13 The Effect of Hydrocarbon Chain Length on the Adsorption of Sulfonates at the Solid/Water Interface T.
WAKAMATSU
and D . W .
FUERSTENAU
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
College of Engineering, University of California, Berkeley, Calif.
Isotherms
for the adsorption
of sodium carbon ture,
alkylsulfonates
atoms were and
measured
ionic
distinct
regions.
the isotherms
to association
1 where ions
of adsorbed
detergent
electrokinetic
potential dependence
repulsion
were
shown
to
occurs
control
at the
by ionic
characterized adsorption
Region
2
3, the
In Region because
by owing
is reversed and the isotherms on concentration
that
consists of three
ions denoting
chain length.
16
tempera-
mobilities
adsorption used
are approximately
on the hydrocarbon
pH,
It is clearly
The onset of the increased
a decreased trostatic
at constant
for such detergents
chloride
interface
8, 10, 12, 14, and
Electrophoretic
In Region with
the same line. depends
strength. isotherm
exchange
strength,
determined
for the same conditions.
the adsorption ion
at the alumina-water containing
exhibit of
elec-
surface.
' T p h e a d s o r p t i o n of i o n i c surfactants at s o l i d - w a t e r interfaces is of great A
t e c h n o l o g i c a l i m p o r t a n c e i n s u c h diverse fields as w a t e r r e n o v a t i o n ,
detergency, m i n e r a l
flotation,
a n d corrosion inhibition.
The
complex
n a t u r e of the a d s o r p t i o n of surfactants at t h e s o l i d - w a t e r i n t e r f a c e is c o n t r o l l e d b y the n a t u r e of the a d s o r b i n g species itself, the p r o p e r t i e s of the s o l i d adsorbent, a n d the c o m p o s i t i o n of the aqueous s o l u t i o n . D e p e n d e n t o n these factors, i o n i c s u r f a c t a n t - s o l i d systems c a n b e classified i n t o three b r o a d types, n a m e l y ( 1 ) those i n w h i c h the surfactant adsorbs as counterions i n the d o u b l e l a y e r t h r o u g h c o u l o m b i c i n t e r a c t i o n w i t h the c h a r g e d surface, ( 2 ) those i n w h i c h the surfactant adsorbs b y c o v a l e n t b o n d f o r m a t i o n w i t h the s o l i d surface, a n d ( 3 ) those i n w h i c h t h e sur factant adsorbs t h r o u g h h y d r o p h o b i c b o n d i n g of the h y d r o c a r b o n c h a i n 161
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
162
ADSORPTION F R O M
AQUEOUS SOLUTION
to a n o n p o l a r s o l i d s u c h as g r a p h i t e . I n a l l s u c h a d s o r p t i o n processes, the h y d r o c a r b o n c h a i n of the surfactant p l a y s a d o m i n a n t r o l e i n the b e h a v i o r of the system.
T h e i m p o r t a n c e of the h y d r o c a r b o n c h a i n i n
aqueous i n t e r f a c i a l p h e n o m e n a has b e e n d e m o n s t r a t e d b y a v a r i e t y of e x p e r i m e n t a l methods, for e x a m p l e , b y e l e c t r o k i n e t i c studies (11), tion
behavior
behavior The
(2),
adsorption
measurements
(12),
and
flota
coagulation
(8). a d s o r p t i o n of
i o n i c surfactants b y
nonpolar
solids
such
as
g r a p h i t e w o u l d b e e x p e c t e d to d e p e n d m a r k e d l y o n the l e n g t h a n d c o n figuration
of the h y d r o c a r b o n c h a i n since it is t h r o u g h the h y d r o c a r b o n
c h a i n that the surfactant b o n d s to the s o l i d . T h e i n v e s t i g a t i o n of S k e w i s Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
and Zettlemoyer (9)
is q u i t e t y p i c a l of the k i n d s of effects o b t a i n e d i n
s u c h a d s o r p t i o n systems.
O n e of the f e w investigations r e p o r t e d i n the
l i t e r a t u r e o n the a d s o r p t i o n of i o n i c surfactants of v a r y i n g c h a i n l e n g t h o n c h a r g e d solids i n aqueous m e d i a is that of J a y c o c k , O t t e w i l l , a n d Rastogi
(5).
U s i n g c o l l o i d a l silver i o d i d e
a n d aqueous solutions
of
p y r i d i n i u m b r o m i d e s of v a r i o u s c h a i n lengths, t h e y f o u n d that at l o w coverages, the a d s o r p t i o n density w a s a p p r o x i m a t e l y t h e same for e a c h of the surfactants b u t that the a d s o r p t i o n i n c r e a s e d c a t a s t r o p h i c a l l y at some c r i t i c a l c o n c e n t r a t i o n d e p e n d e n t o n c h a i n l e n g t h . T h e use of s i l v e r i o d i d e as the adsorbent for s u c h studies c o m p l i c a t e s the s i t u a t i o n c o n s i d e r a b l y because, as is n o w w e l l k n o w n , silver i o d i d e is p a r t i a l l y h y d r o p h o b i c (4,13).
