The Heterogeneous Electron Transfer Properties of Cytochrome c

Jun 1, 1982 - Virginia Commonwealth University, Department of Chemistry, Richmond, VA 23284. HENRY N. BLOUNT. The University of Delaware, Brown ...
2 downloads 0 Views 2MB Size
7 The Heterogeneous Electron Transfer Properties of Cytochrome c Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

E D M O N D F. BOWDEN and FRED M. HAWKRIDGE

1

Virginia Commonwealth University, Department of Chemistry, Richmond, VA 23284 HENRY N. BLOUNT

1

The University of Delaware, Brown Chemical Laboratory, Newark, D E 19711

The heterogeneous electron transfer kinetic parameters of horse heart cytochrome c were evaluated at pH 7.0. This work was directed at determining the formal heter­ ogeneous electron transfer rate constant, k°' , and the electrochemical transfer coefficient, α, at three different electrode surfaces: gold electrodes electrochemically modified with methyl viologen, fluoride-doped tin oxide optically transparent electrodes (OTEs), and tin-doped indium oxide OTEs. Kinetic parameters of cytochrome c were evaluated using samples in the totally oxidized and in the totally reduced forms. Kinetic effects arising from anion binding to cytochrome c were investigated for phosphate and chloride in the presence of the nonbind­ ing buffer tris(hydroxymethyl)aminomethane-cacodylic acid. The kinetic parameters were determined using single potential step chronoabsorptometry at all three electrodes and using rotating disk electrode voltam­ metry at the methyl viologen-modified gold disk elec­ trode. s,h

he t h e r m o d y n a m i c s a n d h o m o g e n e o u s e l e c t r o n transfer k i n e t i c s o f cytochrome c have been studied widely. Extensive reviews point to t h e i m p o r t a n t q u e s t i o n s t h a t r e m a i n u n a n s w e r e d r e g a r d i n g t h e m e c h a n i s m b y w h i c h electrons are transferred b y c y t o c h r o m e c i n m a m m a l i a n o x i d a t i v e p h o s p h o r y l a t i o n (1-8). T h e p a t h w a y b y w h i c h 1

To whom correspondence should be addressed. 0065-2393/82/0201-0159$06.00/0 © 1982 A m e r i c a n C h e m i c a l Society

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

160

BIOLOGICAL R E D O X COMPONENTS

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

c y t o c h r o m e c accepts electrons from the m e m b r a n e - b o u n d cyto­ c h r o m e c reductase a n d then donates electrons to c y t o c h r o m e c oxi­ d a s e , w h i c h is a l s o m e m b r a n e b o u n d , r e m a i n s a p o i n t o f c o n t r o v e r s y . T h e i m p e t u s for s t u d y i n g the energetics a n d k i n e t i c s o f c y t o c h r o m e c e l e c t r o n transfer reactions d e r i v e s p r i m a r i l y from t h e n e e d t o u n d e r ­ stand its e l e c t r o n transfer m e c h a n i s m ( s ) . S e v e r a l m e c h a n i s m s h a v e b e e n p r o p o s e d f o r c y t o c h r o m e c (J - 6 ) , all based o n indirect evidence. A nelectron hopping mechanism i n ­ v o l v i n g transfer o f a n e l e c t r o n t h r o u g h v a r i o u s a r o m a t i c residues i n t h e p r o t e i n f a b r i c w a s p r o p o s e d (8). T h i s m e c h a n i s m w a s s u b s e q u e n t l y a b a n d o n e d b e c a u s e o f its f a i l u r e t o a c c o u n t for s t r u c t u r a l a n d e n e r g e t i c factors (9). T h e i n v o l v e m e n t o f a π - c a t i o n r a d i c a l i n t e r m e d i a t e w a s a l s o p r o p o s e d (JO) b u t w a s n o t e x p e r i m e n t a l l y v e r i f i e d . E l e c t r o n t u n n e l i n g w a s p r o p o s e d for b a c t e r i a l c y t o c h r o m e s (11-13) a n d t h i s m e c h a n i s m also m a y b e operative i n m a m m a l i a n c y t o c h r o m e c. P o s s i b l y the most w i d e l y a c c e p t e d m e c h a n i s m i n v o l v e s e l e c t r o n t r a n s f e r at t h e e x p o s e d h e m e e d g e o f c y t o c h r o m e c . T h i s m e c h a n i s m w a s first p r o p o s e d for c y t o c h r o m e c (14) a n d l a t e r f o r Rhodospirillum ruhrum c , a p h o t o s y n t h e t i c c y t o c h r o m e (15). T h i s o u t e r s p h e r e m e c h a n i s m w a s w i d e l y tested t h r o u g h use o f exogenous a n d endogenous redox reactants a n d t h r o u g h s t u d i e s o f t h e effect o f s o l u t i o n p H , i o n i c s t r e n g t h , a n d i o n b i n d i n g o n t h e h o m o g e n e o u s e l e c t r o n transfer k i n e t i c s o f c y t o c h r o m e c (J -5). S u p p o r t f o r t h e h e m e e d g e e l e c t r o n t r a n s f e r m e c h a n i s m w a s p r o v i d e d b y these h o m o g e n e o u s e l e c t r o n transfer k i n e t i c studies. H o w e v e r , t h e m e c h a n i s m b y w h i c h c y t o c h r o m e c transfers e l e c t r o n s p h y s i o l o g i c a l l y remains to b e established. 2

