11 The Effect of Polymer Surface Morphology on Adhesion and Adhesive Joint Strengths H A R O L D S C H O N H O R N and F R A N K W. R Y A N Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
Bell Telephone Laboratories, Inc., Murray Hill, N . J. 07974
The morphological
character of the surface region of poly-
ethylene has been considered with respect to adhesion and adhesive joint strength. high
By melting
energy surface—e.g.,
gold or
polyethylene
onto a
aluminum—extensive
nucleation and the formation of a transcrystalline region in the polymer occurs. Dissolution peeling the
metal from the
region of the polymer intact. amenable to conventional
of the metal rather than
polymer
leaves the
surface
The polymer sheet is
structural adhesive bonding.
parently the weak boundary
layer on polyethylene
now Apis a
consequence of the morphology in the surface region and is influenced
by the method of
preparation.
> " p h e quest for surface treatments of p o l y m e r s w i t h respect to a d h e s i v e A
b o n d i n g has p r o v e n f r u i t f u l i n a p r a c t i c a l sense b u t , u n t i l r e c e n t l y ,
the u n d e r l y i n g p r i n c i p l e s h a v e b e e n s o m e w h a t e l u s i v e ( 5 , 16).
Appar-
ently, w h a t is of p r i m e i m p o r t a n c e i n p r e p a r i n g strong a d h e s i v e joints w i t h p o l y m e r s e x h i b i t i n g w e a k b o u n d a r y l a y e r b e h a v i o r is the n a t u r e of t h e surface m o r p h o l o g y a n d the effect a n a p p l i e d stress has o n i t . I n this p a p e r w e s h a l l demonstrate, u s i n g p o l y e t h y l e n e , that the w e a k b o u n d a r y l a y e r b e h a v i o r n o r m a l l y present i n m a n y m e l t c r y s t a l l i z e d p o l y m e r s is a f u n c t i o n of the surface r e g i o n m o r p h o l o g y of the p o l y m e r a n d is therefore d e p e n d e n t o n h o w the p o l y m e r sheet is p r e p a r e d . I n d e e d , b y c o n t r o l l i n g t h e n u c l e a t i o n a n d subsequent c r y s t a l l i z a t i o n , w e w i l l s h o w that a surface r e g i o n m a y b e g e n e r a t e d , i n c r y s t a l l i z a b l e p o l y m e r s , that is a m e n a b l e to c o n v e n t i o n a l a d h e s i v e b o n d i n g . C o n c o m i t a n t w i t h this c h a n g e i n the m o r p h o l o g y
of the surface
r e g i o n , there is a m a r k e d change i n the w e t t a b i l i t y e v e n t h o u g h the c h e m i c a l c o n s t i t u t i o n is u n c h a n g e d . T h i s c h a n g e i n w e t t a b i l i t y has b e e n 140 In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
11.
SCHONHORN
AND
RYAN
Polymer Surface Morphology
141
r e l a t e d to a change i n the surface c r y s t a l l i n i t y , b e i n g s t r o n g l y d e p e n d e n t u p o n the n a t u r e of the substrate u s e d to p r e p a r e the p o l y m e r . Experimental
Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
M a t e r i a l s . M a r l e x 5003 p o l y e t h y l e n e ( P E ) w a s s u p p l i e d b y Phillips Petroleum C o m p a n y , Bartlesville, Oklahoma.
