The Fate of Nitrogen Oxides in Urban Atmospheres - ACS Symposium

Jul 23, 2009 - The problem of uncovering the fate of nitrogen oxides in the atmosphere is complicated by the continuous movement of air masses and the...
0 downloads 0 Views 1MB Size
14

Removal of Trace Contaminants from the Air Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 09/21/18. For personal use only.

The

Fate

of

Nitrogen

Oxides

in

Urban

Atmospheres



CHESTER W. SPICER, JAMES L. GEMMA, DARRELL W. JOSEPH, and ARTHUR LEVY Battelle, Columbus Laboratories, Columbus, Ohio 43201

Nitrogen oxides enter the atmosphere from a variety of sources, principally from automotive exhausts and power p l a n t combustion. Some n i t r o g e n s p e c i e s , such as ammonia r e s u l t i n g from the n a t u r a l decomposition of organic m a t e r i a l , are a l s o an eventual source of n i t r o g e n o x i d e s . Most of the n i t r o g e n oxides are converted i n t o n i t r o g e n d i o x i d e which, in t u r n , r e a c t s w i t h other species in the atmosphere producing n i t r a t e s and nitrites in both gaseous and p a r t i c u l a t e forms. However, the u l t i m a t e disposition of the n i t r o g e n oxides is unknown. The problem of uncovering the fate of n i t r o g e n oxides in the atmosphere is complicated by the continuous movement of a i r masses and the c o n t i n u a l input of m a t e r i a l i n t o the atmosphere. The current program was designed to measure a m u l t i t u d e of chemical and m e t e o r o l o g i c a l parameters in two urban atmospheres in order to determine the distribution and disposition of nitro­ gen compounds in the atmosphere and the f a c t o r s which i n f l u e n c e the n i t r o g e n oxides removal processes. The program described here c o n s i s t e d of three distinct phases: a n a l y t i c a l methodology development, field sampling, and data a n a l y s i s . The analytical development phase of the program has i n v o l v e d t e s t i n g s t a t e - o f - t h e - a r t techniques and in some instances development and validation of novel procedures for determining the f o l l o w i n g species during the field sampling phase of the program: NO, N0 , O , CH ONO , C H ONO , PAN, NH , HNO , mass l o a d i n g , p a r t i c u l a t e NO , particulate NO , partic­ ulate NH , and total C, H, and Ν in the p a r t i c u l a t e phase. Temperature, relative h u m i d i t y , wind speed, wind direction, and s o l a r intensity were a l s o monitored. Some rainfall and dustfall samples were c o l l e c t e d and analyzed for n i t r o g e n s p e c i e s . 2

3

3

2

-

3

2

5

2

3

-

3

2

+

4

The f i e l d s a m p l i n g p h a s e o f t h e p r o g r a m was c a r r i e d o u t i n t h e summer o f 1 9 7 3 , i n S t . L o u i s , M i s s o u r i , and West C o v i n a , *To whom c o r r e s p o n d e n c e s h o u l d be a d d r e s s e d .

159

160

R E M O V A L OF

California

TRACE CONTAMINANTS F R O M THE

( l o c a t e d 25 m i l e s e a s t o f downtown L o s

Angeles).

