p p e r sulfate a n d z i n c c h l o r i d e are u s e d because t h e y a r e salts o f s t r o n g a c i d s a n d t h e p H o f t h e e n v i r o n m e n t p r e v e n t s insolubilization of these elements b y the wood. A n o t h e r d e t r i m e n t a l effect o f p r e s e r v a t i v e - w o o d i n t e r a c t i o n is the formation a n d b u i l d u p o f colloidal material i n the treating so­ l u t i o n s as i t is r e c y c l e d . T h i s p a r t i c u l a t e m a t t e r a r i s e s f r o m a n i n t e r ­ action between the preservative chemicals and w o o d components and often results i n a significant decrease i n t h e penetrability of t h e t r e a t i n g s o l u t i o n (54). Organic Preservatives. I n contrast to i n o r g a n i c salts, t h e o r ­ g a n i c p r e s e r v a t i v e s a r e m u c h less r e a c t i v e w i t h w o o d . T h i s is p a r t i c ­ ularly true for t h e standard p r e s e r v a t i v e — c r e o s o t e a n d pentachlo­ r o p h e n o l (penta). N e v e r t h e l e s s , s o m e o f t h e o t h e r m i n o r - u s e o r n e w preservatives are m o r e reactive a n d undergo various reactions w i t h

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

318

THE CHEMISTRY OF SOLID WOOD

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

t h e w o o d substrate. T h i s r e a c t i v i t y has a significant i n f l u e n c e o n t h e i r performance. T B T O u n d e r g o e s a c o n d e n s a t i o n r e a c t i o n w i t h c e l l u l o s e to f o r m a t r i b u t y l t i n a l k o x i d e (57). T h i s r e a c t i o n w i t h c e l l u l o s e c o u l d p r e v e n t metabolism b y i n h i b i t i n g the extracellular enzymes of the w o o d - d e ­ s t r o y i n g f u n g i . H o w e v e r , s u c h a r e a c t i o n is u n l i k e l y t o b e i n i t i a t e d i n s i t u b e c a u s e t h e a l k o x i d e is h i g h l y s u s c e p t i b l e t o h y d r o l y s i s (58). I f a r e a c t i o n b e t w e e n c e l l u l o s e a n d T B T O d o e s o c c u r , i t is f a r m o r e likely that it w o u l d take place v i a electron donation from, or h y d r o g e n b o n d i n g w i t h , t h e o x y g e n a t o m o f t h e c o m p o u n d (58). H o w ­ ever, such interactions are still speculative a n d m u s t be v e r i f i e d b y experimentation. O v e r a p e r i o d o f t i m e , t h e T B T O i n t r e a t e d w o o d is d e g r a d e d (59). T h i s d e g r a d a t i o n i n v o l v e s t h e c a r b o n - t i n b o n d s a n d r e s u l t s i n a p r o g r e s s i v e f o r m a t i o n o f d i b u t y l , m o n o b u t y l , a n d , i n s o m e cases, i n o r g a n i c t i n d e r i v a t i v e s , a l l o f w h i c h a r e far less t o x i c t o w o o d - d e c a y f u n g i . T h e e x a c t m e c h a n i s m f o r t h i s d e g r a d a t i o n is n o t k n o w n b u t a p p e a r s to i n v o l v e m o l e c u l a r o x y g e n b e c a u s e o r g a n i c coatings o f v a r ­ i o u s t y p e s r e t a r d t h e r e a c t i o n (59). B e c a u s e o f t h e s e d e t r i m e n t a l r e a c t i o n s , t h e f u t u r e o f T B T O as a c o m m e r c i a l w o o d p r e s e r v a t i v e is i n q u e s t i o n . W h e n a l k y l a m m o n i u m c o m p o u n d s a r e i n t h e salt f o r m , s u c h as a l k y l d i m e t h y l a m m o n i u m c h l o r i d e , they are readily soluble i n water. H o w e v e r , a f t e r t h e y a r e i m p r e g n a t e d i n t o w o o d , t h e y b e c o m e fixed a n d v e r y l i t t l e c a n b e l e a c h e d out w i t h water. It has b e e n h y p o t h e ­ s i z e d t h a t t h e fixation m e c h a n i s m is a n i o n - e x c h a n g e r e a c t i o n w i t h t h e c a r b o n y l g r o u p s i n w o o d . I f t h i s h y p o t h e s i s is c o r r e c t , t h e m a i n r e a c t i o n sites w o u l d b e i n t h e h e m i c e l l u l o s e a n d l i g n i n c o m p o n e n t s . H o w e v e r , i n r e c e n t u n p u b l i s h e d s t u d i e s at t h e I n s t i t u t e o f W o o d Research on the adsorption of a l k y l a m m o n i u m c o m p o u n d s and c o p p e r salt f o r m u l a t i o n s b y w o o d , i t has b e e n f o u n d t h a t a l k y l a m ­ m o n i u m c o m p o u n d s a n d c o p p e r f r o m a m i x e d s o l u t i o n c o m p e t e for the same ion-exchange sites, w i t h the a l k y l a m m o n i u m c o m p o u n d b e i n g p r e f e r e n t i a l l y a d s o r b e d . A s is t h e c a s e w i t h t h e f i x a t i o n o f C C A , t h e s i t e o f i o n e x c h a n g e is p r e s u m a b l y w i t h i n t h e l i g n i n s t r u c ­ t u r e (29, 30). I n a d d i t i o n t o i o n e x c h a n g e , t h e a l k y l a m m o n i u m c o m ­ p o u n d s a l s o w i l l b e fixed w i t h i n t h e w o o d b y i o n - p a i r s o r p t i o n (60) as is t h e c a s e w i t h t h e i r s o r p t i o n o n t o c o t t o n (61).