the
E p o x y resin D E R 3 3 2 L C ( D o w C h e m i c a l Co., M i d l a n d , M i c h i g a n ) is a d i g l y c i d y l ether of b i s p h e n o l A , h a v i n g a n e p o x y e q u i v a l e n t w e i g h t of 179 m a x i m u m ( t h e p u r e m a t e r i a l w o u l d h a v e a n e p o x y e q u i v a l e n t w e i g h t of 1 7 0 ) , a t o t a l c h l o r i d e content less t h a n 0 . 1 % b y w e i g h t , a n d a viscosity of 6400 centipoises m a x i m u m at 25 ° C . D i e t h y l a m i n o p r o p y l a m i n e ( M i l l e r - S t e p h e n s o n C h e m i c a l C o . , Inc., Philadelphia) was distilled under nitrogen through a 6-inch Vigreux c o l u m n a n d the first f r a c t i o n d i s c a r d e d . T h e p r o d u c t d i s t i l l i n g at 68 ° C . a n d 2 6 - m m . pressure w a s stored i n the d a r k i n t i g h t l y s t o p p e r e d glass containers p r i o r to use. T h e e p o x y adhesive consisted of 100 parts b y w e i g h t of the a b o v e r e s i n a n d seven parts b y w e i g h t of the d i e t h y l a m i n o p r o p y l a m i n e , t h o r oughly mixed and used immediately. T h e m e t a l tensile-shear a d h e r e n d s w e r e of 2 0 2 4 - T 3 a l u m i n u m ( A l u m i n u m C o . of A m e r i c a ) . T h e i r d i m e n s i o n s w e r e 5 b y 1 b y 1/16 i n c h . T h e surface of the a l u m i n u m w a s p r e p a r e d b y first v a p o r - d e g r e a s i n g i n t r i c h l o r o e t h y l e n e a n d t h e n e t c h i n g for seven m i n u t e s at 6 5 ° C . i n t h e following solution: Sodium dichromate ( N a C r 0 · 2 H 0 ) Water Sulfuric acid ( 9 5 % ) 2
2
7
2
1 part by weight 30 parts by weight 10 parts by weight
A f t e r e t c h i n g , the specimens w e r e r i n s e d for five m i n u t e s i n r u n n i n g t a p w a t e r a n d for one m i n u t e i n r u n n i n g d i s t i l l e d w a t e r , a n d t h e n d r i e d i n a f o r c e d a i r o v e n at 60 ° C . S p e c i m e n s w e r e stored i n desiccators o v e r A s c a r i t e a n d r e m o v e d just p r i o r to use. F i l m P r e p a r a t i o n . P o l y m e r films (10 m i l t h i c k ) w e r e p r e p a r e d b y c o m p r e s s i o n m o l d i n g for one h a l f h o u r at 175 ° C . b e t w e e n e v a p o r a t e d g o l d films o n glass m i c r o s c o p e slides or sheets of 0.7 m i l a l u m i n u m f o i l ( R e y n o l d s A l u m i n u m W r a p ) w h i c h h a d b e e n c h e m i c a l l y e t c h e d as a b o v e . A f t e r m o l d i n g , to a v o i d d a m a g i n g the surface r e g i o n of the p o l y m e r b y p e e l i n g f r o m the a l u m i n u m , the f o i l w a s d i s s o l v e d b y i m m e r s i o n i n a s o d i u m h y d r o x i d e s o l u t i o n ( f r o m 1 0 % to c o n c e n t r a t e d ) w h i c h w a s s u r r o u n d e d b y a n ice b a t h to a v o i d o v e r h e a t i n g of the specimens. T h e r e s i d u a l b l a c k o x i d e ( t r a c e m e t a l c o n t a m i n a n t s ) was r e m o v e d b y r i n s i n g i n c o n c e n t r a t e d h y d r o c h l o r i c a c i d . N e i t h e r the h y d r o c h l o r i c a c i d n o r the s o d i u m h y d r o x i d e treatment affects the surface r e g i o n of the p o l y e t h y l e n e w i t h respect to w e t t a b i l i t y ( y m e a s u r e d b e f o r e a n d after exposure is u n c h a n g e d ) a n d joint strengths. N o r e s i d u a l a l u m i n u m or m e t a l c o n t a m i n a n t s w e r e d e t e c t e d u s i n g e l e c t r o n m i c r o p r o b e t e c h n i q u e s or a t o m i c a b s o r p t i o n spectroscopy ( A A S ) . c
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
142
INTERACTION
OF
LIQUIDS A T
SOLID
SUBSTRATES