Experimental The a n a l y t i c a l methods employed i n t h i s i n v e s t i g a t i o n a r e l i s t e d i n T a b l e I . B o t h NO and NO2 w e r e m o n i t o r e d by chemiluminescence techniques. We have p r e v i o u s l y r e p o r t e d (1) on i n t e r f e r e n c e t o t h e c h e m i l u m i n e s c e n t d e t e r m i n a t i o n o f NO2 by a v a r i e t y o f o t h e r g a s e o u s n i t r o g e n s p e c i e s i n c l u d i n g PAN, H N O 3 , and a l k y l n i t r a t e s . Ozone was m o n i t o r e d by c h e m i l u m i n e s c e n c e methods. A d u a l c a t a l y t i c - c o n v e r t e r chemiluminscent instrument was u s e d t o m o n i t o r ammonia. Gas p h a s e o r g a n i c n i t r a t e s w e r e d e t e r m i n e d by e l e c t r o n c a p t u r e d e t e c t i o n gas c h r o m a t o g r a p h y . Two n o v e l methods f o r HNO3 d e t e r m i n a t i o n were d e v e l o p e d . One, a m o d i f i e d c o l o r i m e t r i c p r o c e d u r e ( 2 ) , y i e l d s i n t e g r a t e d HNO3 v a l u e s , w h i l e t h e o t h e r , b a s e d on c o u l o m e t r y ( 3 ) . g i v e s a c o n ­ tinuous readout of atmospheric n i t r i c a c i d . Table I.

Analytical Methods

Technique

Measurement NO, 0

N0 , 2

Ν0

Chemiluminescence

χ

Chemiluminescence 3

NH

Chemiluminescence

3

PAN

E l e c t r o n Capture

Gas

Chromatography

Alkyl

E l e c t r o n Capture

Gas

Chromatography

Nitrates

HNO3

Continuous

HNO3

Integrated Colorimetric

Coulometric

nh£

H i V o l . S a m p l i n g and Standard A n a l y s i s

NO3 NO2

T o t a l C, Η,

Ν

Wind Speed Wind D i r e c t i o n MRI, Relative

INC.

Weather S t a t i o n

Humidity

Temperature Sunlight

Intensity

Pyrohelimoter

A e r o s o l s a m p l i e s w e r e c o l l e c t e d on h i g h - p u r i t y q u a r t z -

AIR

SPICER E T A L .

Nitrogen

Oxides

in Urban

Atmospheres

Legend PAN 0.004 ppm H N 0 0.009 ppm Nitrogen oxides 0.070 ppm Ammonia 0.006 ppm 3

St Louis

Ozone 0.080 ppm Nitric oxide 0.040 ppm Nitrogen dioxide 0.040 ppm — — Nitrogen oxides 0.070 ppm

Hour of Day Legend



Figure

Global irradiance 0.900 cal/sq cm/min Wind speed 7.000 mph Temperature 30.000 Centigrade Relative humidity 100.000 percent

1. Average meteorological

diurnal air quality profile, St. Louis

and

162

REMOVAL O F TRACE CONTAMINANTS FROM

Table II.

T H E AIR

Summary of

Aerosol Mass Weather Conditions Date

Day

GeneraK*)

