4124 1
9.61
8 .60
0.5
1.0
Mole Fraction Wafer
Figure 4. Variation of a, with mole fraction of water added to acetonitrile. Points represent experimental values and the heights
of the lines indicate the 95% confidence level of the measurements. The solid curve indicates the calculated solvent dependence of the oxygen coupling constants (see text).
oxygen and carbon atoms, a statement which is formulated as eq 10. We have chosen to evaluate the two constants in eq 10 using the calculated spin densities and observed oxygen coupling constants for PBSQ in water and acetonitrile. The values are Qoco = -40.41 gauss and Qco0 = -16.69 gauss.j2 Having fixed the extreme conditions of pure water and pure acetonitrile, values of a. were calculated for intermediate conditions and are given in Table 111. A graphic comparison of calculated and observed oxygen17 coupling constants is presented in Figure 4. It is far too early to assess the validity of eq 10 as a description of oxygen-1 7 coupling constants. There (52) While the individual spin densities are substantially dependent on the particular choice of Qc", the values of Qoco and Qcoo only change to -44.56 and - 15.99 gauss when Qc" is changed to - 2 6
gauss.
is a t least a strong indication that a. is responsive to changes of spin density on the carbonyl carbon atom. Exchange Reaction. As indicated previously, the rate constant for the exchange of the oxygen atoms in PBSQ with the water in a n acetonitrile solution at 25', 0.19 hr-l, is significantly larger than the constant for the exchange of water with neutral p-benzoquinone in the same medium. Kinetic data for the exchange of p-benzoquinone with pure water are limited to the reporth3that p-benzoquinone undergoes 5.8 exchange in 5 rnin at 20". Total exchange in 10 days has also been reported.54 The rate constant for exchange of the oxygen atoms in hydroquinone with waterj5 a t 25' is 1.9 X hr-l. I n view of the rapid exchange through the anion radical in acetonitrile we are surprised by the report54 that the addition of p-benzoquinone does not influence the speed of exchange of hydroquinone in water. The occurrence of the exchange reaction suggests that a. in various semiquinones may be accessible without the necessity of synthesizing gross quantities of the corresponding quinone. Thus reduction of quinones in aprotic solvents containing small quantities of "0-enriched water should permit the occurrence of the "back-exchange'' reaction with the anion and eventual observation of ao. Acknowledgments. The authors gratefully acknowledge support from the National Science Foundation through Grant GP-4906 as well as through Grant GP-1687 for partial support for purchase of the esr spectrometer. We are also indebted to Professor F. W. McLafferty for providing the mass spectrometric analysis of the enriched quinone and to Miss Marion Apter for translating a Russian paper. (53) E. Adler, I. Falkehag, and B. Smith, Acta Chem. Scand., 16, 529 (1962). (54) V . V. Fesenko and I. P. Gragerov, Dokl. Akad. Nuuk SSSR, 101 695 (1955). ( 5 5 ) This value Mas estimated from the data in ref 54.
The Crystal and Molecular Structure of Disodium ,@GlycerolphosphatePentahydrate (Na,PO,C,H, ( OH) 5H,O) Mazhar U1-Haque and C. N. Caughlan Contribution f r o m the Department of Chemistry, Montana State Unioersity, Bozeman, Montana. Receiued M a y 5,1966 Abstract: The structure of disodium p-glycerolphosphate has been determined by X-ray diffraction study. The crystals are monoclinic, a = 7.943, b = 12.104, c = 6.167 A, p = 107", space group P21 with one molecule in the asymmetric unit. The first Fourier synthesis was based on phosphorus phases; the rest of the structure emerged gradually from four more Fouriers. The phosphorus-oxygen distances are normal and are 1.62, 1.53, 1.52, and 1.46 A. Each of the phosphate oxygens is involved in hydrogen bonding or coordinated to sodium. Both sodium atoms are six coordinated. A strong network of hydrogen bonding and sodium coordination holds the crystal
together. lycerolphosphates are involved in the biosynthesis and degradation of phospholipids, the synthesis of fats from fatty acids, the exchange of hydrogen in biological systems, as well as in a variety of other
G
biologically important processes. Since most of these functions involve hydrolysis of the P-0-C bond at one step or another, precise structural information is significant in understanding the processes. Thus, in
Journal of the American Chemical Society I 88:18 / September 20, 1966
4125 Table I. Atomic Parameters, Temperature Factors, and Their Standard Deviations Atom NaU) Na(2) P(3) o(4)
o(5)
O(6) o(7) OW o(9) O(10) O(11) O(12) o(13) o(14) ~(15) C(16) C(17)
xla
dxla)
Ylb
4ylb)
zlc
dzic)
B
(uB)
0,2008 0.8447 0.1674 0.2284 -0.0119 0.1878 0.2795 0.7174 0.4899 0.1212 0.0637 0.2565 0.5821 0.9201 0.5135 0,4588 0.5433
0.0007 0.0007 0.0004 0.0012 0.0010 0.0012 0.0012 0.0016 0.0012 0,0014 0.0013 0.0013 0.0015 0.0012 0.0021 0.0017 0.0021
0.2893 0,2984
0.0006 0.0006
0.7782 0.3919 0,0026 -0.0409 0.8608 0.2535 0.9173 0.2432 0.8071 0.3932 0.5789 0.1399 0.4537 0.7796 0,7908 0.9651 0.2023
0.0012 0.0012 0.0007 0.0021 0.0019 0.0019 0.0019 0,0025 0.0019 0.0022 0.0021 0.0021 0,0024 0.0020 0.0035 0.0030 0 0036
0.95 0.97 0.08 0.63 0.23 0.53 0.47 1.93 0.63 1.35 1.02 1.01 1.61 0.98 1.43 0.70 1.43
0.11 0.11 0.07 0.17 0.16 0.18 0.17 0.24 0.17 0.20 0.19 0.19 0.22 0.19 0.28 0.23 0.28
...