T h e g o l d films w e r e p r e p a r e d b y v a p o r d e p o s i t i n g a b o u t 3 0 0 0 A . of g o l d o n m i c r o s c o p e slides ( 3 b y 1 b y 1 / 1 6 i n c h ) . T h e thickness of t h e g o l d film is n o t c r u c i a l p r o v i d e d that a c o n t i n u o u s film is generated. Sections of p o l y e t h y l e n e film w e r e p l a c e d b e t w e e n g o l d - c o a t e d m i c r o scope slides t o f o r m s a n d w i c h e s . T h e s e s a n d w i c h e s w e r e m o l d e d u n d e r s i m i l a r c o n d i t i o n s to the a l u m i n u m composites d e s c r i b e d earlier. A f t e r c o o l i n g t h e composites, t h e g o l d w a s d i s s o l v e d either b y a m a l g a m a t i o n w i t h m e r c u r y o r b y e x p o s i n g t h e composites to a c o n c e n t r a t e d aqueous s o l u t i o n of s o d i u m c y a n i d e . A f t e r a t y p i c a l c y a n i d e treatment, a final rinse i n c o n c e n t r a t e d h y d r o c h l o r i c a c i d r e m o v e d a n y trace o f surface residue—i.e., carbonates. N o r e s i d u e of g o l d o n t h e p o l y m e r w a s d e t e c t e d i n either case u s i n g electron m i c r o p r o b e t e c h n i q u e s . A t o m i c a b s o r p t i o n spectroscopy ( A A S ) i n d i c a t e s that f r o m zero to 1 / 1 0 0 of a n e q u i v a l e n t m o n o l a y e r of g o l d r e m a i n s after t h e r e m o v a l treatments. S m a l l flecks of g o l d m a y h a v e been e n c a p s u l a t e d o n c o o l i n g t h e p o l y m e r . P o o r r e p r o d u c i b i l i t y o f t h e A A S results i n d i c a t e s this. I f t h e r e a l surface area w e r e greater t h a n t h e g e o m e t r i c area, w h i c h is l i k e l y , t h e r e s i d u e w o u l d b e f a r less t h a n t h e e s t i m a t e d 1 / 1 0 0 of a n e q u i v a l e n t m o n o l a y e r . N e i t h e r aqueous c y a n i d e s o l u t i o n n o r m e r c u r y affects t h e w e t t a b i l i t y o f polyethylene. T w o other substrates, M y l a r a n d p o l y t e t r a f l u o r o e t h y l e n e s e p a r a t e d easily f r o m t h e p o l y e t h y l e n e u p o n c o o l i n g .
(PTFE)
A T R i n f r a r e d t e c h n i q u e s u s i n g K R S - 5 crystals a n d t r a n s m i s s i o n i n f r a r e d s h o w e d n o e v i d e n c e of o x i d a t i o n after d i s s o l u t i o n of t h e a l u m i n u m o r g o l d . N o e v i d e n c e of a c h a n g e i n t h e surface c o n s t i t u t i o n of polyethylene was observed using similar infrared techniques. Thermal History. T h e p o l y e t h y l e n e w a s m o l d e d at 1 7 5 ° C . f o r v a r y i n g lengths of t i m e , t h e n c o o l e d b y c i r c u l a t i n g c o l d w a t e r t h r o u g h t h e press platens. T h e rate of c o o l i n g h a d n o a p p a r e n t effect o n either t h e m e c h a n i c a l s t r e n g t h of t h e surface r e g i o n o r t h e w e t t a b i l i t y . Density. T h e b u l k d e n s i t y of t h e p o l y m e r films before a n d after m o l d i n g w e r e m e a s u r e d i n a d e n s i t y g r a d i e n t c o l u m n at 23 ° C . A l l t h e p o l y e t h y l e n e samples h a d t h e same d e n s i t y of 0.955 g r a m / c c . Adhesive Joints. F o r t h e m e a s u r e m e n t of tensile-shear strengths, s t a n d a r d c o m p o s i t e test pieces c o n s i s t i n g of a l u m i n u m - e p o x y a d h e s i v e p o l y e t h y l e n e film-epoxy a d h e s i v e - a l u m i n u m w e r e p r e p a r e d f o r b o n d i n g i n a s p e c i a l d e v i c e d e s i g n e d to m a i n t a i n a h a l f - i n c h o v e r l a p . T h e t h i c k ness of t h e e p o x y a d h e s i v e w a s m a i n t a i n e d constant b y i n s e r t i o n of a p i e c e of 0.003-inch-diameter g o l d w i r e i n e a c h g l u e l i n e b e t w e e n t h e a l u m i n u m a n d t h e p o l y e t h y l e n e . C l e a n gloves a n d tweezers w e r e u s e d i n a l l specimen preparations to a v o i d possible contamination. B o n d i n g w a s a c c o m p l i s h e d , at a p p r o x i m a t e l y 20 p.s.i. pressure, b y p l a c i n g w e i g h t e d stacks of composites i n f o r c e d a i r ovens at specified temperatures f o r 16 hours. T h e b o n d e d specimens w e r e tested i n tensile shear i n a c c o r d a n c e w i t h A S T M D 1 0 0 2 - 6 4 , except that t h e j a w separation rate w a s 0.1 i n c h per minute. Wettability. A d e s c r i p t i o n of the contact angle g o n i o m e t e r a n d the scheme u s e d i n d e t e r m i n i n g t h e c r i t i c a l surface t e n s i o n of w e t t i n g ( y ) are d e s c r i b e d elsewhere (15, 18). c
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
11.