T h e d e t e r m i n a t i o n o f t h e e l e c t r o n transfer k i n e t i c s o f d i r e c t heterogeneous reactions b e t w e e n c y t o c h r o m e c a n d several electrode surfaces w a s t h e o b j e c t i v e o f this study. T h e reason for p u r s u i n g this t y p e o f m e a s u r e m e n t i s t h a t c y t o c h r o m e c p h y s i o l o g i c a l l y transfers e l e c t r o n s at m e m b r a n e i n t e r f a c e s . H e n c e , t h e p h y s i o l o g i c a l e l e c t r o n transfer reactions o f c y t o c h r o m e c m a y p r o c e e d v i a a m e c h a n i s m that contains e l e m e n t s o f a s i m p l e h e t e r o g e n e o u s e l e c t r o n transfer m o d e l . This work utilized n e w l y developed a n d previously reported elec­ trode surfaces a n d m e t h o d s .

Direct Electrochemical Studies of Cytochrome c C y t o c h r o m e c has been s t u d i e d extensively b y direct voltammetr i c m e t h o d s at m e r c u r y e l e c t r o d e s (16-24). S t r o n g a d s o r p t i o n o f c y t o ­ c h r o m e c o n t h e m e r c u r y surface d u r i n g r e d u c t i o n has b e e n w i d e l y r e p o r t e d . T h e a d s o r b e d l a y e r h a s b e e n v a r i o u s l y d e s c r i b e d as f o r m i n g a flattened l a y e r w i t h p o r e s w h e r e r e d u c t i o n o f d i f f u s i n g c y t o c h r o m e c occurs (23), a l a y e r at w h i c h a self-exchange reaction occurs b e t w e e n the r e d u c e d adsorbed m o l e c u l e s a n d those diffusing to t h e e l e c t r o d e

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

7.

Electron Transfer Properties of Cytochrome c

BOWDEN E T AL.

161

(20), a n d an adsorbed layer o f denatured c y t o c h r o m e c (24). C y t o ­ c h r o m e c a l s o h a s b e e n s t u d i e d d i r e c t l y at g o l d m i n i g r i d e l e c t r o d e s (25) , i n d i u m o x i d e thin-film o p t i c a l l y transparent electrodes

(OTEs)

( 2 6 ) , a n d at g o l d e l e c t r o d e s o n w h i c h 4 , 4 ' - b i p y r i d i n e w a s a d s o r b e d