O.oo00 -0.1142 0.0262 0.0215 0.0926 0.1347 0 2656 0.2296 0.4554 0.3803 0.3839 0.2491 0.1483 0.0819 0.1186
0.0009 0.0008 0.0009 0,0008 0.0011 0.0009 0.0010 0.0009 0.0009 0.0011 0.0009 0.0015 0.0012 0.0014
~
a program to study the structure of organic phosphates in the hope of relating these structures to rates of hydrolysis, we have been interested in glycerolphosphates. The only other glycerolphosphate which has been studied is L-a-glycerolphosphorylcholinecadmium chloride trihydrate, the structure of which has been determined by Sundralingam and Jensen. l
Experimental Section Crystals of disodium B-glycerolphosphate (E. H. Sargent and Co.) were obtained by slow recrystallization from water. Preliminary investigation indicated that these were pentahydrate, and thus, in order to prevent possible loss of water during the collection of the X-ray data, a small crystal of uniform cross section 0.2 mm in diameter and 1.0 mm long was sealed in a capillary tube and used for the X-ray data. X-Ray diffraction photographs showed this to be monoclinic with lattice dimensions a = 7.943, b = 12.104, c = 6.167 A, p = 107", Z = 2. Systematic extinctions existed for the OkO zone when k # 2rr; thus the space group was either P21 or P2,/m and the final structure proved to be P21. For Na2P04C3Ha(OH)25 H z 0 the total number of electrons in the unit cell is F(000) = 320; the linear absorption coefficient for Cu K a radiation is 9 = 23 crn-'. Multiple-film Weissenberg photographs were taken with Cu K a radiation for I = 0 t o 4; 830 intensities were measured by scanning with a densitometer reflections that had been integrated in a direction perpendicular to the direction of scanning, and measuring the areas under the densitometer tracings with a planimeter. N o absorption corrections were applied, since the crystal was uniform in cross section and small enough that the absorption corrections were assumed negligible. Lorentz and polarization corrections were applied using Montana State University's data reduction program,* which also gives a Wilson plot for preliminary scale and temperature factors. e
Structure Determination The phosphorus positions were found from a sharpened Patterson, using Fs2modified according to the function
The temperature factor B was set at zero in as much as experience has shown that use of the temperature factor found from the Wilson plot in this sharpening function produces a much oversharpened Patterson map. The phosphorus position found from the Harker section was x / a = 0.1675, y / b = 0.0000, z/c = 0.0000. Phases (I) M. Sundaralingam and L. H. Jensen, Science, 1035 (1965). (2) C. T.Li and C. N. Caughlan, Data Reduction Program, Montana
State University, 1964.
from the partial structure factors calculated from this position were used for the first Fourier map. Although a pseudo-plane of symmetry existed in this map and many peaks existed which seemingly were extraneous, it was possible to choose four oxygens making some chemical sense. The Fourier, the Patterson, and a minimum function used for checking indicated the correctness of these, and a second Fourier was calculated from phases determined from these five atoms. This showed two more oxygens and two carbons of the glycerol group. These nine atoms were used to determine the phases for the next Fourier, which revealed all the atoms. Up to this point, it was not possible to distinguish between sodium and oxygen peaks in the Fourier map. The next two Fouriers showed the sodium atoms as distinguished from oxygens and gave reasonable atomic positions. At this stage, the R factor was 0.32, and the refinement of the structure was started. The first three cycles of least-squares refinement using Busing, Levy, and Martin's3 least-squares program (ORNL-TM-305) refined only positional parameters and reduced the R to 0.22. Six more cycles, using the Hughes weighting scheme and refining both positional parameters and isotropic temperature factors, reduced the R to 0.097. The final positions with standard deviations are given in Table 1. The final set of structure factors based on these positions are given in Table 11. The interatomic distances and angles and their standard deviations are shown in Tables 111 and IV, and Figure 1 shows the [OOl] projection of the structure with the interatomic distances.