SCHONHORN
AND
RYAN
143
Polymer Surface Morphology
Results and Discussion T h e tensile shear strengths of joints p r e p a r e d u s i n g p o l y e t h y l e n e w h i c h h a d b e e n m o l d e d at 175 ° C . for v a r y i n g lengths of t i m e are s h o w n i n F i g u r e 1. P r e p a r a t i o n of t h e joints is c o n f i n e d to temperatures b e l o w the m e l t i n g p o i n t of the p o l y e t h y l e n e . It is i m p o r t a n t to note that i f t h e p o l y m e r is p e e l e d or r e m o v e d f r o m the m e t a l other t h a n b y d i s s o l u t i o n of the m e t a l , the resultant joint strengths are c o m p a r a b l e to those o b t a i n e d f o r films generated against b o t h P T F E a n d M y l a r ( b o t t o m l i n e , Figure 1). Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
3500
-
—
— —
•
3000
CO 2500 ι i2 2000
QC (/>
jLV >
SUBSTRATES
W e t t a b i l i t y of
ytiv /yLv>
V
d
d
Liquid
dynes/cm,
dynes/cm,
l. /(dynes/cm.)
Water Glycerol Formamide a-Bromonaphthalene
72.8 63.4 58.2 44.6
21.8 37.0 39.5 44.6
0.0641 0.0959 0.1080 0.1497
generated
against g o l d , P T F E ,
11/2
a n d the single c r y s t a l aggregates are
i l l u s t r a t e d i n T a b l e I. T h e w e t t a b i l i t y of the a l u m i n u m - g e n e r a t e d surface is essentially that of the single c r y s t a l aggregate. A d h e s i v e J o i n t S t r e n g t h . G e n e r a l l y , to f a c i l i t a t e r e m o v a l f r o m m o l d s or substrate surfaces, c r y s t a l l i z a b l e p o l y m e r s
have been prepared i n
contact w i t h l o w energy surfaces—i.e., P T F E , M y l a r — m o l d release agents o r h i g h energy surfaces—i.e., metals, m e t a l o x i d e s — f o r
short times at
l o w temperatures—i.e., just a b o v e the m e l t i n g p o i n t of the p o l y m e r . T h i s p r o c e d u r e g e n e r a l l y results i n the f o r m a t i o n of c o n s i d e r a b l e i n t e r f a c i a l v o i d s a n d a s m a l l r e a l area of contact b e t w e e n the p o l y m e r m e l t a n d t h e n u c l e a t i n g phase. T h e rate of w e t t i n g has b e e n s h o w n to b e p r o p o r t i o n a l to t h e surface tension of the p o l y m e r m e l t ( 7 L V ) a n d i n v e r s e l y p r o p o r t i o n a l to t h e m e l t viscosity (η)
(15).
S i n c e the m e l t v i s c o s i t y varies s t r o n g l y w i t h t e m p e r a
ture, to p r e c l u d e i n t e r f a c i a l v o i d s at l o w temperatures, it is i m p o r t a n t t o a l l o w for sufficient t i m e to i n s u r e extensive i n t e r f a c i a l contact
between
the p o l y m e r m e l t a n d the adjacent substrate. F i g u r e 2a illustrates a p o o r l y w e t t e d substrate. A l t h o u g h the t h e r m o d y n a m i c r e q u i r e m e n t s for s p r e a d i n g are fulfilled—i.e., y
s v
^ ?SL + 7LV—
s p r e a d i n g m a y not take p l a c e because of the k i n e t i c r e q u i r e m e n t s
(15).