(27-31). F o r m a l h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c p a r a m e t e r s for t h e reduction of cytochrome c have been reported (24,29). Based on linear Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

s w e e p v o l t a m m e t r y , the formal heterogeneous

e l e c t r o n transfer rate

c o n s t a n t (ks',h) a n d t h e e l e c t r o c h e m i c a l t r a n s f e r c o e f f i c i e n t (a) for t h e r e d u c t i o n o f c y t o c h r o m e c at m e r c u r y w e r e e s t i m a t e d t o b e 1 0 " 10~

n

1 0

to

cm/s a n d ca. 0.5, r e s p e c t i v e l y (24). A t the 4 , 4 ' - b i p y r i d i n e / g o l d

e l e c t r o d e surface, ac i m p e d a n c e m e t h o d s w e r e u s e d to d e t e r m i n e that kt!h = 1-6 x 1 0 ~

2

c m / s , w i t h n o v a l u e g i v e n for t h e e l e c t r o c h e m i c a l

transfer coefficient (29).

Single Potential Step Chronoabsorptometry T h e m e t h o d o f single potential step chronoabsorptometry ( S P S / C A ) p e r m i t s the d e t e r m i n a t i o n o f heterogeneous e l e c t r o n transfer k i n e t i c p a r a m e t e r s for o p t i c a l l y a b s o r b i n g s p e c i e s at O T E s (32). T h e p r i n c i p a l a d v a n t a g e s o f t h i s m e t h o d c o m p a r e d to o t h e r e l e c t r o c h e m i ­ c a l m e t h o d s a r e its i n s e n s i t i v i t y to c h a r g e c o n s u m i n g p r o c e s s e s o t h e r t h a n the reaction o f interest a n d the m o l e c u l a r specificity p r o v i d e d b y the optical p r o b e . A d e t a i l e d d e s c r i p t i o n o f the a p p l i c a t i o n o f this m e t h o d , w h i c h n e g l e c t s t h e effect o f t h e b a c k r e a c t i o n ( i r r e v e r s i b l e p r o c e s s e s ) , as w e l l as t h e m o r e r e c e n t a p p l i c a t i o n o f a m e t h o d t h a t a c c o u n t s for t h e b a c k r e a c t i o n ( q u a s i - r e v e r s i b l e p r o c e s s e s ) w a s p r e ­ s e n t e d (33). T h e n e e d for t h e S P S / C A m e t h o d d i r e c t l y f o l l o w e d t h e r e p o r t s o f the e l e c t r o a c t i v i t y o f g o l d m i n i g r i d electrodes, w h i c h w e r e e l e c t r o c h e m i c a l l y m o d i f i e d w i t h m e t h y l v i o l o g e n , t o w a r d the d i r e c t r e d u c ­ t i o n a n d o x i d a t i o n o f f e r r e d o x i n (34) a n d m y o g l o b i n (35). T h e a p p l i c a ­ t i o n o f t h e S P S / C A m e t h o d to t h e d e t e r m i n a t i o n o f t h e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c p a r a m e t e r s w a s r e p o r t e d for t h e r e d u c t i o n o f m y o g l o b i n (36) a n d f e r r e d o x i n (37) at t h i s e l e c t r o d e s u r f a c e . R e c e n t w o r k e x t e n d e d t h e a p p l i c a t i o n o f S P S / C A to c y t o c h r o m e c , w h i c h w a s s t u d i e d at t h e m o d i f i e d g o l d m i n i g r i d s u r f a c e a n d at fluoride-doped t i n o x i d e a n d t i n - d o p e d i n d i u m o x i d e O T E s (38). T h e effects o f p H a n d i o n i c strength o n the h e t e r o g e n e o u s r e d u c t i v e e l e c t r o n transfer p a r a m ­ e t e r s for m y o g l o b i n w e r e a l s o d e s c r i b e d (38). I n t h e p r e s e n t w o r k , S P S / C A w a s u s e d t o e v a l u a t e t h e effects o f i o n b i n d i n g to c y t o c h r o m e c o n h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c p a r a m e t e r s at fluoride-doped t i n o x i d e O T E s . I n a d d i t i o n , i n i t i a l re­ s u l t s f r o m o x i d a t i v e S P S / C A m e a s u r e m e n t s for c y t o c h r o m e c w e r e o b t a i n e d at t h e m o d i f i e d g o l d m i n i g r i d s u r f a c e a n d at t h e fluorideIn Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