Literature

Cited

1. Benvenue, Α.; Beckman, H . Residue Rev. 1967, 19, 83-134. 2. Lorenz, L . F.; Gjovik, L . R. Ρroc.—Annu. Meet. Am. Wood-Preserv. Assoc. 1972, 68, 32-41. 3. Hartford, W. H . "Wood Deterioration and Its Prevention by Preservative

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

8.

4. 5. 6. 7. 8.

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.

NICHOLAS A N D PRESTON

Interaction of Preservatives

319

Treatments"; Nicholas, D. D . , E d . ; Vol. II; Syracuse Univ. Press: Syra­ cuse, NY, 1973; pp. 1-20. Richardson, Β. Α.; Cox, T. R. G. Tin Its Uses 1974, 102, 6-10. Butcher, J. Α.; Preston, A. F.; Hedley, M . E.; Cross, D. J. Proc. Ν. Z. Wood Preserv. Assoc. 1978, 17, 36-45. Nicholas, D. D . ; Preston, Α. F. Proc.—Annu. Meet. Am. Wood-Preserv. Assoc. 1980, 76, 13-21. Preston, A. F.; Nicholas, D . D. Wood Fiber 1981, 14(1), 37-42. Butcher, J. Α.; Hedley, M. E.; Preston, A. F.; Cross, D. J. "Alternative Chemicals for Protection of Wood: A New Zealand Perspective." Internat. Union of For. Res. Organiz. World Congress, Div., Proc., 1981, 311-13. Miller, G. Α.; Lovegrove, T. J. Coat. Technol. 1980, 52(661), 69-72. Hedley, M . E.; Preston, A. F.; Cross, D. J.; Butcher, J. A. Wood-Preserv. Int. Biodeterior. Bull. 1979, 15(1), 9-18. Greaves, H . ; Adams, N.; McCarthy, D. F. Holzforschung 1982, 36, 225-31. Preston, A. F.; McKaig, P. Α.; Walcheski, P. J. Proc.—Annu. Meet. Am. Wood-Preserv. Assoc. 1983, in press. Winebrenner, L . I. Plant Eng. 1982, 6, 58-59. Nicholas, D. D . ; Siau, J. F. 'Wood Deterioration and Its Prevention by Preservative Treatments"; Nicholas, D. D . , E d . ; Vol. II; Syracuse Univ. Press: Syracuse, NY, 1973; pp. 299-344. Siau, J. F. "Flow in Wood"; Syracuse Univ. Press: Syracuse, NY, 1972. Butcher, J. Α.; Greaves, H . Int. Res. Group Wood Preserv. 1982, Docu­ ment No. IRG/WP/3188. McQuire, A. J. Ν. Z. For. Serv. 1976, Reprint No. 1083. Graham, R. D . ; Corden, M . E. Spec. Rep.—Electr. Power Res. Inst. (Palo Alto, Calif.) 1977, Report No. E L - 3 6 6 . Graham, R. D . For. Prod. J. 1979, 29(9), 21-30. Botsa, Ε. E . Build. Ind. Dig. Hawaii February 1982, A-4. Black, J. Build. Ind. Dig. Hawaii March 1982, A-7. Hatcher, D . B. Proc.—Annu. Meet. Am. Wood-Preserv. Assoc. 1980, 76, 308-320. Dickenson, D . J . ; Sorkoh, Ν. Α. A. H . ; Levy, J. F. Rec. Ann. Conv. Br. Wood Preserv. Assoc. 1976, 25-40. Greaves, H . Holzforschung 1974, 28, 193-200. Greaves, H.; Nilsson, T. Holzforschung 1982, 36, 207-13. Butcher, J. A. Mater. Org. 1979, 14(3), 215-34. Henningson, B. Mater. Org. 1975, 3, 175-85. Hulme, Μ. Α.; Butcher, J. A. Mater. Org. 1977, 12, 223-34. Nilsson, T. Int. Res. Group Wood Preserv. 1982, Document No. IRG/WP/ 1167. Butcher, J. Α.; Nilsson, T. Int. Res. Group Wood Preserv. 1982, Document No. IRG/WP/1151. Preston, A. F.; McKaig, P. A. For. Prod. J. 1983, 33, in press. Dahlgren, S. E . Rec. Ann. Conv. Br. Wood Preserv. Assoc. 1972, 109-28. Dahlgren, S. E. J. Inst. Wood Sci. 1973, 6(4), 28-30. Dahlgren, S. E . Holzforschung 1974, 28(2), 58-61. Dahlgren, S. E . Holzforschung 1975, 29(3), 84-95. Dahlgren, S. E . Int. Res. Group Wood Preserv. 1976, Document No. IRG/ WP/358. Dahlgren, S. E.; Hartford, W. H . Holzforschung 1972, 26(2), 62-69. Dahlgren, S. E.; Hartford, W. H . Holzforschung 1972, 26(3), 105-13. Dahlgren, S. E.; Hartford, W. H . Holzforschung 1972, 26(4), 142-49. Pizzi, A. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 739-64. Winandy, J. E.; Bendtsen, Β. Α.; Boone, R. S. For. Prod. J. 1983, 33(6), 53-58. Bayley, C. H . ; Rose, G. R. F. Nature (London) 1960, 185(4709), 313-14. Belford, D . S.; Meyers, Α.; Preston, R. D. Biochim. Biophys. Acta 1959, 34, 47-58.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