Discussion The phosphate group does not appear significantly different from other organic phosphates for which bond distance of structures are k n o ~ n .The ~ ~ P-OC ~ 1.62 A is in good agreement with other P-0 ester bonds, and the other three bonds of 1.52, 1.53, and 1.46 A are quite characteristic of monosubstituted organic phosphate^.^ The 1.46-A bond indicates a (3) W. R. Busing, K. D. Martin, and H. A. Levy, Least-Squares Program, U. s. Atomic Energy Commission Publication No. ORNL-TM305,1962. (4) C.-T. Li and C. N. Caughlan, Acta Cryst., 19, 637 (1965). (5) M. Sundralingam and L. H. Jensen, J . Mol. Biol., 13, 930 (1965).
U1-Haque, Caughlan
/ Disodium P-Glycero[phosphate Pentahydrate
4126 Table IT. Observed and Calculated Structure Factors" O
2 4
65 611
b b
208 519 217 89
LO I2 14 0
I 2 3 k
5 6
7 0
9
IO 11 13
K
243 1 x
270
kO8 305
326
322 70Y 328 185 82
178 32U 117 1 117 11 134 127 79 b5 175 1bO
108 b5
46
189 161 2b5 112
2Ul 155 264 IU6
104
I5
103 2 K 192 172 2bO 171 288 345 133 191 120 262 313 127 90 116 l%ll 112
4
5 b 7 8
9 10
11 12 13 lk 15
3
1 2
x
113 110 0 190 192 237 154 2k9 363 1k2 173 1U5 2kL 322 115 77 116 136 117 0 210
3
222 %b9 328
272 301
k
438
431,
5 6 7
76 233 125 241 111
59 22b 119 227 104 2b4 111
6 9
10
11 12 13 Ik 0
1 2
3 4 5 b
7 8 9 0 1 2 4
262 109 103
50 199 + K O 274 262 403 644 172 153 336 368 328 320 207 196 121 103 247 236 142 1'2 125 116 109 104 130 112 103 112 bl 79
5
4 5 6
79 211 317 71 227 332 244
7
163
8
200 220 208 43
0 1 2
3
9 0 2 3 1 2 3 4
5 6
7 8 0 1 2 3 1 2 3 4
5 b
I 3 3
>
0 73 271 3k9 62 213 355 275 14b 209 229 225 85
51 x
1bl 59 132 53 bk 395 419 138 140 293 311 270 29C 172 170 155 177 C8 117 116 126 7 1: 0 15 71 122 11% 173 172 lb7 172 122 99 128 138 5'7 110 131 132 82 64 75 57 1k9 170 b K O 68
132
i
105
1
98
9,; Lb2 165
Ill 310 a9 182
71 79 87 53
120 57
136
168
86 lk3 109 b7
Y
10 11 12 13 14 2 3 k 5 b
1 3 b
7
268 U 29 9 2611 10 21% 1 1 156 12 1*9 13 203 I 1 6 2 33 lb7 106 29b 123 32 191 357 4ti 225 103 310
98 350 51 319 231 2 0( 2 136 92 270 263 31b 258 46 259 27 231 68
309 1 120 301 0 209 47 9 28 33, 294 L 49
113 29 198 35
270 i17
35 175 140
146 31 177 325 86
27 90 56 91 95
1,Y 95 304
99 303
102 148 b9
0
si0
Lbb
7
144
215 173
86
4YO
b
229
03
56
O K 1 343 li7 215 213
lb9
0
160 77 120
L
('
K
54 6
0
73
75 185
61
IO?
112 l6R
lL5 Y8 9 1 0 154 118
0
2k6
I4
0 1 2 3
316 5, 241 32 287 180 71
254 369 307 712 341 197
111 176 10b IO1
0
57 C21 170 52b 282 03 242
vu
dd
27.1 200 l!,, L1, '27 235 103 13 83 67 I K l 82 YO 156 362 290 231 139 154 241 2'213 ii1 :I6 211 178 20b 197 210 185 lti8 139 157 82 103 86 116 1 x 1 334 263 436 439 662 7'4 163 179 337 333 153 196 120 120 216 210 110 199 91
15C
71 68 2 6 1 409 439 381 3Y1 249 256 34b 322 2b3 27b 273 298 280 3u0 223 244 3bb 319 343 369 Ll't 136 133 99 117 109 76 67 2 K l 109 103 400 k15 541 586 370 365 400 2'13 277 197 156 181 19k 176 313 319 129 119 117 78 97 91
3
K
266 222 145 9k 201 235 91
231 220 1G2 99 199 241 104 io0 212 282 71 78 199 92 155
185
200 265 51
71 18lt 86
122
3
1
K
l
148
lbb
559 L31 177 275 235 139 137 148 148 125 103 92
578 396 in2 257 >I5 113 174
A
215 204 339 227 227 162 288
150 161
iia 91 102 K
l
21' 206 352 23L 2L7 163 319
159 b1 1k7 K I 200 188 218 2114 203 203 313 337 1"L 124 1b5 132 133 150 174 190 116 120 172 173 ion 152 121 ILL K 1 5 97 llti ?15 219 197 185 172 1 9, 50 91 343 326 103 llb 110 Lob 117 11' 129 146 5 K I
345 186 260
118
181
221 272 199 20L 247 1U1 163 120
165
357 7a 0 I51 24 163 78 144 79 150
11 12 13
0
1
154 68 136
LL?