E n h a n c e m e n t of w e t t i n g m a y b e a c c o m p l i s h e d b y e m p l o y i n g h i g h e r t e m peratures o r l o n g e r times, o r b o t h i f c o n v e n i e n t , b e a r i n g i n m i n d t h a t d e g r a d a t i o n of the p o l y m e r is to b e a v o i d e d .
S i n c e η decreases q u i t e
d r a s t i c a l l y w i t h t e m p e r a t u r e , r e l a t i v e l y short times at e l e v a t e d t e m p e r a tures are r e q u i r e d to a c h i e v e extensive i n t e r f a c i a l contact b e t w e e n
the
p o l y m e r m e l t a n d the substrate ( F i g u r e 2 b ) . S i n c e w e c a n f o r m s t r o n g a d h e s i v e joints b y m e l t i n g onto a h i g h energy surface w e c a n i n q u i r e w h e t h e r the surface generated at the h i g h e n e r g y s o l i d - p o l y m e r m e l t interface is a m e n a b l e to adhesive w h e n the m e t a l is r e m o v e d .
bonding
A s s h o w n i n F i g u r e 1 i t is i m p o r t a n t to
r e m o v e the m e t a l b y d i s s o l u t i o n r a t h e r t h a n b y p e e l i n g . P e e l i n g removes t h e surface r e g i o n of interest. T h i s c a n b e seen b y e x a m i n i n g t h e b o n d a b i l i t y of the d a m a g e d p o l y m e r a n d f o i l surfaces after p e e l i n g t h e f o i l
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
11.
SCHONHORN
AND
RYAN
145
Polymer Surface Morphology
Polyethylene at 2 0 ° C . Nucleated
Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
Single Crystal Aggregate
Gold
Teflon
Θ, deg.
Cos θ
A deg.
Cos θ
0, deg.
Cos6
93 67 55 Spreads
-0.052 0.391 0.574 1.000
94 79 77 35
-0.070 0.191 0.225 0.818
84 53 41 Spreads
0.105 .602 .755 1.000
f r o m the p o l y m e r . I n b o t h cases the joint strengths are l o w ( b o t t o m l i n e , Figure 1).
W h e n the f o i l is p e e l e d , f a i l u r e occurs i n the surface r e g i o n
of t h e p o l y m e r e x p o s i n g t w o n e w surfaces w h i c h are not a m e n a b l e to adhesive bonding.
TRAPPED AIR (a)
NOTE LOW REAL AREA OF INTERFACIAL CONTACT
(b)
NOTE LACK OF VOIDS FROM TRAPPED AIR IN PORES AND CREVICES
Figure 2. (a) Poorly wetted inter face and (b) extensive intermolecular contact between liquid and solid
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
146
INTERACTION
O F LIQUIDS A T SOLID
SUBSTRATES
T h e residue o n a peeled a l u m i n u m foil w h i c h h a d been
molded
against p o l y e t h y l e n e at 1 7 5 ° C . for one h o u r w a s e x a m i n e d b y G e l P e r m e a t i o n C h r o m a t o g r a p h y ( G P C ) to d e t e r m i n e t h e n a t u r e of the m o l e c u l a r w e i g h t d i s t r i b u t i o n a n d to d e t e r m i n e w h e t h e r a n y f r a c t i o n a t i o n oc c u r r e d at the m e t a l - p o l y m e r m e l t interface. T h e p o l y m e r w a s d i s s o l v e d off t h e f o i l a n d e x a m i n e d . T h e M w a n d M N values for the surface r e g i o n f o r m e d at the s o l i d - l i q u i d interface w e r e 4 7 , 6 0 0 a n d 8,180, r e s p e c t i v e l y . T h e c o r r e s p o n d i n g values f o r the b u l k p o l y m e r w e r e 4 5 , 1 0 0 a n d 9,300, r e s p e c t i v e l y . A p p a r e n t l y , there is n o f r a c t i o n a t i o n t a k i n g p l a c e as a result Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
of t h e extensive n u c l e a t i o n a n d g r o w t h of the t r a n s c r y s t a l l i n e r e g i o n ( F i g u r e 3 ) . W h a t e v e r species are present i n the p o l y m e r are a c c o m m o d a t e d i n t o the c r y s t a l structure. H o w e v e r , w h i l e the m o l e c u l a r w e i g h t d i s t r i b u t i o n s m a y b e s i m i l a r , because of m o r p h o l o g i c a l differences t h e m e c h a n i c a l strengths o f t h e surface regions are different.