T h u s , the a d s o r p t i o n i n this system m u s t b e some c o m b i
n a t i o n of c o u l o m b i c i n t e r a c t i o n a n d h y d r o p h o b i c b o n d i n g w i t h the s u r face. E s s e n t i a l l y the o n l y other i n v e s t i g a t i o n of the a d s o r p t i o n of i o n i c surfactants of v a r i o u s c h a i n lengths at m i n e r a l - w a t e r interfaces is t h a t of T a m a m u s h i a n d T a m a k i (12),
w h o d e t e r m i n e d the a d s o r p t i o n of a l k y l -
a m m o n i u m c h l o r i d e s o n a l u m i n a . T h e y a t e m p t e d to e x p l a i n t h e i r iso therms i n terms of a B r u n a u e r - E m m e t t - T e l l e r ( B . E . T . ) t y p e of e q u a t i o n , b u t the v a l i d i t y of t h e i r a p p r o a c h is q u e s t i o n a b l e because of t h e i r neglect of e l e c t r i c a l effects. R e c e n t l y (10),
it w a s d e m o n s t r a t e d that the a d s o r p t i o n of
alkyl-
sulfonates at the a l u m i n a - w a t e r interface is a system i n w h i c h the sur factant adsorbs as counterions i n t h e e l e c t r i c a l d o u b l e layer. T h i s w o r k s h o w e d that the i s o t h e r m for the a d s o r p t i o n of s o d i u m d o d e c y l sulfonate at the a l u m i n a - w a t e r interface is c h a r a c t e r i z e d b y three d i s t i n c t r e g i o n s : Region
1 i n w h i c h the
detergent
ions
adsorb
individually through
c o u l o m b i c a t t r a c t i o n for the surface; R e g i o n 2 i n w h i c h the a d s o r p t i o n is e n h a n c e d t h r o u g h association of the h y d r o c a r b o n chains of t h e a d s o r b e d surfactant ions; a n d R e g i o n 3 i n w h i c h the charge i n the S t e r n p l a n e exceeds the surface
charge
w i t h the r e s u l t i n g electrostatic
repulsion
a c t i n g to r e t a r d a d s o r p t i o n . I n the e x p e r i m e n t a l i n v e s t i g a t i o n discussed i n the present p a p e r , details of the r o l e of the h y d r o c a r b o n c h a i n i n the
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
13.
WAKAMATSU
AND FUERSTENAU
Adsorption
163
of Sulfonates
a d s o r p t i o n process at t h e a l u m i n a - w a t e r interface h a v e b e e n s t u d i e d f o r a series of a l k y l sulfonates w i t h v a r y i n g c h a i n lengths. I n this w o r k , p H , i o n i c strength, a n d t e m p e r a t u r e w e r e m a i n t a i n e d constant. I n p a r t i c u l a r , o u r p u r p o s e has b e e n to d e t e r m i n e h o w e a c h of these a d s o r p t i o n regions d e p e n d s o n t h e h y d r o c a r b o n c h a i n of t h e surfactant. Experimental M a t e r i a l s a n d M e t h o d s . F o r t h e s o l i d adsorbent, a - a l u m i n a ( L i n d e " A " ) of 9 9 . 9 5 % p u r i t y w a s u s e d . Its specific surface area, as m e a s u r e d b y k r y p t o n gas a d s o r p t i o n a n d b y stearic a c i d a d s o r p t i o n f r o m b e n z e n e was f o u n d to b e 15 m e t e r / g r a m . Its z e r o - p o i n t - o f - c h a r g e occurs at p H 9.1. D e t a i l s a b o u t t h e c h a r a c t e r i z a t i o n of this m a t e r i a l h a v e b e e n d e s c r i b e d i n a p r e v i o u s p a p e r ( 1 5 ) . T h e alkylsulfonates w e r e p r e p a r e d b y n e u t r a l i z i n g h i g h p u r i t y s u l f o n i c acids ( C 8 , C I O , C 1 2 , C 1 4 , a n d C 1 6 ) w i t h s o d i u m h y d r o x i d e a n d b y r e c r y s t a l l i z i n g t h e s o d i u m salt f r o m h o t absolute e t h y l a l c o h o l . D e t a i l e d i n f r a r e d spectroscopic analysis of these reagents s h o w e d t h e m to b e p u r e sulfonates w i t h b u t a trace a m o u n t of w a t e r as t h e o n l y i m p u r i t y . O n l y the C 1 4 reagent appears n o t to b e c o m p l e t e l y free of shorter c h a i n h o m o l o g s . A l l i n o r g a n i c c h e m i c a l s w e r e reagent grade. C o n d u c t i v i t y w a t e r p r e p a r e d i n a q u a r t z s t i l l w a s u s e d for a l l solutions.