175 188
2+7 12,
1'3 131
110 6 K
b9 99 154 179 256 135 102 105 lib 86 72
"6 Y5
153 202 271 134 bI 80
113 59 b
6
117 1
171 3Y8
90 1
185 425 Ilb 156 158
12b 181 155 189 182 57 5 ', 226 215 12b 117 103 117 90 61 K L 7 86 97 247 274 110 83 196 235 ao 70 103 102 226 212 107 109 7 1 K 298 298 $60 420 179 207 203 170 179 175 16 70 176 1bO 68 99 h0
8
135 114 117 6
11; 153 126 129 K 1
x
188 145 194 165 65 170 63 9 K
82 75 73 68
ins
119 190 1k9 74 153
76 1 71 80
62 bk
9 K 1 134 136 76 71 63 5n $9 60 9u l"1 1 10 K bl! 61 c L9 K 5 '2I 186
12 13
17U Yl
177
1
1 * 236
126 170 73
2
317
3 L
358
186 18
5
73
6
142 130 125 2c2 275 1u9 97
179 1b7 323 175 19b 71 145
7 8 5
48 2 26 5 365
429 137
134
80 156
124 141
270 23 2kb
3 L 6
2>2 321 Y9 IU7 1 K 2 Lbk 2Y* lab 137 14G 110 3bU 3'1 6
306
7
lib
8
8
329 295 246 75 276
9 11 12
1,u 33,
I 312 282 293 L 102 2 85
317 32b 270 28 118 281 224 11 218 272 26 73 170 0 99 38 29
11 13 1+
2
1
izn
2 3
73 127 122
2 5 b
7 8
9 11 12 13 0
2 3 5 b
7 8 9
10 12 13
0 1
2
11
3
257 71 350
$
5 b
7 228 26 333 354
24 345
a
9 10 12 13 14
242
173 266 208 79 199 3 44 339 329 2k8 139 265 159
0
2 3 L 5 6
7
ico
I2 0 L
5 6
9 10
295
0
11c
1 2
M
li
72 2 177 125 42 134
I16 d"
153 273 67 lbk llb 111 K 2 'I 7
136
85
261 231 55'. 308 175 PUP 253
261 222 e17 304 Id0
1*4 141
122
2911 255 164
127 1j n 3 h 2 130 135 269 296 300 312 241 2L6 130 116 1kL 123 107 116 95 9k 149 149 120 139 123 102 3 K 2 170 188 182 161 157 169 202 200 150 138 233 220 328 292 119 76 235 24b 158 123 165 123 163 203 119 112 100 131 & K 2 220 247 91 LO 112 127 170 170 77 76
34n
5 313 17" 34 168
316 347 125
317 307 265 65 352 llk 212 90 28 1 718
303 218 91 173 69 115 53 194 83 36 262 26 3 177 356
348
IO1 102 274 22k 103 321
90 97 17 220 90 179 139 332 100 111 51 270 231 190 281 378 323 237 173 127 295 205 124 Y
104
iao 205 22 109 249
142
136
113
bb 15b 2U3 51 2L2
300
100 191 120 '13 L K 2 177 202 176 171 13+ 131 llb lU3 I94 >d3 L3L 213 127 11" 1*7 Ii 4 197 201 11Y 125 5 $ 2 95 11C 113 108 72 b5 260 260 h8 79 251 265 11Y 100
317
180 31 7
'44
250
4, 76
I06
l"1
35*
LLb 99 2 b3 4.!
163
3,L
95
9" 263 19
112 117
127 117
136
131
36
47 81 239 3 4c 19
153 192
226 261 88 201
232
141 125 113 2
152
7
64
86
a
1 90 2UO 352 117
10"
145 249
'i
10 11
"Y
136 164
3 ,
ILL 319
I32 2 K
0
4 5 b 9 10
d0
199 278
LL5 1'5
l i V
7.16
260 296 220 332 9"
27 9 294 25 1 13
115 315 ?3d 5'.