Figure 3. The transcrystalline region generated at a high energy solid-polymer melt interface after solidification. The depth of the transcrystalline region is estimated to he about 25μ S t r o n g joints w i t h e p o x y adhesives c a n b e m a d e to p o l y e t h y l e n e surfaces w h i c h h a v e b e e n o x i d i z e d b y a v a r i e t y of t e c h n i q u e s
(4. 5 ) .
T h e g e n e r a l b e l i e f has b e e n that t h e presence of p o l a r groups o n the p o l y m e r surface creates a n affinity for the p o l a r e p o x y a d h e s i v e w h i c h i m p r o v e s w e t t a b i l i t y a n d results i n a strong adhesive joint. W e t t a b i l i t y has l o n g b e e n c o n s i d e r e d to b e of p r i m a r y c o n c e r n i n b e i n g a b l e to f o r m strong a d h e s i v e joints w i t h the l o w e n e r g y c r y s t a l l i n e p o l y m e r s . H a n s e n a n d S c h o n h o r n ( 5 ) h a v e d e m o n s t r a t e d that i f the weakness i n t h e surface r e g i o n of a p o l y m e r is r e m o v e d , w i t h o u t c h a n g i n g
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
11.
SCHONHORN
AND
its w e t t a b i l i t y , strong joints c a n b e p r e p a r e d . H a n s e n (17)
147
Polymer Surface Morphology
RYAN
I n fact, S c h o n h o r n a n d
h a v e s h o w n that l o w e r i n g the w e t t a b i l i t y b y , for e x a m p l e ,
e x p o s i n g p o l y e t h y l e n e to
fluorine
gas a n d c r e a t i n g a p o l y t e t r a f l u o r o -
e t h y l e n e - l i k e surface is not d e t r i m e n t a l , p r o v i d e d the w e a k l a y e r has b e e n e l i m i n a t e d i n the process. w e t t i n g (y ) c
of the
fluorinated
boundary
T h e c r i t i c a l surface t e n s i o n of
surface is a b o u t 20 d y n e s / c m . , s i m i l a r to
polytetrafluoroethylene. S u r f a c e treatments ( o x i d a t i o n ) are p r o b a b l y effective because t h e y , l i k e C A S I N G ( c r o s s l i n k i n g b y a c t i v a t e d species of i n e r t gases) ( 5 , 1 6 ) , Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
e l i m i n a t e the w e a k b o u n d a r y l a y e r n o r m a l l y present o n the surface of polyethylene.
D u r i n g C A S I N G , the p o l y m e r m o l e c u l e s at a n d near the
surface are k n i t t e d together to f o r m a c r o s s - l i n k e d m a t r i x h a v i n g h i g h m e c h a n i c a l strength. A c r o s s - l i n k e d s k i n o n p o l y e t h y l e n e has b e e n
ob-
s e r v e d after surface treatment b y c o r o n a d i s c h a r g e a n d c h e m i c a l e t c h i n g (2, I I , 21).
T h i s p r o b a b l y accounts for the strong joints f o r m e d b y t h e
use of these t e c h n i q u e s ( F i g u r e 4 ) .
T h e m e r e presence of p o l a r groups
w o u l d not b e sufficient i f t h e y w e r e o r g a n i z e d i n a l a y e r h a v i n g l o w m e c h a n i c a l strength. T o demonstrate the presence of the w e a k b o u n d a r y l a y e r i n p o l y e t h y l e n e f o r m e d at a l o w e n e r g y surface, w e a t t e m p t e d to e l i m i n a t e i t b y several t e c h n i q u e s a n d to observe the resultant joint strengths o b t a i n e d w i t h a c o n v e n t i o n a l e p o x y a d h e s i v e i n the c o m p o s i t e : adhesive-polyethylene-epoxy
aluminum-epoxy
adhesive-aluminum. T h e bottom curve i n
F i g u r e 4 is b a s e d o n joint s t r e n g t h d a t a o b t a i n e d f r o m u n t r e a t e d p o l y e t h y l e n e film ( m o l d e d against P T F E ) .