162

BIOLOGICAL REDOX COMPONENTS

d o p e d t i n o x i d e O T E surface. T h e s e latter e x p e r i m e n t s w e r e per­ f o r m e d to d i r e c t l y m e a s u r e t h e r a t e c o n s t a n t s for t h e b a c k r e a c t i o n ( o x i d a t i o n ) to d e t e r m i n e t h e a g r e e m e n t o f t h e h e t e r o g e n e o u s e l e c t r o n transfer reactions o f c y t o c h r o m e c w i t h the s i m p l e e l e c t r o n transfer theory used i n k i n e t i c analyses.

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

Experimental Apparatus. T h e electrochemical a n d optical instrumentation was de­ s c r i b e d p r e v i o u s l y (36, 38). T h e spectroelectrochemical c e l l s were based on a p r e v i o u s l y reported design a n d h a d an optical pathlength o f ca. 1 m m (39). Rotating disk voltammetry was performed w i t h a P i n e Instrument C o m p a n y M o d e l A S R - 2 rotator. T h e g o l d m i n i g r i d electrodes were 200 lines per i n c h , 67% transmittant a n d 0.1 m i l n o m i n a l thickness from B u c k b e e - M e a r s C o . T h e g o l d rotating disk electrode, 7.5-mm diameter, was M o d e l D D 2 0 from P i n e Instrument C o . T i n - d o p e d i n d i u m oxide a n d fluoride-doped t i n oxide O T E s were ca. 20 ohms/square from P P G Industries. C h e m i c a l s . M e t h y l v i o l o g e n (Κ & Κ Laboratories) was r e c r y s t a l l i z e d three times from methanol. T h e phosphate buffer was prepared from T i t r i s o l , p H 7.0 ( E . M e r c k Co.) or from reagent grade salts. C a c o d y l i c a c i d a n d tris(hydroxymethyl)aminomethane, reagent grade, were obtained from S i g m a C h e m i c a l C o . T h e c a c o d y l i c a c i d was r e c r y s t a l l i z e d t w i c e from ethanol. A l l other chemicals were reagent grade and solutions were prepared i n glass d i s t i l l e d water. Procedures. G o l d electrodes were m o d i f i e d w i t h m e t h y l v i o l o g e n as p r e v i o u s l y d e s c r i b e d (36). T h e semiconductor O T E s were c l e a n e d b y succes­ s i v e l y subjecting them to 5 m i n o f ultrasonic agitation i n Alconox, ethanol, and d i s t i l l e d water (twice) after a p r e v i o u s l y d e s c r i b e d procedure (40). S P S / C A measurements were performed at 550 or 416 n m a n d Ac values of 21,100 (41) a n d 57,000 M ^ c m " (42), respectively, were used i n a l l calcula­ tions. T h e diffusion coefficient used i n a l l calculations was 1.1 x 1 0 " cm /s (28). T h i s value was experimentally verified ( ± 0 . 0 5 ) from the slope of plots of absorbance vs. t for 22 diffusion-controlled S P S / C A transients at a fluorided o p e d t i n oxide O T E . T h e formal potential for cytochrome c, w h i c h was used to determine overpotential step values, was 0.260 V vs. N H E (2). A l l experi­ ments were performed at 25 ± 2°C. 1

6

2

1/2

Reduction and Oxidation of Cytochrome c at Various Electrodes T a b l e I s u m m a r i z e s t h e e l e c t r o n t r a n s f e r k i n e t i c b e h a v i o r s e e n for h o r s e h e a r t c y t o c h r o m e c at t h e t h r e e e l e c t r o d e s u r f a c e s r e p o r t e d h e r e . T h e s e results w e r e a l l o b t a i n e d w i t h solutions c o n t a i n i n g 0.07 M p h o s p h a t e a n d 0 . 1 0 M N a C l , p H 7.0, u s i n g S P S / C A . R a t e p a r a m e t e r s o b t a i n e d f r o m p r e v i o u s r e d u c t i v e p o t e n t i a l s t e p e x p e r i m e n t s w i t h fer­ r i c y t o c h r o m e c ( E n t r i e s 1, 4 , 6) (38) a r e s h o w n i n F i g u r e 1. E n t r y 3 d a t a for c y t o c h r o m e c r e d u c t i o n at t i n o x i d e r e s u l t e d f r o m a r e c e n t e x p e r i m e n t t h a t d u p l i c a t e d t h e c o n d i t i o n s for E n t r y 4 . T h e c o n s i s t e n c y b e t w e e n t h e s e t w o sets o f d a t a o b t a i n e d 6 m o n t h s a p a r t is q u i t e g o o d .