195
Y l
1v3
b4 1US lbl 1Y4 593 361 2,L 271 217 1YY LuY 169 280 309 102 6U 175 165 130 I20 iiy 112 13 94 113 b K 2 0 94 5b I 256 266 2 Y5 77 3 ilk 141 126 4 1k5 5 1ub YL in7 b 1ii9 137 7 146 8 no 7u 9 67 u3 - 6 K 2 0 73 84 1 175 169 252 2 250 3 120 115 k 2li 214 5 127 YO 7 Lk* 1k7 23b ti 241 Y l(i5 bk 10 117 104 'I K 2 0 145 lk9 1 106 112 4 122 113 5 170 167 7 l i 1b7
116
1U3
259 135 112
6
356
7 8 9 11 12 13
27"
I32 132 83 134
' 1 3 6
K
.5' 181 162 307 153 160 172 2b+ 14b
2 3
182 54
31n 171
180 2ti1 344
33" 6 a5 2ti~
350 26 ai 0
169 5'1 22-1 281 313 2YU
326 39 59
0
51 46 4r
31
bb
K
119 376 bl 119
238 119 911 17n 273 55 183 93 126 K 3
174 2bk 67 11 193 12 lk6 13 104 - 2 1 81 hi 2 12b 134 3 253 263 4 228 247 5 2L2 252 201 6 202 7 118 129 8 220 21k 9 116 118 10 118 108 126 I1 118 12 76 61 13 lU9 120 14 dL 57 3 K 3 0 79 59 1 Hti 1Ul 2 302 314 3 206 1'21 C 155 15L 234 221 5 7 179 2U8 8 146 Irb 104 9 81 10 218 2L5 12 119 129 - 3 h 3 0 3.1 410 2 188 2U9 3 13L 1)) '1 i7b iuv 5 93 111 6 195 202 7 156 lb3 8 137 IUb 9 lb2 14'9 10 153 115 lib 139 I1 I2 1"4 71 4
k
147 173
1 3
48
4
'i3
ldl
5 0 346 214 76 316
6
128 li2
210
340 16:
220 258 i2d
7
56
*
214
n
739 275 134
"8 39 210
ici7
>iZ 110 I.'
114 37
li' 11
173 2b2 25 189 1kb 19k 18 1BU
99
9 8
lti0
U
256
1
181
95
7
137 - Y
90 5 190
96 202 19
325 115 in1 20b inb 180 127 257 iai 7Y 93 ?I5 209 173 101 ?7)
192 232 35. 107 ?31 23, rb3
22, 267
226
83
61
61
d
160 15b 62
11 12 13
99 71 25, 77
1MC 181
0 1 2 3
67 lbl 91 1bL 91 b5 5 K 3 7A 513 153 140 77 46 135 150 155 139 329 33, 155 170 102 lB5 Y l
14L
0
177 316 1 95 21 270 75 293 18 2
3 31)
222 4 263 352 327 310 18 320 213
10
bb
- 5 K 3 1 102 113 2 8d io 3 1'33 11-7 4 '35 i6 i 1116 131 6 2U4 2J2 7 119 lbi d 1.2 17u 115 Y llJ I" 7Y 7" I1 207 15U 6 K 3 0 130 113 I Y l '6 2 144 lbi 3 123 72 L l i b i>L 3 132 Iii 6 151 14" 7 15: 192 L 167 iLb - 6
0 1 2
8:
7 2d1
10d IS., 60
c 235 13 236 346 3:o
311 3">
245
It(, 135 >5
20 306 '-6
52 b
17 136
270 31d
iYu 2ai 330 '03
3, 15;
3
129
U
146
l i d
185
1UL
146
j3l
3
116
lib
347
L>4 29:
i
2"b
2 0
*"L 133
lo> 2bi it7
7
132
406
Id0 76
bb 3>+ 312 166
ii
d2 d5
232 31't
9
i
I52
62
la5 25
4>6
119
144
b
Within each group the columns reading from left to right contain the values of K, lOF,, lOF,, and
large amount of double-bond character, since a phosphorus-oxygen double bond is usually considered 1.43 A.6 The structure of the phosphate group is shown in Figure 2 with bond angles and distances. The C-0 and the C-C bonds are somewhat shorter than generally accepted distances for single bonds of this type. An average single C-0 bond is given as 1.43 A.7 In sodium P-glycerolphosphatc the C-0 bond seems to depend upon the number of hydro( 6 ) D. W. J. Cruickshank, J . Chenz. SOC.,5486 (1961). (7) "International Tables for X-Ray Crystallography," Vol. 111, The Kynoch Press, Birmingham, England, 1962, p 276.
Journal of the American Chemical Society
1"L 7'1 bl 49 -1U K
YO
UL
242 2>2 233 2bk 13: 26,
YY
76 L0 K
lk5
200 176
6
7
161
177
8
2L9 153 1")
2+4 147
5 4
5
"I Y
1bR
170 103 1k0 147
.9 Lb
2 )
2
155 14b I n ' ,
0
'li 1bL
27 164
135
1U4
82
1 2 3
71
b6 iii kd
69
42
'Y 2
i
1 2 3
4"
3
137 3 h 65 163 1u3
1 3
5 6
7 d
9 0 1
1'8 dC
170
113 21'
154 20 202
32 1>Y
.