A l l experiments w e r e p e r f o r m e d
b e l o w the m e l t i n g p o i n t of p o l y e t h y l e n e since a b o v e the m e l t i n g p o i n t it w i l l s p r e a d o n the c u r e d e p o x y a d h e s i v e surface a n d i n this process w i l l p r e c l u d e the f o r m a t i o n of the w e a k b o u n d a r y l a y e r a n d result i n r e l a t i v e l y strong joints ( 1 9 ) .
W h e n p o l y e t h y l e n e is n u c l e a t e d i n the
presence of a h i g h energy surface, a t r a n s c r y s t a l l i n e r e g i o n ( 1 , 3, 6, 12) is f o r m e d at the s o l i d - l i q u i d interface o n c o o l i n g ( F i g u r e 3 ) . A p p a r e n t l y , this results i n g e n e r a t i o n of a r e g i o n at the interface w h o s e c h a r a c t e r i s t i c strength is s i m i l a r to i f not greater t h a n t h a t of the b u l k p o l y m e r It w a s felt that the w e a k b o u n d a r y l a y e r w a s c o m p r i s e d of
(10). low
m o l e c u l a r w e i g h t p o l y m e r m o l e c u l e s w h i c h w e r e f o r c e d to the surface d u r i n g r e c r y s t a l l i z a t i o n of the m e l t (7,8)
i n contact w i t h a l o w energy
surface, so w e h o p e d to m i n i m i z e t h e i r presence b y m o l d i n g w e l l c h a r a c t e r i z e d single c r y s t a l aggregates of p o l y e t h e y l e n e (18).
However, on
m o l d i n g against a l o w energy surface, w e a k b o u n d a r y layers w e r e g e n e r a t e d a n d o n l y s l i g h t increases i n joint s t r e n g t h w e r e o b s e r v e d ( F i g u r e 4).
W e t t a b i l i t y of the m o l d e d " s i n g l e c r y s t a l aggregate" w a s essentially
the same as a n u n t r e a t e d film b u t c o n s i d e r a b l y different f r o m the freshly p r e c i p i t a t e d single c r y s t a l aggregate
(18).
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
3500
01
I
20
I
40
I
60
1
80
L_
100
T E M P E R A T U R E OF JOINT FORMATION ( ° C )
Figure 4. The tensile ear strength of the com posite aluminum-epox> Ahesive-polyethylene-epoxy adhesive-aluminum Ated as a function of the temperatui of the joint formation •—Untreated polyethylene (molded against PTFE) (no surface treatment) •—Marlex 5003 polyethylene crystallized from 0.04% solution in xylene at 85°C. then molded into 10 mil. sheets at 160° C. No surface treatment Δ—Polyethylene film (untreated) exposed to vapors of a boiling 1.1 hexane, heptane mixture for 5 minutes A—Polyethylene film (untreated) irradiated with a Van de Graaff generator to a dose of 10 Mrads Ο—Polyethylene film exposed to glass cleaning solution at 80° C. for 4 minutes φ—CASED polyethylene, exposed to activated helium at 1 mm. pressure and high power for 5 seconds ^-^Polyethylenefilmgenerated against vapor degreased aluminum foil (subsequently removed by dissolution) φ—Polyethylene film generated against vapor degreased and chemically etched aluminum foil (subsequently removed by dissolution) Φ—Polyethylene film generated against gold
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
11.
SCHONHORN
AND
149
Polymer Surface Morphology
RYAN
W e resorted to other t e c h n i q u e s s u c h as solvent e x t r a c t i o n
(16).
S p e c i m e n s s u i t a b l e for joint strength m e a s u r e m e n t w e r e p r e p a r e d a n d t h e n extracted i n a b o i l i n g 1:1 hexane-heptane s o l u t i o n for several m i n utes.