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

77.3 77.3 101 103 103 43.0

1 2 3 4 5 6 -4.99(±0.12) -5.24(±0.05) -5.20(±0.08) -5.17(±0.05) -4.31(±0.07) -4.51(±0.05)

h

6

log k|,' , cm/s 0.24( 0.74( 0.28( 0.32( 0.95( 0.50(± 0.03) 0.02) 0.02) 0.01) o.oiy 0.04) /

d

c

6

° All solutions contained 0.07 M phosphate buffer, pH 7.0 and 0.1 M NaCl. Parentheses contain one standard deviation. Methyl viologen-modified gold minigrid electrode. Reductive SPS/CA performed on oxidized sample of cytochrome c. ' From Ref. 38. 'Oxidative SPS/CA performed on reduced sample of cytochrome c, value is from (1 - a). " Fluoride-doped tin oxide O T E . * Tin-doped indium oxide O T E .

[Cyt β ] , μ Μ «

2

3

2

2

2

9

M G M M G M Sn0 Sn0 Sn0 Ιη 0

Λ

C

Elec­ trode

6

6

reductive**' oxidative reductive reductive oxidative reductive

Potential steps

Heterogeneous Electron Transfer Kinetic Parameters for Cytochrome c at Various O T E s

Entry

Table I.

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

6

CO

3

ο

ri.

ο

3 "β

3

3

Ρ) Η

W Ο ΪΟ M Ζ

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

164

BIOLOGICAL REDOX COMPONENTS

0.2

0.3

0.4

0.5

0.6

-η,ν Figure 1. Log k , vs. overpotential for the reduction of cytochrome c. Letter designation/electrode material/entry correspondence in Table I: a, tin-doped indium oxide, Entry 6; b, fluoride-doped tin oxide, Entry 5; c, methyl viologen-modified minigrid, Entry 1. f

h

A s n o t e d p r e v i o u s l y (38), t h e s a m e n e s s o f t h e r e d u c t i v e k i n e t i c r e s u l t s , w h e n c o m p a r e d to t h o s e o b t a i n e d at t h e 4 , 4 ' - b i p y r i d i n e / g o l d e l e c t r o d e s (29) a n d at m e r c u r y (24), a r g u e s for t h e e x i s t e n c e o f a s i m i l a r p r o t e i n / s o l u t i o n i n t e r f a c e at t h e s e t h r e e e l e c t r o d e s u r f a c e s . T h e p r e s ­ e n c e o f a n a d s o r b e d p r o t e i n l a y e r at t h e s e e l e c t r o d e s u r f a c e s is a l i k e l y p o s s i b i l i t y b u t is n o t e s t a b l i s h e d . Oxidative S P S / C A experiments were performed i n a manner iden­ t i c a l to t h e r e d u c t i v e e x p e r i m e n t s e x c e p t t h a t p o s i t i v e o v e r p o t e n t i a l s t e p s w e r e a p p l i e d to t h e e l e c t r o d e s e x p o s e d to b u l k f e r r o c y t o c h r o m e c. A n a l y s i s o f a b s o r b a n c e - t i m e d a t a y i e l d s , for e a c h o v e r p o t e n t i a l , a

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

7.

BOWDEN E T A L .

Electron Transfer Properties of Cytochrome c

165

kb h ( a s s u m i n g t h a t ZC/,Λ c o r r e s p o n d s t o r e d u c t i o n ) . A l i n e a r p l o t o f l o g t

kb,h

vs.