3 4 5 6
7 8 9 I0 11 12 0
I 2 3 4
5 6
K
147
4 159
57 266 139 407 157 203 111
46
264 126 35b 170 232 11Y 1119 179 128 93
l';% 113 v7 63 1b5 212 4 K G Y5 105 185 217 2a8 211d 129 124 116 1b5 82 71 lh4 l6d
0 1 2 3
- 4 149 301 122 341
4
1bb
5
175
K
YO 286 218
PIS 197 98
1Y5 191 219 172 219 319 207 270 344
90 349 l6il 2U
236
6
5,
7
31.r 157 15', 1," 146 > I:
d
lU I1 12
4
1$7 l b 0 ' I L ~ io7 11,1 1ua 3>1 59 1 6 3 232 136 1L1 114 253 326 171 l e 5 199 11'1 1k0 1Ld
0
lik
1 2
163 yn
'id
14
8
151
1 3
hi - 5 178
L8i
46
53 142 237 270 27L 324
4 YO
177
177 255 95 164 143 302 55
IC3 2 90 254 262 220 b 30 313 326 76 194 287 351 42 205 180 150 la5 a7 200 204 119 158 337 167 210 159 342
3'5 190 34d 110 200 226 344 210 la/ 266
29" 25li 233
1 ii
la3 91 151 YL 203
1 2
4 162 1b2
L
121 lS1 199 225 192 194 210 2co i 221 259 5 45 26 6 230 239 7 274 300 R I24 116 9 98 80 .U 112 109 .I 1'2 144 ,2 59 71 - 2 K 4 1 129 !3l 2 144 131 3 331 4CIl 4 lq5 174 5 174 179 b 177 lr7 7 212 2CJ 6 i3Y 2:: 4 169 13: 0 133 155 I >,.I 217 0
1
l7i 270 239 34 11 273
4
i:
1'1 125 1 K 4 3 2oU 317 + 72 70 5 133 117 6 142 '156 7 272 2r5 8 172 1.0 9 16d 156 1 2"d 197 2 174 165 - 1 K L u 17 i b i i iau 207 2 '17 103 3 153 1119 L 2Cj 2U3 5 80 67 b 231 204 7 383 4U3 5 91 7d Y 137 113 U
YO
163
A
2U5 123
- 3 0
141
77
170 114 11.7 147 7U 132 150
1 2
inu
61
70 3 55 71 5'1
6U
U
0
286
121
I(
58
2
153 214 161 117 82 127 3 53
1UY
-10
IVY
d Y
197 97 lY7 153
0 1
2
243
5
5
160 317
7
4
1 2 3
146
6
i
o
I 2
125
279 7 21 267 342 2 229 294 41
327 359
6
135
118 l i b
112 Liii 1+1 114 - 8 K 3
3GL 252 251 13
1
182 299 21 23) 264 215 3 24 1Y
3*6
3
270 345
5 47 7
3 4 5
214 112 220 329 171
188 298
V6 5I
330 125 320 227 26;
1 2 3 '1 I
K
- 4
2
125
3 224 Y7 1iL 299 311
341 37
-'I K 3 104 '17 2.1') 3Uk 135 129 3 167 1115 4 151 149 5 141 113 6 172 170 7 IbY 16,. 0 1
3
0
158
11.1 176 109 2iS 151 77 71
n3
si
82
iab
220 137
180
66
156 343
91 2
0 1
63
b
223
5
7 il 9 10
69
8
1
6
139
9 10 11 12 13
5
k0
2bO 70 83 273 275
270 338 9* 294 24 255
b4
2b5 295 136 83 8 K 2 0 99 130 1 23 39 2 73 87 154 3 119 110 5 94 - 8 K 2 124 0 134 1 170 171 2 LYL 190 4 127 135 5 102 115 7 108 192 8 it7 ii? 9 144 150 63 b3 10 - 9 K 2 136 2 125 3 50 69 5 b4 86 6 67 78 - 1 0 K 2 194 0 luY 1 63 79 2 53 72 O K 3 C 100 110 1 i c i 550 2 207 232 4 14Y i3L 6 163 lb5 7 176 171 8 146 1L5 Y 227 258 1Yi 10 207 65 11 Y7 12 l i d ldh 141 13 IUU 1 K 3 0 274 299 1 327 370 121 144 2 3 165 l Y 1 5 69 19 7 119 112 4
5 10
313
2
254 105
233 105 L12 233 247
0
111 251 347 321 13 2va 3u*
K
-.I
0 I 2 3
105 117
r ( 2
5
2 3 k 5 6 7 8 9 10 11 12
10 la3 4
4 5 6 7 8 9 10 12
x
lld Y7 61 I( +8
1
114 115 54 113
126 157 Z'J5 32 296 66
307 4b
272 137
4
37 153 148 4 88 146 6 - 6 I: 4 0 178 106 1 75 71 224 2 202 3 41 44 4 l i b i29 5 1Ll lr9 6 148 Yb 7 59 b4 U 147 118 9 77 bl 10 ill 13: 11 60 72 - 7 K 4 2 90 YO 0
2
11
4
277 153 74 58 176 63 112 74 41
17b 115 77 232 til
6
k6 i L b
26d
0
144 276 316 19
270 304 15 114 Zdl 11 2.4 315 327 331 301 47
7
270 357 259 295 317 23d
M
3C(>
3
i4U
4 5
112 13b
27'C 115 152
d5 6C 13+ 115 115 12% - 3 K 4 ).ill 0 237 1 36 42 2 71 bil 132 3 li9 4 219 212 5 132 130 7 157 153 a c5 19 4 105 134 - 9 I: 4 : IciS 156 2 1711 127 3 94 92 4 142 132 5 72 71: 6 171 le9 -13 R 4 I 125 133 b
YO 326 221 23h
ilii 326 320 :5+ 357 1?.1 191 15'1 113 31 20-
141
216 254 190 2s
66
56
165 49
161
106
55
214
cy.