Temp, C

RHft

Loading

O3,

NO, Ν Ο ,

pg/m*

ppm

ppm

χ

ppm

7-18

W

S

28

75

114.1

0.049

0.012

0.061

7-19

Th

R.S

27

92

80.7

0.033

0.016

Ο.ΟΰΙ

7-20

F

S

29

79

51.5

0.027

0.013

0.047

7-22

Sun

S

27

82

32.6

0.072

0.019

0.037

7-23

M

S,R

26

84

42.8

0.041

0.005

0.034

7-24

Τ

S

27

86

37.0

0.037

0.011

0.048

7-25

W

S

27

80

53.9

0.044

0.021

0.056

7-26

Th

R,C

26

69

33.4

0.032

0.013

0.035

7-27

F

C

27

67

50.9

0.028

0.013

0.038

7-30

Ni

R

25

76

68.2

0.023

0.026

0.057

7-31

PC.R

24

72

39.2

0.032

0.015

0.034

8-1

Τ W

C

21

72

41.9

0.022

0.016

0.028

8-2

Th

C

22

66

43.5

0.022

0.014

0.034

8-3

F

S

23

61

53.7

0.034

0.011

0.035

8-4

Sat

S

25

68

79.9

0.052

0.007

0.033

6-5

Sun

S

26

63.0

0.045

8-6

M

PC

25

76 72

74.9

0.042

0.009 0.011

0.038 0.037

0.039

8-7

T

S

61.4

0.038

0.012

W

S

27 30

84

8-8

82

51.5

0.023

0.014

0.036

8-9

Th

R

24

95

47.9

0.004

0.024

0.051

8-10

F

S.R

24

82

66.4

0.041

0.015

0.041

8-12

Sun

S,R

26

85

40.6

0.037

0.026

0.047

8-13

M

R

23

93

63.3

0.016

0.026

0.054

8-14

T

R.S

21

82

42.0

0.035

0.013

0.029

8-15

W

PC

23

76

90.5

0.041

0.034

0.062

8-16

Th

R.S

23

83

79.6

0.029

0.016

0.044

(a) S « Sunny, R = Rain, C » Clear, PC « Partly Cloudy, C l = Cloudy, (b) Continuous Coulometric.

Table III.

Summary of St. Louis Hydrocarbon D a t a 7-19-73

7-18-73

Oate Sample N u m b e r

(b)

1

2

1

4

3

( a )

2

3

4

Component Methane CO

2390 2053

2057 2326 2271

2235

1674 2008

1266

578

1405 1746 2134

1634

24

18

5

17

26

38

27

2420 2541

C H 2

2

21

C H

4

29

29

17

7

30

28

40

26

80

88

54

34

77

92

103

73

Nonmethane Hydrocarbons

570

454

452

140

295

435

555

424^

Ο,Η./α,Η.,

1.38 1.22 0.93 1.42

2

Olefins Aromatics

1.79 1.06 1.03 0.96

(a) Courtesy of the U.S. Environmental Protection Agency.

spiCER E T A L .

14.

Nitrogen

Oxides

in Urban

Atmospheres

163

A i r Quality Data, St. Louis

Pollutants 23-Hour Average

1-Hour Maximum

NH ,

PAN,

HN0 (b)

ppm

ppm

ppm

0.010

0.001

0.008

0.002

0.008

NO.

NO .

ppm

ppm

ppm

ppm

ppm

ppm

ppm

0.012

0.007

0.110

0.043

0.114

0.014

0.003

0.044

0,005

0.004

0.107

0.061

0.121

0.011

0.007

0.022

0.002

0,002

0.000

0.083

0.0.-V4

0.070

0.011

0.006

0.012

0.002

0.001

0.001

0.007

0 . 146

0.026

0.050

0.016

0.003

0.00

0.004

0.001

O.00G

0.009

0.086

0.020

0.067

0.0'Vi

0.055

0.00G

0.001

0.004

0.011

0.113

0.Ο.Ί0

0.031

0.011

0.004

0.016

0.005

0.001

0,002

0.002

0.

i:s

0.070

0 . 108

0.000

0.0'U

0.017

0.004

0.001

0,000

0.004

0.066

0.024

0.060

0.005

0.001

0.000

0.004

0.001

0.000

0.004

0.067

0.042

0.069

0.006

0.004

0.000

0.004

0.001

0.002

0.001

0.003

0.001

0.002 0.003

3

f

C

HN0 < >, 3

3

x

ΝII .

PAN,

0 ,

3

3

HNO3.

a

0.006

0.050

0.054

0.0S9

0.002

0.068

0.047

0.084

0.005

0.002



0.003

0.033

0.030

0.049

0.003

0.002

--

0.005

0.051

0.033

0.061

0.005

0.002

0.002

0.000

0.004

0.087

0.037

0.077

0.004

0.0 04

0.000

0.003

0.004

0.008

0.124

0.051

0.096

0.006

0.006

0.015

0.003

0.002

0.003

0.001

0.092

0.03-1

0.091

0.006

0.003

0.013

0.002

0.001

0.002

0.002

0.078

0.035

0.075

0.004

0.003

0.029

0.002

0.002

0.005

0.004

0.076

0.030

0.067·

0.005

0.004

0.020

0.003

0.002

0.003

0.004

0.043

n.031

0.059

0.006

0.004

0.021

0.003

0.002

0.001

0.000

0.011

0.060

0.0S9

0.007

0.004

0.011

0.002

0.005

0.004

0.002

0.163

0.083

0.106

0.004

0.019

0.024

--

0.003

0.001

0.007

0.138

0.101

0.133

0.006

0.005

0.005

0.002

0.008

0.000

0.058

0.051

0.094

0.008

0.004

0.042

0.002

0.002

0.000

0.000

0.063

0.021

0.059

0.004

0.004

0.004

0.003

0.003

0.009

0.001

0.096

0.103

0.147

0.009

0.009

0.0S)