T h e specimens w e r e not s w e l l e d a p p r e c i a b l y , a n d resultant joint
strengths w e r e c o n s i d e r a b l y greater t h a n those o b t a i n e d w i t h u n t r e a t e d film.
Again y
c
w a s a b o u t 35 d y n e s / c m .
W h e n b o i l i n g octane w a s u s e d
to extract the l o w m o l e c u l a r w e i g h t p o l y m e r f r o m p o l y e t h y l e n e considerable swelling occurred.
film,
U p o n r e m o v a l of the solvent, a d d i t i o n a l
l o w e r m o l e c u l a r w e i g h t m a t e r i a l w a s t r a n s p o r t e d to the s o l i d - a i r interface Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
a n d o n l y w e a k joints c o u l d b e o b t a i n e d . T h e weak boundary layer was partially eliminated b y of the p o l y m e r w i t h h i g h energy electrons.
bombardment
T h e results i n F i g u r e 4 s h o w
that stronger joints w e r e o b t a i n e d — b u t not s h o w n is the fact t h a t b u l k properties of the p o l y m e r w e r e seriously affected.
A l t h o u g h the y
was
c
r a i s e d , since i r r a d i a t i o n w a s d o n e i n a i r , joint strengths w e r e a b o u t t h e same as those o b t a i n e d b y the solvent e x t r a c t i o n t e c h n i q u e . T h e u p p e r m o s t curves i n F i g u r e 4 are results o b t a i n e d w i t h surface t r e a t m e n t t e c h n i q u e s w h i c h result i n b o t h c r o s s - l i n k i n g a n d s t r e n g t h e n i n g of the w e a k b o u n d a r y l a y e r w i t h o u t affecting b u l k properties of polymer.
H i g h joint strengths w e r e o b t a i n e d after b o t h C A S I N G
the (five
seconds i n e x c i t e d h e l i u m ) a n d after e t c h i n g w i t h glass c l e a n i n g s o l u t i o n (four
m i n u t e s at 8 0 ° C ) .
G l a s s c l e a n i n g s o l u t i o n treatment of
poly-
e t h y l e n e l i k e a l l o x i d a t i v e surface treatments causes a b l a t i o n of some of the p o l y m e r at the surface a n d changes w e t t a b i l i t y . T h e results for t h e films generated against the g o l d are c o m p a r a b l e to those of the C A S I N G technique. It is i n t e r e s t i n g to note t h a t the joint strengths for
films
generated
against g o l d are i n excess of those p r e p a r e d w i t h films generated against e t c h e d a l u m i n u m . V a p o r d e g r e a s i n g the a l u m i n u m f o i l w i t h o u t a c h e m i c a l e t c h is o n l y as effective
as h i g h e n e r g y e l e c t r o n b o m b a r d m e n t
in
e l i m i n a t i n g the w e a k b o u n d a r y layer. T h e i m p o r t a n c e of the c h e m i c a l e t c h o n t h e a l u m i n u m cannot over-emphasized.
S u r f a c e layers f r o m r o l l i n g oils or w e a k oxides
be may
o b v i a t e a n y d e s i r e d effects. B y e x a m i n i n g the strength of joints p r e p a r e d over
an
t e m p e r a t u r e range w h i c h i n c l u d e s the m o l t e n r e g i o n , w e s t r i k i n g features ( F i g u r e 5 ) .
extensive
note
some
T h e d a t a for the m e l t c r y s t a l l i z e d p o l y m e r
sheet that w a s p e e l e d f r o m the m o l d h a v e b e e n r e p o r t e d p r e v i o u s l y
(19).
W e c o m p a r e these d a t a w i t h the d a t a of this r e p o r t to p o i n t out t h e significance of the u n d i s t u r b e d t r a n s c r y s t a l l i n e r e g i o n . T h e joint strengths are c o n s i d e r a b l y h i g h e r t h a n the same m a t e r i a l s w h i c h h a v e a d a m a g e d t r a n s c r y s t a l l i n e région.
F r o m the a b o v e analysis w e c a n c o n c l u d e t h a t
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
150
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
3000
2500
ι ho
2 0 0 0
ζ
a: hco
Downloaded by UNIV OF SYDNEY on May 29, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch011
UJ