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
2
T h e a d s o r p t i o n experiments w e r e c a r r i e d o u t i n a 600 m l . b e a k e r t h a t was s t o p p e r e d w i t h a T e f l o n d i s c c o n t a i n i n g holes f o r a t h e r m o m e t e r , gas i n l e t a n d outlet, a n d p H electrodes. T h e c e l l c o n t a i n i n g t h e a l u m i n a a n d t h e surfactant s o l u t i o n w a s m a i n t a i n e d at a constant t e m p e r a t u r e b y i m m e r s i n g t h e c e l l i n a t h e r m o s t a t i c a l l y c o n t r o l l e d w a t e r b a t h . A n atmos p h e r e of p u r i f i e d n i t r o g e n w a s m a i n t a i n e d o v e r t h e c e l l . T h e e x p e r i m e n t a l c o n d i t i o n s w e r e h e l d constant at p H 7.2, 2 5 ° C , a n d 2 X 1 0 " M i o n i c strength ( a d j u s t e d w i t h s o d i u m c h l o r i d e ) . T h e system w a s s t i r r e d b y means of a m a g n e t i c , T e f l o n - c o v e r e d s t i r r i n g b a r for four h o u r s . A b o u t t w o hours w a s r e q u i r e d for a d j u s t i n g p H , a n d t h e r e m a i n i n g t i m e w a s u s e d f o r a t t a i n i n g e q u i l i b r i u m a n d for s a m p l i n g . T h e m e t h o d u s e d f o r the d e t e r m i n a t i o n of sulfonate c o n c e n t r a t i o n is t h e w e l l - k n o w n m e t h y l e n e blue complex method (6, 7 ) . 3
E l e c t r o p h o r e t i c m o b i l i t i e s of t h e a l u m i n a particles w e r e d e t e r m i n e d for t h e same c o n d i t i o n s as w e r e u s e d to o b t a i n t h e a d s o r p t i o n isotherms. F o r this p u r p o s e , a s a m p l e of t h e a l u m i n a suspension w a s t r a n s f e r r e d to the electrophoresis c e l l for m e a s u r e m e n t of t h e e l e c t r o p h o r e t i c m o b i l i t i e s . A Z e t a - M e t e r w a s u s e d for this p a r t of t h e p r o g r a m . R e s u l t s . T h e i s o t h e r m for t h e a d s o r p t i o n of s o d i u m d o d e c y l sulfonate b y a l u m i n a at constant p H ( p H 7.2) a n d i o n i c s t r e n g t h ( 2 X 1 0 " M ) is g i v e n i n F i g u r e 1 to illustrate specifically t h e n a t u r e of t h e i s o t h e r m o b t a i n e d for the a d s o r p t i o n of a detergent f r o m aqueous s o l u t i o n . I n this figure, the a m o u n t of sulfonate a d s o r b e d p e r u n i t area of a l u m i n a is p l o t t e d l o g a r i t h m i c a l l y as a f u n c t i o n of t h e e q u i l i b r i u m c o n c e n t r a t i o n of a l k y l s u l f o n a t e i n s o l u t i o n . T h e a d s o r p t i o n i s o t h e r m consists of t h r e e d i s t i n c t regions: R e g i o n 1, w h i c h is c h a r a c t e r i z e d b y a l o w increase i n a d s o r p t i o n w i t h i n c r e a s i n g surfactant c o n c e n t r a t i o n ; R e g i o n 2, b y a n 3
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
164
ADSORPTION F R O M
AQUEOUS SOLUTION
EQUILIBRIUM CONCENTRATION OF SODIUM DODECYL SULFONATE, MOLE/LITER Figure 1. The electrophoretic behavior and isotherm for the adsorption of sodium dodecyl sulfonate from aqueous solution at pH 7.2, 25°C, and 2 X 10~ M ionic strength (NaCl). The 95% confidence limits for the three straight-line regions of the adsorption isotherm are shown 3
a b r u p t increase i n t h e slope o f the i s o t h e r m ; a n d R e g i o n 3, a g a i n b y a decreased d e p e n d e n c e o f a d s o r p t i o n o n sulfonate c o n c e n t r a t i o n . T o correlate changes i n the a d s o r p t i o n process w i t h the i s o t h e r m , the electro p h o r e t i c b e h a v i o r of a l u m i n a i n the presence o f s o d i u m d o d e c y l sulfonate is also i n c l u d e d i n F i g u r e 1. I n F i g u r e 2, isotherms f o r the a d s o r p t i o n o f C 8 t o C 1 6 sulfonates a r e p r e s e n t e d to s h o w h o w t h e c h a i n l e n g t h o f the detergent affects the a d s o r p t i o n process. T h e e l e c t r o p h o r e t i c m o b i l i t i e s o f a l u m i n a f o r the same c o n d i t i o n s as u s e d f o r d e t e r m i n a t i o n o f the isotherms are p r e s e n t e d i n F i g u r e 3. T h i s figure, together w i t h F i g u r e s 1 a n d 2, shows that the m o b i l i t y is p o s i t i v e i n s i g n i n R e g i o n s 1 a n d 2 b u t is n e g a t i v e i n R e g i o n 3. R e g i o n 1 i s characterized b y the electrophoretic m o b i l i t y being nearly independent of t h e sulfonate c o n c e n t r a t i o n . T h e t r a n s i t i o n b e t w e e n R e g i o n 1 a n d R e g i o n 2 is m a r k e d b y a s h a r p c h a n g e i n the e l e c t r o p h o r e t i c m o b i l i t y - u s . c o n c e n t r a t i o n c u r v e whereas t h e t r a n s i t i o n b e t w e e n R e g i o n s 2 a n d 3 occurs a t concentrations w h e r e the m o b i l i t y is zero. C l e a r l y , the electro p h o r e t i c b e h a v i o r o f t h e a l u m i n a depends m a r k e d l y o n t h e n u m b e r o f c a r b o n atoms i n the h y d r o c a r b o n c h a i n o f the detergent. T h e a d s o r p t i o n d e n s i t y m a r k e d as a m o n l a y e r i n F i g u r e 2 is t h a t f o r a c l o s e l y p a c k e d l a y e r of v e r t i c a l l y o r i e n t e d a l k y l s u l f o n a t e ions.