(1 -

a) f r o m t h e s l o p e . A c c o r d i n g t o B u t l e r - V o l m e r f o r m a l i s m (43),

overpotential

(η)

affords

kt'

h

from

the

intercept

and a

s i m p l e h e t e r o g e n e o u s e l e c t r o n transfer r e a c t i o n ( w i t h o n l y one p h y s i ­ c a l p a t h w a y for b o t h o x i d a t i o n a n d r e d u c t i o n ) s h o u l d y i e l d t h e s a m e v a l u e o f k° [ , i n d e p e n d e n t o f w h e t h e r t h e m e a s u r e d r e a c t i o n is a r e d u c ­ s

h

t i o n or a n o x i d a t i o n . F u r t h e r m o r e , t h e v a l u e s o f t h e t r a n s f e r c o e f f i c i e n t Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

o b t a i n e d from the separate r e d u c t i v e a n d o x i d a t i v e e x p e r i m e n t s s h o u l d a g r e e . I n t h e e x p e r i m e n t s o f T a b l e I , t h e s e c r i t e r i a a r e n o t m e t for t h e f l u o r i d e - d o p e d t i n o x i d e O T E ( E n t r i e s 3 a n d 4 c o m p a r e d t o 5) or t h e m e t h y l v i o l o g e n - m o d i f i e d g o l d m i n i g r i d e l e c t r o d e E n t r i e s 1 a n d 2). F o r t h e f o r m e r e l e c t r o d e , t h e t r a n s f e r

(compare coefficients

d i f f e r b y c a . 0 . 6 5 , a n d t h e k° [ v a l u e s d i f f e r b y n e a r l y a n o r d e r o f m a g ­ s

h

n i t u d e i n the oxidation a n d reduction experiments. S i m i l a r disparities a l s o e x i s t for t h e l a t t e r e l e c t r o d e , b u t to a l e s s e r d e g r e e . R e a s o n s for t h i s d i s c r e p a n c y m a y i n v o l v e i o n b i n d i n g to c y t o c h r o m e c, a p a t h w a y d e ­ p e n d e n c e o n t h e r e a c t i o n d i r e c t i o n , a n d s e m i c o n d u c t o r s u r f a c e effects. W o r k is i n p r o g r e s s t o d e t e r m i n e t h e r e a s o n ( s ) for t h e s e d i s c r e p a n c i e s . T h e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c p a r a m e t e r s for t h e reduction

of cytochrome

c

were

also

investigated

at

a

methyl

v i o l o g e n - m o d i f i e d r o t a t i n g g o l d d i s k e l e c t r o d e ( R D E ) to c o m p a r e

the

r e s u l t s o f t h i s s t e a d y state t e c h n i q u e w i t h t h e r e s u l t s o b t a i n e d b y t h e S P S / C A t r a n s i e n t t e c h n i q u e . T h e g o l d R D E w a s first p o l i s h e d s u c c e s ­ s i v e l y w i t h 1-, 0 . 3 - , a n d 0 . 1 - / x m a l u m i n a s l u r r i e s f o l l o w e d b y a n u l ­ trasonic d i s t i l l e d water rinse. T h e g o l d R D E was then m o d i f i e d follow­ i n g t h e p r o c e d u r e d e s c r i b e d for g o l d m i n i g r i d s (36). S t a n d a r d R D E k i n e t i c a n a l y s i s (43) o f d a t a o b t a i n e d for a d e o x y g e n a t e d s o l u t i o n o f 1 6 6 μΜ c y t o c h r o m e c, 0 . 0 7 M p h o s p h a t e b u f f e r , a n d 0 . 1 0 M N a C l , p H 7.0, y i e l d e d v a l u e s for l o g k° [ o f - 5 . 2 4 ( ± 0 . 2 2 ) a n d a o f 0 . 2 1 ( ± 0 . 0 3 ) . s

h

T h e s e p r e l i m i n a r y r e s u l t s d e m o n s t r a t e t h a t R D E v o l t a m m e t r y at t h e m e t h y l v i o l o g e n - m o d i f i e d g o l d d i s k e l e c t r o d e c a n b e u t i l i z e d to m e a ­ s u r e t h e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c s o f c y t o c h r o m e c. T h i s r e s u l t is i n a g r e e m e n t w i t h t h e r e s u l t s o f t h e S P S / C A t r a n s i e n t t e c h ­ n i q u e (38).