320 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.

Downloaded by UNIV LAVAL on September 27, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch008

54. 55. 56. 57.

58. 59. 60. 61.

T H E CHEMISTRY O F SOLID W O O D

Belford, D . S.; Cook, C. D. Wood 1960, 25(8), 330-32. Bland, D . E . Nature (London) 1963, 200(4903), 267. Pizzi, A. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 707-24. Panshin, A. J.; deZeeuw, C. "The Textbook of Wood Technology," 4th ed.; McGraw-Hill: New York, 1980; 705 pp. Belford, D . S.; Preston, R. D . ; Cook, C . D . ; Nevard, Ε. H . Nature (London) 1957, 180(4595), 1081-83. Pizzi, A. Holzforschung und Holzrerwertung 1979, 31(6), 128-30. Yata, S.; Mukudai, J.; Kajita, H . Mokuzai Gakkaishi 1982, 28(1), 10-16. Pizzi, A. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 725-38. Hulme, M . A. Rec. Ann. Conv. Br. Wood Preserv. Assoc. 1979, 38-50. Goldstein, I. S.; Dreher, W. Α.; Jeroski, Ε. B. For. Prod. J. 1961, 11(3), 128-30. Nicholas, D. D . For. Prod. J. 1972, 22(5), 31-36. Arsenault, R. D . "Wood Deterioration and Its Prevention by Preservative Treatments"; Nicholas, D . D . , E d . ; Vol. II.; Syracuse Univ. Press: New York, 1973; pp. 121-278. Resch, H . ; Arganbright, D . G. For. Prod. J. 1971 21(1), 38-43. Richardson, B. A. "Action Mechanism of Some Organometallic Preser­ vatives. In Biodeterioration of Materials, Microbiological and Allied Aspects"; Walters, A. H . ; Elphick, J. J., Eds.; Elsevier: New York, 1971, pp. 498-505. Beaumont, H . G . ; MacKay, C. A. Int. Pest Control 1974, 16(3), 8-11. Henshaw, B. G . ; Laidlaw, R. Α.; Orsler, R. J.; Carey, J. K.; Savory, J. G. Rec. Ann. Conv. Br. Wood Preserv. Assoc. 1978, 19-29. Rosen, M . J. J. Am. Oil Chem. Soc. 1975, 52, 431-35. Bender, M . ; Carmello, L . J. Colloid Interface Sci. 1982, 861(1), 266-73.

RECEIVED

for review May 19, 1983.

ACCEPTED

July 7, 1983.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.