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
13.
WAKAMATSU
AND FUERSTENAU
Adsorption
of
Sulfonates
165
Discussion of Results The Adsorption Isotherm.
I n a p r e v i o u s p a p e r (10),
it was shown
that the i s o t h e r m for the a d s o r p t i o n of a detergent at the s o l i d - w a t e r interface c a n b e c h a r a c t e r i z e d b y three d i s t i n c t regions b u t at that t i m e the d a t a w e r e not a n a l y z e d statistically.
S t a t i s t i c a l analysis of the d a t a
p r e s e n t e d i n F i g u r e 1 shows that t h e i s o t h e r m c o r r e s p o n d i n g to e a c h of the three regions c a n b e c h a r a c t e r i z e d b y the f o l l o w i n g straight l i n e s : Region 1: log r = -8.76 + 0.66 log C Region 2: log r = -3.30 + 1.92 log C Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
Region 3: log r = -8.03 + 0.60 log C w h e r e r is the a m o u n t of sulfonate a d s o r b e d i n m o l e p e r c m . the m o l a r c o n c e n t r a t i o n of sulfonate i n the b u l k s o l u t i o n .
2
a n d C is Statistical
analysis of these d a t a shows that the slope of these three straight lines at the 95%
confidence l e v e l (14)
is 0.66 ±
0.19, 1.92
±
0.25, a n d 0.60
± 0.22 for R e g i o n s 1, 2, a n d 3, respectively. R e g i o n 1 for s o d i u m d o d e c y l sulfonate u n d e r these e x p e r i m e n t a l c o n d i t i o n s applies u p to a detergent c o n c e n t r a t i o n of 6 X 1 0 " M . T h e a d s o r p t i o n is c h a r a c t e r i z e d b y R e g i o n 2 5
between 6 X
10" M and 3 X 5
1 0 " M u n d e r these c o n d i t i o n s , a n d b y 4
R e g i o n 3 a b o v e 3 X 1 0 " M sulfonate. 4
F u r t h e r e v i d e n c e for three d i s t i n c t m o d e s of a d s o r p t i o n c a n b e seen i n the e l e c t r o p h o r e t i c b e h a v i o r of a l u m i n a i n the presence of d o d e c y l sulfonate.
