Document not found! Please try again

The Ferrous-Cupric Dosimeter

to 100 rads/pulse, and the deaerated solution up to 500 rads/pulse. *T*he Fe 2 + -Cu 2 + dosimeter was suggested in 1954 by Hart and Walsh. A. (5), an...
0 downloads 0 Views 558KB Size
40 The Ferrous-Cupric Dosimeter E. BJERGBAKKE and K. SEHESTED

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch040

Danish Atomic Energy Commission, Research Establishment Risö, Roskilde, Denmark

Air-free, air-saturated, and oxygenated solutions of the Fe +-Cu dosimeter have been investigated for Co and high dose-rate electron dosimetry. It has been shown that the dosage curves are not completely linear, but that an oxygenated or deaerated system may be used in the range 50 to 800 krad with an accuracy of 1%. The oxygenated system is for a 1.1 μsec. pulse independent of dose-rate up to 100 rads/pulse, and the deaerated solution up to 500 rads/pulse. 2

*T*he F e

2+

2 +

-Cu

60

2 +

dosimeter w a s suggested i n 1954 b y H a r t a n d W a l s h

( 5 ) , a n d t h e r e a c t i o n m e c h a n i s m has b e e n d e s c r i b e d b y H a r t (4). T h e range of t h e system (50-900 k r a d ) makes i t a u s e f u l p r o s p e c t i v e dosimeter—e.g., f o o d - p a s t e u r i z a t i o n processing—therefore, t h e system is of interest to m a n y people. A suggested A S T M p r o c e d u r e f o r testing at a n u m b e r of laboratories last year, a n d t h e present results h a v e b e e n a c c u m u l a t e d f o r the p u r p o s e of e v a l u a t i n g this p r o c e d u r e . A

Experimental Irradiations w e r e c a r r i e d o u t at the C o - g a m m a f a c i l i t y at R i s o (2) a n d at the 10 M e v . l i n e a r e l e c t r o n accelerator at R i s o ( J ) . A l l solutions w e r e i r r a d i a t e d i n 5 cc. borosilicate glass cells, fitted w i t h 5/20 s t a n d a r d taper joints. T h e m e t h o d o f e v a c u a t i o n , saturation, a n d filling is b e i n g d e s c r i b e d elsewhere b y Sehested et al. ( 7 ) . A t a l l g a m m a i r r a d i a t i o n s , doses w e r e d e t e r m i n e d w i t h the F r i c k e dosimeter u s i n g G p = 15.6. A t the electron i r r a d i a t i o n s , 10 vciM F e S 0 4 , 0 - s a t u r a t e d , 0.4M H S 0 (G *+ = 16.1), w h i c h is p r o v e n t o b e doserate i n d e p e n d e n t over t h e dose-rate range s t u d i e d ( 7 ) , w e r e u s e d f o r dose c a l i b r a t i o n . M e t h o d s a n d e q u i p m e n t f o r dose c a l i b r a t i o n at t h e electron i r r a d i a t i o n s are discussed i n d e t a i l elsewhere ( 7 ) . T h e dose h o m o g e n e i t y i n the i r r a d i a t i o n c e l l is estimated to b e better t h a n 2 5 % . T h e t e m p e r a t u r e range d u r i n g i r r a d i a t i o n s w a s 20° to 25°C. 6 0

e

2

s +

2

4

Fe

579 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

580

RADIATION CHEMISTRY

1

T h e w a t e r w a s p u r i f i e d b y c o n v e n t i o n a l three-stage d i s t i l l a t i o n ( 3 ) . A l l glassware was c l e a n e d b y c o n v e n t i o n a l means a n d h e a t e d to 550 ° C . f o r 10 hours. T h e f o l l o w i n g reagents w e r e u s e d w i t h o u t f u r t h e r purification: (AnalaR) ( Merck, Analytical ) ( Merck, Analytical ) (Merck, Analytical)

H S0 CuS0 ,5H 0 FeS0 (NH ) S0 ,6H 0 3 0 % aqueous H 0 2

4

4

2

4

4

2

4

2

2

2

F e r r i c - i o n concentrations w e r e d e t e r m i n e d b y m e a s u r i n g o p t i c a l d e n ­ sity at 3020 A . w i t h a C a r y 15 d u a l - b e a m spectrophotometer at 25 ° C .

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch040

Experimental

Results

T h e effect of s u l f u r i c a c i d c o n c e n t r a t i o n o n the e x t i n c t i o n of ferrousf e r r i c sulfate solutions w i t h a n d w i t h o u t 10 m M C u S 0 F i g u r e l a . T h e results for f e r r i c sulfate w i t h o u t C u S 0 w i t h results r e p o r t e d b y H a y b i t t l e et al.

4

4

is s h o w n i n

is i n agreement

(6).

W h e n the o p t i c a l d e n s i t y is p l o t t e d against the sulfate

concentra­

t i o n i n s t e a d of s u l f u r i c a c i d c o n c e n t r a t i o n , the curves for 1 m M C u S 0 , 4

1 m M f e r r i c - f e r r o u s sulfate, a n d 1 m M ferric-ferrous sulfate

become

parallel (Figure l b ) .