0.002

0.003

0.003

0.000

0.065

0.042

0.078

0.005

0.008

0.017

0.001

(c)

Integrated Colorimetric.

(Hydrocarbon values in ppbC; carbon monoxide values in ppb.)

2418

1984

1570

1536 2047

594

390

882

1018

817

528

1010

1423

1113

930

27

23

12

10

12

14

4

4

15

21

13

12

24

30

15

11

20

18

8

9

20

26

17

15

75

100

60

39

73

53

35

36

66

74

62

41

2310

2445 2235 2094 2079

2107 2129

2285 2117

140

273

166

109

129

353

220

217

155

198

78

46

513

818

530

376

448

657

448

420

486

579

387

284

0.88

1.32

122

1.08

1.62

1.31

151

2.09

1.30

125

1.31

1.26

(b) Sample No. 1 » 6-8 a.m.; 2 = 8-10 a.m.; 3 » 10 a.m.-12 p.m.; 4 - 12-2 p.m





0.006



164

R E M O V A L OF

TRACE CONTAMINANTS F R O M THE

AIR

f i b e r f i l t e r s by two h i g h v o l u m e s a m p l e r s ^ C o n v e n t i o n a l wet c h e m i s t r y p r o c e d u r e s w e r e employed f o r NO3 and N 0 determina­ tion. Ammonium i o n was d e t e r m i n e d , a f t e r c o n v e r s i o n t o ammonia, by an ammonia g a s - s e n s i n g e l e c t r o d e . A combustion technique was u s e d f o r t o t a l C, Η, Ν a n a l y s i s . 2

Results M o n i t o r i n g o f c h e m i c a l and m e t e o r o l o g i c a l v a r i a b l e s was c a r r i e d o u t f o r 5 weeks i n S t . L o u i s , M i s s o u r i , and 5 weeks i n West C o v i n a , C a l i f o r n i a . S a m p l i n g i n b o t h c i t i e s was c o n d u c t e d on a 2 3 - h o u r - p e r - d a y b a s i s , f r o m 11:30 p.m. t o 10:30 p.m. A summary o f t h e a i r - q u a l i t y d a t a c o l l e c t e d i n S t . L o u i s i s shown i n T a b l e I I . The g a s - p h a s e d a t a a r e p r e s e n t e d a s b o t h 23-hour a v e r a g e s and as maximum 1-hour a v e r a g e s . A summary o f S t . L o u i s h y d r o c a r b o n and CO d a t a t a k e n by t h e E n v i r o n m e n t a l P r o t e c t i o n Agency f o r s e v e r a l d a y s s i m u l t a n e o u s l y w i t h o u r measurements i s presented i n Table I I I . F i g u r e 1 d i s p l a y s the p r o f i l e s of the a v e r a g e d i u r n a l a i r q u a l i t y and m e t e o r o l o g y d u r i n g t h e S t . L o u i s f i e l d program. These p r o f i l e s a r e composites over the e n t i r e 5-week s a m p l i n g p e r i o d . The a v e r a g e d a e r o s o l r e s u l t s f r o m o u r S t . L o u i s s t u d y a r e g i v e n i n T a b l e I V f o r two p a r t i c l e - s i z e fractions. Table IV.

Aerosol Analysis

Weight P e r c e n t

St.