gen bonds, sodium coordinations, or covalent bonds other than the C-0 bond, that are formed. O(9) is involved in four other bonds and shows a C-0 distance of 1.44 A ; O(7) is involved in three other bonds and has a C-0 distance of 1.37 A ; O(8) has only two other bonds and has a C-0 distance of 1.34 A. The last difference, e.g., 1.34 compared to 1.37, is not significant, but the difference between 1.44 and these is significant. The C-0 bond distance of 1.34 A corresponds to a partial double-bond character equivalent to that of an oxygen attached to an aromatic ring.' The C-C distances of 1.48 and 1.51 A are
/ 88:18 / September 20, I966
4127
P
[POI]
Figure 3. The sodium coordination bond angles in disodium pglycerolphosphate pentahydrate. Other angles and distances are shown in Tables 111 and IV.
PROJECTION
Figure 1. [001] projection of the structure of disodium &glycerolphosphate pentahydrate. Dashed lines show hydrogen bonding or coordination t o sodium.
Table IV. Bond Angles
Atoms
113.50 113.27 109.67 110.39 100.83 108.33 120.28 131.02 48.83 58.69 107.79 107.98 113.70 113.79 110.89 73.52 90.81 88.87 83.84 90.88 95.38 82.46 97.76 91.19 76.11 97.43 87.85 114.88 125.47 100.43 131.14 120.02 76.88 116.35 111.45 57.58 53.06 120.32 111.90 116.30 124.87 108.53 85.09 103.01 122.10 141.64 97.04 86.09 109.50 94.40
Figure 2. The bond angles and distance of the phosphate group in disodium p-glycerolphosphate pentahydrate.
Table III. Interatomic Distances
O(lO)-O( 12) 0(4'K)(9)
Bond, A
Std dev, A
1.516 1.457 1.527 1.618 1.368 1 ,509 1.477 1.439 1.341 2.541 2.266 2.373 2.431 2.403 2.285 2.316 2.284 2.347 2.594 2.461 2.355 2.767 2.766 2.888 2.884 2.709 2.785 2.709 2.751 2.821 2.685
0.0089 0.0141 0.0160 0.0079 0.0197 0.0018 0.0452 0.0201 0.03OO 0.0039 0.0105 0.0227 0.0017 0.0221 0.0137 0.0110 0.0264 0.0066 0.0245 0.0021 0.0143 0.pOSl 0,4176 0,0140 0.0023 0.0295 0.0325 0.0334 0.0146 0.0060 0.0289
Angle, des
Std dev, deg 0.51 0.44 0.49 0.32 0.38 0.29 0.84 0.57 0.31 0.62 1.10 1.12 1.14 1.32 1.31 0.26 0.34 0.42 0.40 0.36 0.33 0.28 0.33 0.32 0.39 0.38 0.42 0.55 0.87
0.51 0.82 0.59 0.37 0.48 0.46 0.28 0.55 0.96 0.63 0.96 0.51 0.45 0.47 0.43 0.48 0.59 0.49 0.43 0.49 0.39
slightly shorter than the generally accepted C-C distance of 1.54, but the difference is probably not significant. UI-Haque, Caughlan
Disodium fl-Glycerolphosphate Pentahydrate
4128 These are two other interesting and significant features about this structure. The first is the coordination of the sodium which is six coordinated in the form of a somewhat distorted octahedron. The details are indicated in Figure 3 with the pertinent angles shown. The Na-0 distances are remarkably uniform, varying only from 2.28 to 2.59 A. The second significant feature is the very elaborate network of hydrogen bonding, which, when combined with the sodium coordination, makes an extremely tightly bonded crystal. For example, O(9) is hydrogen bonded to 0 ( 7 ) , 0(4), O(13) in addition to being bonded to carbon and coordinated to sodium. The hydrogen-bond distances are all between 2.69 and 2.89 A, indicating a generally strong hydrogen bonding. The very low-temperature factors observed in Table I are a result of this tightly knit structure. Whether or not these truly represent the thermal vibrations,
one would expect low-temperature factors for oxygen and phosphorus atoms held as tightly as these, the oxygens being held in some cases by five neighboring atoms.8 Acknowledgment. We thank the National Institutes of Health for Grant GM-08392-04, which has made this work possible. We also thank Mr. Merlyn Gunsch, who did some of the preliminary work on the crystal; the Montana State University Computing Center and Western Data Processing Center of UCLA for grants of computing time. Also, we wish to thank the University of Washington and Professor Lyle Jensen for the use of the densitometer used in measuring the intensities. (8) The low-temperature factors were considered in some detail in the refinement. They do not appear owing to either level to level scaling or the absorption of the crystal. The only unknown factors seem to be the form factors or the absorption due to the capillary, which seemed unlikely. Thus, we must assume that they are real or that some other unknown systematic error is involved.
