interest the students, and will be developed in a n interdiscidinarv manner. Core conceuts from the essential chemistry ~ t d okit" l will be includLd in each module and a n instructor could select a varietv of modules in order to cover the same core concepts. This is more than a repacking of chemistry, it is the beginning of ongoing systemic change that allows for all faculty, innovative or traditional, to use new auproaches and contexts in their classrooms. Aconsor.. tium ofschools, predominantly firm Celilitrnin the Universit\, ofCalifornia, the C'alilbrnia State Uni\.ersit\: .. the twoye& Colleges, private institutions-as well a s three institutions from Atlanta, Georgia will serve as the workingpartners to establish the design and testing of the modules.
faculty will initially focus on a two-year combined physical sciences and mathematics program. HC faculty will address both the general and organic sequences and nonmajor courses. UIC faculty will work on projects related to introductory chemistry, chemistry for engineers, and upper division courses. The personnel will also collaborate from the inception of the program on two inter-campus projects, The Data Project and The Chemistry Hook, designed to create a general set of materials to introduce research and life-related examples into chemistry courses. An annual symposium on science education issues will also be sponsored by the Consortium.
Molecular Science
Mary B. Nakhleh
Orville L. Chapman
Purdue University West Lafayefte, IN 47907
University of California-Los Angeles Los Angeles, CA 90024 Economic change and new technolow are driving educational reform. he transition from theyndustrial ~ g toethe Information Age is causingpreat change in the institutions of our society, and the un&sities and colleges are not exempt. New technology--powerful computers, sophisticated client-server systems, high-resolution graphics for visualization, multi-media, virtual reality, and broad-band fiberoptic cable are transforming our economy and our society; they will alter forever what we mean by "education." An Alliance of the University of California, Los Angeles (UCLA), California State University, Fullerton (CSUF), and twenty-four community colleges in the meater Los Angeles area-has worked together f& many G a r s in improving chemistry instruction. The Alliance now requests funds to plan H proposal that will reorganize content'into a new molecular science curriculum and make maximum use of new educational technology. In preparing this proposal our attention is focused on informing our faculties, gaining hroad lkculty support, and arhieving consensus for action. To achieve these goals, we propose four plannlng mant activities. First. we will host a seminar that features distinguished speakers in economics, technology, curriculum reform. science ~hilosouhv. ". science education.. comitive science,' and edu~ationafinnovation.Second, Professor Orville Chapman of UCLA will present a one-quarter seminar course that defines the issues, presents the proposal, and facilitates debate and discussion. Third, members of the planning group will travel to sites of technological innovation. Finally, we will have a two-day faculty retreat a t Lake ~ r r o w h e a dto fine tune the new c;rriculuk and plan for action.
-
-
The Greater Chicago Consortium for Chemistry Reform
Reconstructing the Model: Rethinking Undergraduate Chemistry
The faculty in the Department of Chemistry propose to assemble a model of change in both the undermaduate chemistry curriculum and-instructional strateges. The faculty also propose to fully evaluate the learning that occurs a s a resultof these changes. The model en&ons a n outwardly spiralling approach to innovative changes in the full undergraduate chemistry program. The model starts with a pilot program of innovative changes in the two-semester introductory course for chemistry majors (60-70 students per semester), spirals out to changes in the introductorv sequences for scienceleneineerine maiors and az" ricult&e&alth majors (3900 students per semester), a i d finally spirals out to the upper division chemistry courses (2500 students per semester), including the courses which train chemistry teaching majors. The model creates a thematic approach to the curriculum so that students will understand how the maior themes of chemistry interrelate and how major conce& in chemistry, such-as acid and bases, relate to major themes, such a s equilibrium. In order to emphasize these themes and concepts the model prunes the curriculum and selects topics which are fundamental to a sound understanding of the discipline. The model also weaves the real world of chemistry into the courses by appropriate examples and introduces organic and biochemistry in appropriate topics, such a s equilibrium, thermodynamics, and complex ion chemistry. In terms of instructional strategies, the model seeks to implement cooperative learning. conceptual chance teachine. -. a ba1an~ed'~resentation of i;he mac~oscopica& microscopic worlds of chemistry, and a balanced development of conceptual understanding and skill in problem solving and using- algorithms in the real world environment of large lecture sections and multiple laboratory sections a t t6e university level.
-
-
Donald J. Wink
University of Illinois at Chicago Chicago. IL 60680
Searching for Exciting States: Curricular Reform in Chemistry at M S U
The faculty in the department of chemistry a t Chicago State University (CSU), William Rainey Harper College (HC) and the University of Illinois a t Chicago (UIC) will join in a consortium to create, share, and evaluate curriculum changes in chemistry and related areas. Their efforts build upon networks already established for the purposes of curriculum reform. This new Consortium will create versatile, multi-faceted, a n d well-tested options for implementation a t peer institutions. Each institution is responsible for the independent generation of one or more comprehensive curricula that will be implemented on their campus andlater on the camuus of one of the other Consortia members. CSU faculty wiil initially focus on a two-year combined physical sciences and mathematics program. HC
Michigan State University East Lansing, MI 48824
44
Journal of Chemical Education
Stanley R. Crouch
Curricular changes are proposed t h a t will introduce chemical principles in the context of relevant issues (the environment, health care, utilization of energy, etc.). Instead of teaching chemical conceots in the conventional fashion (of micro~copic-to-macroscopic), our approach will begin by identifying the concepts associated with some chemical system; thereafter, the system will be studied from the top down, presenting and explaining chemical details on a "need-to-know" basis. These approaches will require using techniques t h a t significantly enhance the amount of active learning that will take place in class-