0.70

Optical Density

0.55

10"

10"

10"

Figure la.

Optical density as function of sulfuric-acid concentration Fe and F e /F e -Cu *-solutions 3+

Θ HSOi + lOmM CuSO, + ImM A HSQ + ImM Fe /Fe f

4

i+

2+

3+

2

Fe* /Fe +

s+

3+

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

M/l

in

Fe / 2+

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch040

40.

BJERBAKKE A N D SEHESTED

Figure

lb.

Ferrous-Cupric

Optical density as function of sulfate-ion concentration Fe and F e /F e -Cu -solutions 3+

2+

0 ESO>, + lOmM CuSO,, + ImM A H,SO + lmMFe' /Fe +

/t

3+

e

F e

2+

Fe /Fe i+

5+

1

in l O m M C u S 0 , 0.005M H S 0 4

The Fe

Fe /

s+

3 +

in 0.4M H S 0

= 2 1 9 7 M " c m . " ( 6 ) . U s i n g this v a l u e as a reference, 1

in

2+

T h e r e c o m m e n d e d e x t i n c t i o n coefficient f o r F e 3 +

581

Dosimeter

2

4

2

e H , a n d i n t h e 0 - s a t u r a t e d s o l u t i o n to H 0 + Ο Ι Ϊ 2

2

2

- » H 0 , w h i c h transfers a r e d u c i n g specie i n t o a n o x y g e n a t i n g specie.

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch040

2

3

K)'

10'

1

Figure

3.

1

G *+ as function Fe

1 Dose rate 10 Krad/pulse

I 1

of dose-rate from a linear electron

accelerator

T h e r e l i a b i l i t y of t h e c o n v e n t i o n a l system 10 m M C u S 0 , 1 m M 4

F e S 0 , 10 m l V H S 0 4

2

4

as a d o s i m e t e r d e p e n d s o n t h e c o n c e n t r a t i o n o f

gases i n t h e s o l u t i o n . W e b e l i e v e that it is easier to p r e p a r e a n a d e q u a t e o x y g e n a t e d s o l u t i o n t h a n a c o m p l e t e l y d e a e r a t e d s o l u t i o n . W e therefore r e c o m m e n d u s i n g the o x y g e n a t e d system a n d i n c l u d i n g t h e f o l l o w i n g steps i n t h e p r o c e d u r e : (1) T h e oxygen concentration should be defined a n d reproducible —e.g., o x y g e n b u b b l i n g f o r 30 m i n u t e s . ( 2 ) T h e system s h o u l d b e c h e c k e d against the F r i c k e - d o s i m e t e r to p r o v e t h e a d e q u a c y of t h e o x y g e n a t i o n . (3) N e w solution should be made every d a y ( s i m p l y b y adding C u S Ô to a stock s o l u t i o n of 1 m M F e C 0 i n 10 mN H S 0 ). 4

4

2

4

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

584

RADIATION CHEMISTRY

T h e advantages a n d a p p l i c a b i l i t y of t h e F e

2 +

-Cu

2 +

1

system m a y b e

s u m m a r i z e d as f o l l o w s : ( 1 ) T h e d o s i m e t e r c a n b e u s e d w i t h a n a c c u r a c y of 1 % i n t h e region 50-800 krad. (2)

T h e measurements i n v o l v e d are r a p i d , s i m p l e , a n d accurate.

( 3 ) T h e d o s i m e t e r is r a t h e r i n s e n s i t i v e to i m p u r i t i e s a n d s t a n d a r d sealed glass-ampules c a n b e u s e d as i r r a d i a t i o n cells. ( 4 ) T h e air-free F e - C u system is dose-rate i n d e p e n d e n t u p t o 500 rad//xsec. T h e 0 - s a t u r a t e d F e - C u system is dose-rate i n d e p e n d ­ ent u p t o 100 rad/jusec. 2 +

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch040

2 +

2 +

2

2 +

Literature Cited (1) Brynjolfsson, Α., Holm, N. W., Sehested, K., Thaarup, G., Proc., Ind. Uses of Large Radiation Sources, Vol. II, IAEA (1963), pp. 281-295. (2) Brynjolfsson, Α., Holm, N. W., Proc., Large Radiation Sources in Ind., IAEA (1960), pp. 115-120. (3) Fricke, H., Hart, E. J., "Radiation Dosimetry II," p. 167, Academic Press, Ν. Y., 1966. (4) Hart, E. J., Radiation Res. 2, 33 (1955). (5) Hart, E. J., Walsh, P. D., Radiation Res. 1, 342 (1954). (6) Haybittle, J. L., Saunders, R. D., Swallow, A. J., J. Chem. Phys. 25, 1213 (1956). (7) Sehested, K., Lang-Rasmussen, O., Fricke, H., J. Phys. Chem. 72, 626 (1968). RECEIVED January 23,

1968,

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.