Complexes of Aluminum Bromide with Aromatic Hydrocarbons in Solution'" Sang Up C h ~ i ,William ~ , ~ C. Frith,5 and Herbert C. Brown Contribution f r o m the Richard B. Wetherill Laboratory, Purdue University, Lafayette, Indiana. Received August 6 , 1965 Abstract: The interaction of aluminum bromide with aromatic hydrocarbons in solution has been studied by determining the apparent molecular weight of the aluminum bromide over a wide range of composition and temperature. The molecular weights were determined from the lowering of the vapor pressures and the depressions of the freezing point, At one extreme, aluminum bromide exhibits the dimeric molecular weight in benzene, with no
evidence of dissociation over the concentration range examined. At the other extreme, the solute exhibits the monomeric molecular weight in mesitylene, the first clear case for dissociation of such a Lewis acid dimeric halide by a T donor. From variation in the apparent molecular weight with concentration, evidence was obtained as to the combination of the aromatic with aluminum bromide. The results of the present study indicate that at 70" aluminum bromide exists in the following forms in the respective aromatic solutions: AlzBr6in benzene, a mixture of and ArH . AlzBr6in toluene, ArH . AlzBr6in m-xylene, and a mixture of ArH. AlzBr6and ArH * A12Br3in mesitylene. On the other hand, at 5 ', the followingspecies are indicated: ArH.A12Br6in benzene, a mixture of ArH.AlzBr6 and ArH.AIBr3 in toluene, and ArH.AlBr3in either m-xylene or mesitylene. These results suggest that the 2ArH. A1Br3(soln), ArH .AlzBr6(soln)and ArH A12Br6(soln) ArH(1) equilibria, AlzBr6(soh) ArH(1) tend to shift to the right with the increasing basicities of the aromatics involved and with decreasing temperature of the solution. The order of increasing interaction of the aromatics with aluminum bromide at the temperatures examined is benzene < toluene < m-xylene < mesitylene.
+
+
In
previous papers of this series,6 we presented evidence for the existence of both 1 :1 and 1 :2 solid complexes, with the respective compositions ArH .AIBr3 and ArH .AlzBr6,formed between aromatic hydrocarbons (ArH) and aluminum bromide. The fact that complexes of this composition exist in the solid phase does not ensure their existence in solution. Originally, we had become interested in these complexes (1) The Catalytic Halides. XXX. (2) Based on a thesis submitted by S. U. Choi in partial fulfillment of the requirements for the degree of Doctor of Philosophy. (3) Research Assistant (1953-1956) on Project No. AT(11-1)-170 supported by the Atomic Energy Commission. (4) Department of Chemistry, Hanyang University, Seoul, Korea. (5) Postdoctorate Research Associate (1952-1954)on Project No. A T (1 1-1)-170,supported by the Atomic Energy Commission. (6) (a) S. U. Choi and H. C. Brown, J. Am. Chem. SOC.,88, 903 (1966); (b) H. C.Brown and W. J. Wallace, ibid., 75, 6265 (1953).
while attempting to understand the part they played i n the kinetics of the aluminum bromide catalyzed reaction of alkyl bromides with benzene and toluene in excess aromatic as the reaction medium.' Accordingly, we decided to explore the nature of the interaction of aluminum bromide with representative aromatic hydrocarbons in the aromatic as solvent. In fact, the literature contains a number of conflicting reports as to the precise nature of the interaction of aluminum bromide with aromatic hydrocarbons in solution. For example, from molecular weight determinations by the freezing point depression method, Van Dykes obtained a value of 534.0 for the molecular (7) H. C. Brown and H. Jungk, ibid., 77, 5584 (1955); 78, 2182 (1956). (8) R. E. Van Dyke, ibid., 72, 3619 (1950).
Journal of the American Chemical Society I @:I8 I September 20, 1966