Below 6 X
sodium
10~ M, the e l e c t r o p h o r e t i c m o b i l i t y is 5
n e a r l y i n d e p e n d e n t of c o n c e n t r a t i o n , b u t at this c o n c e n t r a t i o n the slope of the m o b i h t y - t ; s . - c o n c e n t r a t i o n c u r v e a b r u p t l y changes. A t 3 X
10" M 4
d o d e c y l sulfonate c o n c e n t r a t i o n , the e l e c t r o p h o r e t i c m o b i l i t y reverses its sign, i n d i c a t i n g that the charge i n the S t e r n l a y e r n o w exceeds the surface charge i n absolute m a g n i t u d e . This experimental evidence
c l e a r l y shows the c o m p l i c a t e d n a t u r e
of the a d s o r p t i o n i s o t h e r m for a detergent at the p o l a r
solid-aqueous
s o l u t i o n interface. The Effect of A l k y l Chain Length on Adsorption. F i g u r e 2 shows that the a d s o r p t i o n isotherms a l l h a v e s o m e w h a t the same g e n e r a l c h a r acteristics o n l y the concentrations at w h i c h the effects o c c u r a p p e a r to d e p e n d o n the a l k y l c h a i n l e n g t h . C o n s e q u e n t l y , the a d s o r p t i o n b e h a v i o r i n e a c h of t h e three regions of the isotherms w i l l b e d i s c u s s e d separately a n d w i l l b e i n t e r p r e t e d i n terms of the role t h a t the h y d r o c a r b o n c h a i n p l a y s i n t h e a d s o r p t i o n process. It has a l r e a d y b e e n established (10) that a l k y l s u l f o n a t e ions adsorb at the p o s i t i v e l y c h a r g e d a l u m i n a - w a t e r interface as counterions i n the e l e c t r i c a l d o u b l e layer. C h e m i s o r p t i o n is absent. T h e e l e c t r i c a l d o u b l e
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
166
ADSORPTION F R O M
AQUEOUS SOLUTION
Figure 2. Adsorption isotherms for sodium alkylsulfonates of different hydrocarbon chain lengths on alumina at pH 7.2, 25°C, and 2 X 10~ M ionic strength 3
l a y e r m o d e l w i l l t h e n b e u s e d to i n t e r p r e t the a d s o r p t i o n b e h a v i o r o b served i n these experiments. I n R e g i o n 1, a l k y l s u l f o n a t e ions are c o n s i d e r e d to adsorb as i n d i v i d u a l counterions i n c o m p e t i t i o n w i t h t h e c h l o r i d e ions u s e d to c o n t r o l the i o n i c strength. I f the a d s o r p t i o n is of non-associated sulfonate ions b y i d e a l exchange i n t h e diffuse layer, a single l i n e i n d e p e n d e n t of c h a i n l e n g t h s h o u l d c h a r a c t e r i z e t h e a d s o r p t i o n i n R e g i o n 1. F o r t h e C 1 6 s u l fonate, at t h e lowest c o n c e n t r a t i o n w h i c h c o u l d b e s t u d i e d , t h e a d s o r p t i o n a l r e a d y has exceeded that of R e g i o n 1. O n the other h a n d , F i g u r e s 2 a n d 3 s h o w that t h e a d s o r p t i o n of C 8 sulfonate is r e s t r i c t e d e n t i r e l y t o R e g i o n 1. F o r C 8 , C I O , C 1 2 , a n d C 1 4 this a d s o r p t i o n is c h a r a c t e r i z e d a p p r o x i -
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
13.
WAKAMATSU
A N D FUERSTENAU
Adsorption
of
167
Sulfonates
m a t e l y b y a single l i n e , w h o s e slope is about 0.7 i n s t e a d of t h e expected slope of 1.0. S u c h deviations f r o m i d e a l exchange
are not yet clearly
u n d e r s t o o d b u t are c o n s i d e r e d to reflect differences i n t h e a b i l i t y o f sur factant ions c o m p a r e d w i t h c h l o r i d e ions to penetrate the diffuse l a y e r region. T h i s is a subject of c o n t i n u e d research. R e g i o n 2 is c h a r a c t e r i z e d b y a m a r k e d change i n t h e slope of t h e a d s o r p t i o n isotherms.
T h i s results f r o m t h e onset of association of t h e
h y d r o c a r b o n chains o f the surfactant ions a d s o r b e d i n t h e S t e r n p l a n e . T h e m e a n separation distance of a d s o r b e d ions u n d e r these c o n d i t i o n s is about 70 A . , w h i c h a p p r o x i m a t e s the m e a n separation distance i n b u l k
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
at the c.m.c. I n s u c h a d s o r p t i o n p h e n o m e n a , there is a r e l a t i o n s h i p b e t w e e n this asociation a n d the f o r m a t i o n of m i c e l l e s i n b u l k solution. F o r example, e l e c t r o k i n e t i c studies ( 1 ) o n q u a r t z at n e u t r a l p H s h o w e d that a l k y l a m m o n i u m ions associate i n t h e S t e r n p l a n e w h e n t h e i r b u l k c o n c e n t r a t i o n is a p p r o x i m a t e l y one h u n d r e d t h of the c.m.c. T h i s association w h i c h has b e e n c a l l e d h e m i m i c e l l e f o r m a t i o n ( 3 ) , gives rise to a specific a d s o r p t i o n p o t e n t i a l w h i c h causes t h e a d s o r p t i o n to increase m a r k e d l y a n d b r i n g s about a reversal i n the s i g n of the p o t e n t i a l at the S t e r n p l a n e . T h e h e m i m i c e l l e c o n c e n t r a t i o n , that is the b u l k c o n c e n t r a t i o n