ΝΗ*

N0

4.4

-

0.63

19.0

3.6

4.6

0.55

0.001

2.65

14.6

1.8

1.5

4.7

-

1.7

19.4

3.8

5.3

0.001

4.8

12.6

1.8

2.2

2

NO3

Louis, Missouri

Average T o t a l A e r o s o l Composition L a r g e P a r t i c l e (>2.5 ym) Composition West C o v i n a ,

California

Average T o t a l A e r o s o l Composition L a r g e P a r t i c l e (>2.5 ym) Composition

0.63

A summary o f t h e a i r - q u a l i t y d a t a f o r t h e 29 s a m p l i n g d a y s i n West C o v i n a , C a l i f o r n i a , i s shown i n T a b l e V. The g a s - p h a s e d a t a a r e t a b u l a t e d a s b o t h d a i l y ( 2 3 - h o u r ) a v e r a g e s and maximum 1-hour a v e r a g e s . F i g u r e 2 p r o f i l e s the average d i u r n a l a i r q u a l i t y and m e t e o r o l o g y d u r i n g t h e f i e l d s a m p l i n g i n West C o v i n a The a v e r a g e a e r o s o l r e s u l t s f r o m o u r West C o v i n a s a m p l i n g a r e

spiCER E T

AL.

Nitrogen

Oxides

in Urban

Atmospheres

/A /

Los Angeles

too 90 80 70 60 50

NH

40

3

PAN I e

Ν0

χ

L o s s , ppm

14.6 ± 3.2

14.6

0.000 ± 0.012

18.4 ± 0.6

14.3

0.035 ± 0.006

I t i s apparent from t h e d a t a i n Table V I t h a t t h e average Ν 0 l o s s i n S t . L o u i s , 0 . 0 0 0 ± 0 . 0 1 2 ppm, i s s m a l l i n compar­ i s o n w i t h t h e a v e r a g e c o n c e n t r a t i o n o f Ν 0 . The a v e r a g e sum of PAN and HNO3 o v e r t h e same t i m e p e r i o d was 0.007 ppm, w e l l w i t h i n t h e 0 . 0 1 2 ppm d e v i a t i o n . Thus, t h e average l o s s o f N 0 in St. Louis i s quite small. The u s e o f a c e t y l e n e a s a t r a c e r has a l s o c o n f i r m e d t h i s f i n d i n g ( 2 ) . The a v e r a g e c a l c u l a t e d Ν 0 l o s s i n West C o v i n a a s r e p o r t e d i n T a b l e V I , i s 0.035 ± 0.006 ppm. The 0.006 ppm d e v i a t i o n i s m e r e l y t h e s t a t i s t i c a l d e v i a t i o n about t h e s l o p e c a l c u l a t i o n . T h e r e a r e s e v e r a l o t h e r s o u r c e s o f e r r o r h o w e v e r , w h i c h may have a much g r e a t e r i m p a c t on t h e a c c u r a c y o f t h e " N 0 l o s s " χ