necessary
1 A L U M I NA IONIC STRENGTH 2xlO" N pH 7.2 3
UJ Q_ O
8
-2
>-
t
0
_J
GO O
2 o \-
LLl DC O X Q_ O
cr \o UJ
+2 +4
io"
6
I
icr
_L
5
1
io~
4
CONCENTRATION OF SODIUM A L K Y L
io SULFONATE,
-3
MOLE/LITER
Figure 3. The electrophoretic mobility of alumina at pH 7.2 and 2 X 10~ M ionic strength as a function of the concentration of sulfonates with various hydrocarbon chain lengths 3
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
168
ADSORPTION F R O M
AQUEOUS SOLUTION
to i n d u c e association i n the interface, increases w i t h d e c r e a s i n g c h a i n l e n g t h . A t p H 7.2 o n a l u m i n a this c o n c e n t r a t i o n is 4 X 1.4 X
1 0 " M for C 1 4 , 6 X
1 0 " M for C 1 2 , 7 X
5
1 0 " M for C 1 6 , 6
1 0 " M for C I O , a n d is
5
4
a b o v e 2 X 1 0 " M for C 8 sulfonate. T h e slopes of the isotherms are 0.56 3
for C 8 , 1 . 3 3 for C I O , 1.92 for C 1 2 , 2.50 for C 1 4 , a n d 5.80 for C 1 6 sulfonate. T h u s , w i t h i n c r e a s i n g c h a i n l e n g t h , the c o m p e t i t i o n b e t w e e n R S 0 " a n d 3
C I " for sites at the surface strongly favors the a d s o r p t i o n of the detergent. I n a p r e v i o u s p u b l i c a t i o n (10) Region 2 where
i t w a s s h o w n that a d s o r p t i o n i n
association of the h y d r o c a r b o n
chains is l e a d i n g to
extensive a d s o r p t i o n a n d e v e n t u a l r e v e r s a l of the s i g n of the m o b i l i t y —
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
i.e.,
— i s given by (i)
w h e r e Ts is t h e a d s o r p t i o n density i n the S t e r n p l a n e i n m o l e s / c m . , r is 2
the effective r a d i u s of the a d s o r b e d i o n , C is the b u l k c o n c e n t r a t i o n i n m o l e s / c c , z is the v a l e n c e of the a d s o r b e d i o n , F is F a r a d a y ' s constant, \f/6 is the p o t e n t i a l i n the S t e r n p l a n e , is the cohesive energy p e r m o l e of C H
2
groups, n is the effective n u m b e r of associating C H
2
groups p e r
h y d r o c a r b o n c h a i n , R is the gas constant, a n d T the absolute t e m p e r a t u r e . T h u s , expressing a d s o r p t i o n o n a l o g a r i t h m i c basis, w e h a v e dlnr dlnC
_
zF RT
di// d\nC 5
_
d n RT d l n C
(2)
T h e v a r i a t i o n of n w i t h c o n c e n t r a t i o n expresses the fact that i n R e g i o n 2 c o m p l e t e r e m o v a l of e a c h C H g r o u p of the surfactant f r o m w a t e r is o n l y 2
possible at a m o n o l a y e r .
I n b u l k systems the analogous processes are the
pre-association i n t o d i m e r s , t r i m e r s , etc. just b e l o w the c r i t i c a l m i c e l l e concentration. F r o m the slopes of the a d s o r p t i o n isotherms a n d the m o b i l i t y - c o n c e n t r a t i o n curves, it is possible to evaluate w i t h E q u a t i o n 2, d n / d l n C — i.e., the t e r m w h i c h expresses the effective n u m b e r of C H m o v e d f r o m the aqueous e n v i r o n m e n t .
2
groups r e
B y this means, the values of
d n / d l n C are f o u n d to b e 9 for C 1 6 , 4 for C 1 4 , 2 for C 1 2 , 2 for C I O , a n d 0 f o r C 8 . A c o m p a r i s o n c a n b e m a d e for the C 1 6 sulfonate b y c o n s i d e r i n g the m o b i l i t y curves a n d a d s o r p t i o n isotherms. O b s e r v a t i o n of the electro p h o r e t i c m o b i l i t y c u r v e for the C 1 6 surfactant shows that h e m i m i c e l l e f o r m a t i o n begins at 6 X 1 0 " M a n d that the m o b i l i t y c u r v e a g a i n b e c o m e s 6
i n d e p e n d e n t of c o n c e n t r a t i o n at 1.5 X
1 0 " M , this latter c o n c e n t r a t i o n 5
c o i n c i d i n g w i t h m o n o l a y e r coverage i n the e x p e c t e d m a n n e r .
Thus, n
has a n effective v a l u e of zero at a b o u t 6 X 1 0 ~ M a n d a v a l u e of 15 at 6
m o n o l a y e r coverage ( a s s u m i n g that the t e r m i n a l C H
3
groups are exposed
to the s o l u t i o n ) . T h i s leads to a n e s t i m a t e d v a l u e of d n / d l n C of a p p r o x i -
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
13.
WAKAMATSU
A N D FUERSTENAU
Adsorption
of
169
Sulfonates
m a t e l y 16. A s p o i n t e d o u t p r e v i o u s l y ( 1 0 ) , a l i m i t a t i o n of this treatment is t h a t t h r o u g h o u t R e g i o n 2, t h e f r a c t i o n of t h e sulfonate ions t h a t adsorb i n the S t e r n l a y e r increases, r e a c h i n g u n i t y at t h e e n d of R e g i o n 2. S i n c e E q u a t i o n 2 d e p e n d s o n t h e a s s u m p t i o n that t h e a d s o r p t i o n i n t h e S t e r n layer is p r o p o r t i o n a l to t h e t o t a l a d s o r p t i o n , t h e v a l u e of d n / d l n C c a l c u l a t e d f r o m t h e a d s o r p t i o n w i l l b e too l o w . T h e e n d of R e g i o n 2 is c h a r a c t e r i z e d b y t h e fact that t h e m o b i l i t y passes t h r o u g h zero.