χ

X

χ

X

170

R E M O V A L OF

TRACE CONTAMINANTS F R O M T H E

AIR

c a l c u l a t i o n f o r West C o v i n a . F i r s t , t h e c a l c u l a t i o n d e p e n d s on e m i s s i o n i n v e n t o r i e s w h i c h w e r e o v e r two y e a r s o l d a t t h e t i m e o f t h i s s t u d y . S e c o n d , t h e CO d a t a f r o m West C o v i n a w e r e o b t a i n e d by NDIR, a p r o c e d u r e w h i c h i s l e s s s e n s i t i v e and more s u s c e p t i b l e t o i n t e r f e r e n c e t h a n t h e gas c h r o m a t o g r a p h i c p r o c e ­ dures used i n S t . L o u i s . The e f f e c t o f t h e s e i n t e r f e r e n c e s i s p r e s u m a b l y l a r g e l y e l i m i n a t e d i n o u r c a l c u l a t i o n by t h e u s e o f t h e s l o p e o f t h e CO v s Ν 0 r e g r e s s i o n l i n e . The i n t e r c e p t o f t h e r e g r e s s i o n l i n e now c o n t a i n s a b a c k g r o u n d CO component and a component c a u s e d b y i n s t r u m e n t a l i n s e n s i t i v i t y and i n t e r ­ ference. However, t h e computed N 0 l o s s i s s t i l l l i k e l y t o be o v e r e s t i m a t e d because of these sources of e r r o r . Thus we c a n n o t a t t h i s t i m e make an u n q u a l i f i e d j u d g m e n t as t o t h e b a l a n c e b e t w e e n Ν 0 r e a c t a n t s and p r o d u c t s i n West C o v i n a due t o t h e many f a c t o r s w h i c h may be i n f l u e n c i n g t h e a c c u r a c y o f t h e Ν0 loss" calculation. We c a n s a y h o w e v e r , t h a t t h e " Ν 0 loss" a p p e a r s t o be a s m a l l f r a c t i o n o f t h e t o t a l N 0 c o n c e n t r a t i o n i n West C o v i n a . A much more e x a c t d e t e r m i n a t i o n o f Ν 0 loss w i l l be c a r r i e d o u t i n t h e n e a r f u t u r e u s i n g CO d a t a c o l l e c t e d by gas c h r o m a t o g r a p h y i n West C o v i n a s i m u l t a n e o u s l y w i t h o u r study. One f i n a l v i e w o f t h e p r o b l e m c a n be g a i n e d by e x a m i n i n g t h e time dependence o f t h e composited N 0 l o s s p r o f i l e . This 5-week a v e r a g e d p l o t i s shown i n F i g u r e 3. The r e l a t i v e c o n ­ c e n t r a t i o n shown on t h e o r d i n a t e s o f t h e s e p l o t s may be t h o u g h t o f as p a r t s p e r h u n d r e d m i l l i o n (pphm). I t s h o u l d be o b s e r v e d f i r s t o f a l l t h a t we h a v e a l l o w e d t h e d a t a t o f o r m t h e i r own baseline. Our d e t a i l e d c a l c u l a t i o n i n d i c a t e s t h a t t h i s b a s e ­ l i n e may be o b s c u r i n g an a p p a r e n t 20 ppb Ν 0 l o s s w h i c h r e m a i n s c o n s t a n t w i t h t i m e (shows no d i u r n a l v a r i a t i o n ) . This apparent 20 ppb l o s s may be due t o Ν 0 r e m o v a l b y d r y d e p o s i t i o n p r o ­ c e s s e s , i t may r e p r e s e n t i n a c c u r a c i e s i n t h e e m i s s i o n s i n v e n ­ t o r i e s , o r i t may r e p r e s e n t some o t h e r s o u r c e o f u n d e f i n e d error. The f a c t t h a t i t i s c o n s t a n t h o w e v e r , i n d i c a t e s t h a t , i f i t i s indeed a r e a l l o s s , i t i s probably not photochemical i n nature. Of t h e two p r o m i n e n t humps d i s p l a y e d i n t h e "NO loss" c u r v e , t h e s e c o n d one c a n be a c c o u n t e d f o r e n t i r e l y by t h e sum o f PAN and H N O 3 . T h i s i s i l l u s t r a t e d by t h e p r o f i l e i n the lower p o r t i o n of the f i g u r e . We c a n s a y , t h e r e f o r e , t h a t t h e mechanism o f a f t e r n o o n l o s s o f Ν 0 i s p h o t o c h e m i c a l l y r e l a t e d and t h a t t h e m a g n i t u d e o f t h e l o s s c a n be c o m p l e t e l y a c c o u n t e d f o r by m e a s u r e d Ν 0 r e a c t i o n p r o d u c t s . The e x p l a n a t i o n f o r t h e a p p a r e n t e a r l y m o r n i n g l o s s o f Ν 0 i s u n c l e a r at t h i s time. O b v i o u s l y , f o r the " Ν 0 l o s s " to i n c r e a s e as shown i n t h e f i g u r e , t h e ( C 0 / N 0 ) m r a t i o i n E q u a t i o n ( 2 ) must i n c r e a s e . S i n c e t h i s e a r l y morning i n c r e a s e i n the " N 0 l o s s " c u r v e a p p e a r s a t t h e same t i m e t h a t t h e CO and N 0 e m i s s i o n s s o u r c e s a r e u n d e r g o i n g t h e i r most d r a m a t i c change o f the day, the p o s s i b i l i t y e x i s t s t h a t the e a r l y morning " l o s s " χ