W h e n t h e m o b i l i t y is zero, t h e S t e r n - G r a h a m e
expression for t h e a d s o r p t i o n of a specifically a d s o r b i n g surfactant i o n c a n b e expressed as (r )„ = 2 r C e x p ( Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
8
(3)
*£)
0
w h e r e N is t h e n u m b e r of c a r b o n atoms i n t h e h y d r o c a r b o n c h a i n . H e r e w e m u s t assume t h a t t h e effective f r a c t i o n of t h e C H groups
removed
2
f r o m a q u e o u s e n v i r o n m e n t w h e n fa is zero m u s t b e i n d e p e n d e n t of c h a i n length.
P u t t i n g E q u a t i o n 3 i n l o g a r i t h m i c f o r m a n d r e a r r a n g i n g terms
yields: lnC -]n&k
(4)
= - N ±
0
T h e n u m e r i c a l values of (1^)0 a n d C
0
are t a b u l a t e d i n T a b l e I.
Table I.
C16 C14 C12 CIO
1.6 1.1 7.9 6.0
X X X X
10" mole/cm. 10" 10" 10" 10
2
10
11
11
1.0 9.0 2.8 1.7
X X X X
10" m o l e / l i t e r IO" IO" IO" 5
5
4
3
F r o m these n u m b e r s , i t c a n b e seen that t h e c h a n g e of (Ts)
0
when
i n c r e a s i n g t h e n u m b e r of C H groups i n t h e a l k y l c h a i n l e n g t h f r o m C I O 2
to C 1 6 , is 6.0 X 10 (C ) 6
0
1 1
to 1.6 X 1 0 " , w h i l e t h e v a r i a t i o n s i n t h e values o f 10
is 10" to 1.7 X 10" . W e d o not k n o w the effective r a d i u s of e a c h r>
3
sulfonate i o n at z e r o m o b i l i t y , b u t i t c e r t a i n l y m u s t c o r r e s p o n d a p p r o x i m a t e l y to t h e thickness of t h e a d s o r b e d
layer.
Perhaps it m a y even
increase w i t h t h e n u m b e r of c a r b o n atoms i n t h e h y d r o c a r b o n c h a i n . H o w e v e r , as t h e v a r i a t i o n i n t h e v a l u e of (Cs)
is v e r y large c o m p a r e d
0
w i t h that of ( r « ) , i t w i l l b e a s s u m e d that I n ( r ) / 2 r is a constant i n d e 0
6
0
p e n d e n t of t h e c h a i n l e n g t h . T h u s , i f w e p l o t t h e l o g a r i t h m of
(Cs)
0
against N, a straight fine s h o u l d b e o b t a i n e d . A c c o r d i n g l y , i n F i g u r e 4, the c o n c e n t r a t i o n of s o d i u m a l k y l s u l f o n a t e i n s o l u t i o n c o r r e s p o n d i n g to zero m o b i l i t y is p l o t t e d as a f u n c t i o n of t h e n u m b e r of c a r b o n atoms i n the a l k y l c h a i n . F r o m t h e slope of this l i n e , t h e v a l u e of is c a l c u l a t e d
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
170
ADSORPTION F R O M
to b e —0.95 RT,
a v a l u e i n g o o d agreement w i t h p r e v i o u s studies of
a m i n e salts o n q u a r t z
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
AQUEOUS SOLUTION
(2,11).
Figure 4. Variation of the concentration of sulfonate necessary for zero electrophoretic mobility of alumina as a function of the number of carbon atoms in the alkyl chain I n R e g i o n 3 the solpe of the i s o t h e r m is l o w e r t h a n i n R e g i o n 2. H e r e the surfactant ions p r o b a b l y adsorb b y a s o m e w h a t different m e c h a n i s m . A s s h o w n i n F i g u r e 2, the values of fa must b e negative i n this r e g i o n , a n d c o n s e q u e n t l y the a d s o r b e d sulfonate ions s h o u l d be subjected to electrostatic r e p u l s i o n i n the a d s o r p t i o n process. T h u s , r e d u c i n g the slope of the isotherms i n this r e g i o n . I n R e g i o n 3 the slope of the C 1 6 i s o t h e r m is 2.16, that of the C 1 4 is 1.50 a n d that of the C 1 2 i s o t h e r m is 0.60. A l t h o u g h o n l y three values for this slope c o u l d be o b t a i n e d f r o m o u r studies, it is a p p a r e n t that the v a l u e becomes greater w i t h i n c r e a s i n g h y d r o c a r b o n c h a i n l e n g t h . T h i s t e n d e n c y a g a i n c a n be a t t r i b u t e d to the i n c r e a s e d a t t r a c t i o n b e t w e e n h y d r o c a r b o n chains w i t h increase i n c h a i n l e n g t h . F u r t h e r , the a d s o r b e d detergent m a y t e n d to orient differently at the surface because of the electrostatic r e p u l s i o n u p o n r e v e r s a l of i/^.
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
13.
WAKAMATSU
AND FUERSTENAU
Adsorption
of
Sulfonates
171
Summary A s a p a r t of a s t u d y o n the m e c h a n i s m of a d s o r p t i o n of a l k y l s u l fonates at the a l u m i n a - w a t e r interface, the role of h y d r o c a r b o n c h a i n l e n g t h i n the a d s o r p t i o n process has b e e n i n v e s t i g a t e d b y a d s o r p t i o n a n d electrophoresis
measurements
with
sodium
alkylsulfonates c o n t a i n i n g
8, 10, 12, 14, a n d 16 c a r b o n atoms at constant p H , t e m p e r a t u r e , a n d i o n i c strength.
T h e a d s o r p t i o n isotherms h a v e c l e a r l y b e e n s h o w n to consist
of three d i s t i n c t regions, d e p e n d i n g u p o n the i n t e r m o l e c u l a r b e h a v i o r of the h y d r o c a r b o n c h a i n . I n R e g i o n 1 w h e r e the detergent ions adsorb i n the d o u b l e l a y e r i n c o m p e t i t i o n w i t h the c h l o r i d e ions u s e d to c o n t r o l Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
i o n i c strength, the isotherms are c h a r a c t e r i z e d b y same straight l i n e .
a p p r o x i m a t e l y the
I n R e g i o n 2 the a d s o r b e d detergent ions associate,
r e s u l t i n g i n a sharp increase i n the a d s o r p t i o n density. T h e onset of this association occurs at l o w e r b u l k concentrations as the h y d r o c a r b o n c h a i n l e n g t h is increased. I n R e g i o n 3 the a d s o r p t i o n isotherms a g a i n h a v e a decreased slope; i n this r e g i o n the e l e c t r o k i n e t i c p o t e n t i a l is reversed, r e s u l t i n g i n electrostatic r e p u l s i o n b e t w e e n the a d s o r b e d ions. B y means of the S t e r n - G r a h a m e m o d e l of the d o u b l e l a y e r u n d e r c o n d i t i o n s w h e r e the e l e c t r o p h o r e t i c m o b i l i t y of the a l u m i n a is zero, the cohesive energy p e r m o l e of C H
2
free
groups has b e e n c a l c u l a t e d to b e —0.95 R T .
Acknowledgments T h e authors w i s h to a c k n o w l e d g e the N a t i o n a l Institute of H e a l t h (Grant No. WP-00692)
for s u p p o r t of this research.
Discussions w i t h
T . W . H e a l y are also a c k n o w l e d g e d .
Literature
Cited
(1) (2)
Fuerstenau, D. W . , J. Phys. Chem. 6 0 , 981 (1956). Fuerstenau, D . W . , Healy, T . W . , Somasundaran, P., Trans. AIME 229, 321 (1964). (3) G a u d i n , A . M., Fuerstenau, D. W . , Trans. AIME 2 0 2 , 958 (1955). (4) H a l l , P. G . , Tompkins, F. C., Trans. Faraday Soc. 58, 1734 (1962). (5) Jaycock, M. J., Ottewill, R. H., Rastogi, M. C., 3rd Intern. Congr. Surface Activity V o l . II, 283 (1960). (6) Jones, J . H., J. Assoc. Agr. Chemists 2 8 , 398 (1945). (7) Ibid., 28, 409 (1945). (8) Ottewill, R. R., Rastogi, M. C., Trans. Faraday Soc. 56, 880 (1960). (9) Skewis, J. D., Zettlemoyer, A. C., 3rd Intern. Congr. Surface Activity V o l . II, 401 (1960). (10) Somasundaran, P., Fuerstenau, D. W . , J. Phys. Chem. 70, 90 (1966). (11) Somasundaran, P . , Healy, T . W . , Fuerstenau, D. W . , J. Phys. Chem. 68, 3562 (1964). (12) Tamamushi, B . , T a m a k i , K . , Proc. 2nd Intern. Congr. Surface Activity 3, 449 (1958).
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
172 (13) (14) (15)
ADSORPTION
F R O M AQUEOUS
SOLUTION
Tcheurekdjian, N . Zettlemoyer, A . C., Chessick, J . J., J. Phys. Chem. 68, 773 (1964). Volk, W . , " A p p l i e d Statistics for Engineers," p. 236, M c G r a w - H i l l , N e w York, 1958. Yopps, J . A., Fuerstenau, D . W . , J. Colloid Sci. 19, 61 (1964). November 24,
1967.
Downloaded by FUDAN UNIV on March 23, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch013
RECEIVED
Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.