X

χ

Μ

χ

χ

X

χ

X

χ

χ

χ

χ

χ

χ

x

X

X

spiCER E T A L .

Nitrogen

Oxides

in Urban

N0

¥

Atmospheres

Loss

A 6

\

****

-da



9

PAN +

~0

2

4

6

8

HNO,

10 12 14 16 18 20 22 24

Hour of The

Figure

3.

Composite Covina

Day

profiles,

West

172

R E M O V A L OF

TRACE CONTAMINANTS F R O M THE

AIR

i s a r t i f i c i a l . The r a t i o n a l e i s a s f o l l o w s : A m a j o r i n c r e a s e i n t h e a u t o e x h a u s t c o n t r i b u t i o n t o t h e a i r mass o c c u r s b e t w e e n 5:00-8:00 a.m., j u d g i n g from the average N0 p r o f i l e i n F i g u r e 2. S i n c e a u t o e x h a u s t has a c o n s i d e r a b l y h i g h e r C 0 / N 0 r a t i o t h a n t h e n o r m a l L o s A n g e l e s b a s i n m i x t u r e ( a p p r o x i m a t e l y 24 v e r s u s 1 4 . 3 ) , t h e m o r n i n g "N0 l o s s " peak may o n l y be t h e r e s u l t o f a d i f f e r e n t e m i s s i o n s m i x d u r i n g p e a k t r a f f i c h o u r s and n o t t r u l y r e f l e c t removal of Ν 0 f r o m t h e a i r mass. I n d e e d , i f t h e a d d i t i o n a l m o r n i n g a u t o e x h a u s t b u r d e n ( a t a C 0 / N 0 r a t i o o f 24) r a i s e s t h e n o r m a l CO/NO e m i s s i o n s r a t i o f r o m 14.3 t o 16.5, t h e n t h e 6:00 a.m. a p p a r e n t N0 l o s s " peak w o u l d be c o m p l e t e l y eliminated. A t t h i s t i m e t h e r e i s no s u r e way t o i n c o r p o r a t e a v a r i a b l e e m i s s i o n i n v e n t o r y r a t i o i n t o our c a l c u l a t i o n s , a l t h o u g h i t seems v e r y l i k e l y t h a t t h e e m i s s i o n s r a t i o must v a r y d u r i n g t h e day due t o t r a f f i c p a t t e r n s and v a r i a t i o n s i n other emissions sources. A t t h i s p o i n t we c a n o n l y s u g g e s t t h e v a r i a t i o n i n t h e C 0 / N 0 e m i s s i o n s r a t i o as a p r o b a b l e c a u s e o f the apparent morning N0 loss. X

x

X

χ

x

X

x

X

Conclusions S e v e r a l t e n t a t i v e c o n c l u s i o n s c a n be drawn f r o m o u r r e s u l t s . S i n c e d e t a i l e d d i s c u s s i o n s of the d a t a s u p p o r t i n g each of these c o n c l u s i o n s has b e e n p r e s e n t e d e l s e w h e r e ( 2 ) . we w i l l s i m p l y s t a t e o u r m a j o r o b s e r v a t i o n s and c o n c l u s i o n s h e r e : (1) B a s e d on o u r "N0 L o s s " c a l c u l a t i o n s i t a p p e a r s t h a t t h e mechanisms by w h i c h t h e n i t r o g e n o x i d e s a r e removed f r o m t h e a t m o s p h e r e i n v o l v e r e l a ­ t i v e l y slow processes. (2) I n West C o v i n a , t h e g r e a t e s t l o s s of n i t r o g e n o x i d e s was o b s e r v e d d u r i n g m i d a f t e r n o o n on h i g h p h o t o c h e m i c a l smog d a y s . This portion o f t h e Ν 0 L o s s " p r o f i l e was h i g h l y c o r r e ­ l a t e d w i t h ozone c o n c e n t r a t i o n . I f c e r t a i n assumptions are accepted, the afternoon or photochemical l o s s of n i t r o g e n oxides appears t o be l a r g e l y a c c o u n t e d f o r by t h e sum o f t h e PAN and n i t r i c a c i d c o n c e n t r a t i o n . (3) T h e r e was some e v i d e n c e t h a t n i t r i c a c i d i s removed f r o m t h e a i r by a l k a l i n e - s u r f a c e g l a s s - f i b e r f i l t e r s , b u t n o t by h i g h - p u r i t y q u a r t z - f i b e r f i l t e r s . I f t r u e , t h i s would mean t h a t much p a r t i c u l a t e n i t r a t e d a t a c o l l e c t e d o v e r t h e y e a r s may have b e e n s t r o n g l y i n f l u e n c e d by g a s e o u s n i t r i c a c i d . (4) T h e r e was some i n d i c a t i o n f r o m our d a t a t h a t ozone i s advected i n t o the S t . L o u i s r e g i o n d u r i n g e a r l y morning hours. While the source of t h i s ozone i s not y e t c l e a r , t h e r e i s some e v i d e n c e t h a t PAN and p o s s i b l y X

Μ

χ

14.

spiCER E T A L .

Nitrogen

Oxides

in Urban

Atmospheres

173

n i t r i c acid are associated with the nighttime ozone. The p r o g r a m i s c o n t i n u i n g and t h e s e c o n d y e a r e f f o r t w i l l be d e v o t e d i n p a r t t o f u r t h e r v a l i d a t i o n and d o c u m e n t a t i o n o f o u r n i t r i c a c i d measurements a n d i n p a r t t o f u r t h e r a n a l y s i s and i n t e r p r e t a t i o n o f o u r f i r s t - y e a r f i e l d r e s u l t s . Acknowledgments The w o r k r e p o r t e d h e r e was s u p p o r t e d b y t h e C o o r d i n a t i n g R e s e a r c h C o u n c i l , I n c . , and t h e U.S. E n v i r o n m e n t a l P r o t e c t i o n A g e n c y . We w o u l d l i k e t o a c k n o w l e d g e t h e v a l u a b l e c o n t r i b u t i o n s t o t h i s s t u d y made b y t h e members o f t h e CRC-APRAC c o m m i t t e e , CAPA-9-71; E. S. J a c o b s , J . J . B u f a l i n i , E. H. B u r k , W. A. G l a s s o n , R. Hammerle, and t h e l a t e D. H u t c h i n s o n .

Literature Cited 1.

S p i c e r , C. W. and Miller, D. F., "Nitrogen Balance in Smog Chamber Studies", to be published in J. A i r Poll. C o n t r o l A s s o c . ; presented at 67th Annual M e e t i n g , Air Poll. C o n t r o l A s s o c . , Denver, 1974.

2.

S p i c e r , C. W., "The Fate of Nitrogen Oxides in the Atmo­ sphere", Battelle-Columbus r e p o r t to EPA and CRC, September, 1974.

3.

Miller, D. F. and S p i c e r , C. W., "A Continuous Analyzer for D e t e c t i n g Nitric Acid", to be published in J. Air Poll. C o n t r o l A s s o c . ; presented at the 67th Annual M e e t i n g , Air Poll. C o n t r o l A s s o c . , Denver, 1974.