Anion Effects on the Heterogeneous Electron Transfer Kinetics of Cytochrome c S p e c i f i c c a t i o n a n d a n i o n b i n d i n g to one or b o t h r e d o x forms o f c y t o c h r o m e c is a w e l l - e s t a b l i s h e d p h e n o m e n o n (44, 4 5 ) . C h a n g e s i n h o m o g e n e o u s e l e c t r o n t r a n s f e r rates b e t w e e n c y t o c h r o m e c a n d s o l u ­ b l e r e d o x p a r t n e r s a l s o h a v e b e e n o b s e r v e d a n d a t t r i b u t e d to i o n b i n d ­ i n g (2, 4 6 , 47). T h i s section describes e v i d e n c e w h i c h shows that

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

166

BIOLOGICAL REDOX COMPONENTS

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

s p e c i f i c a n i o n effects, p r e s u m a b l y r e s u l t i n g f r o m b i n d i n g to c y t o ­ c h r o m e c, c a n i n f l u e n c e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r rates i n a measurable a n d r e p r o d u c i b l e fashion. F o r t h e s e e x p e r i m e n t s , c y t o c h r o m e c w a s d i s s o l v e d i n p H 7.0 t r i s ( h y d r o x y m e t h y l ) a m i n o m e t h a n e ( 0 . 0 9 M ) / c a c o d y l i c a c i d ( 0 . 1 0 M) b u f f e r ( B u f f e r A ) o f c a l c u l a t e d i o n i c s t r e n g t h e q u a l to 0 . 0 8 M . T h i s b u f f e r s y s t e m is c o n s i d e r e d to b e n o n b i n d i n g w i t h r e s p e c t to c y t o ­ c h r o m e c (46, 48). E v a l u a t i o n o f r e d u c t i v e e l e c t r o n t r a n s f e r k i n e t i c parameters was then performed at fluoride-doped tin oxide O T E s b o t h i n the presence a n d a b s e n c e o f a d d e d salts. F i r s t the results w i t h buffer alone w i l l b e presented i n some d e t a i l f o l l o w e d b y results o b t a i n e d i n the presence o f c h l o r i d e a n d phosphate. F i g u r e 2 s h o w s t y p i c a l a b s o r b a n c e - t i m e t r a n s i e n t s for t h e r e d u c ­ t i o n o f c y t o c h r o m e c i n B u f f e r A for a n u m b e r o f o v e r p o t e n t i a l s t e p s .

_l

0

I

I

6

12

l _

18

T i m e (s) Figure 2. Typical SPS/CA absorbance-time transients for the reduc­ tion of cytochrome c. Solution contained 97.6 μΜ cytochrome c, and Buffer A, pH 7.0 (ionic strength = 0.08 M) at a fluoride-doped tin oxide OTE from Table III, Entry 1. Trace Ioverpotential in mV/transient number in experimental sequence: a, —78, #10; b, —128, #6; c, —178, #20; d, -228, #14; e, -278, #18; f, -328, #4; g, -428, #1; h, -628, #5; and i, -728, #8.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

7.

Electron Transfer Properties of Cytochrome c

BOWDEN E T AL.

167

T h e r e p r o d u c i b i l i t y w a s v e r y g o o d a n d n o m e a s u r a b l e loss i n r e s p o n s e was seen d u r i n g the r a n d o m acquisition o f more than thirty S P S / C A transients. T a b l e I I s h o w s t h e k v a l u e s c a l c u l a t e d for transients a t h r o u g h g o f F i g u r e 2 . E x c e l l e n t fit t o t h e S P S / C A t h e o r y for i r r e v e r s i b l e e l e c t r o n transfer is i n d i c a t e d b y t h e s m a l l s t a n d a r d d e v i a t i o n s . T h i s a s s e r t i o n is f u r t h e r c o r r o b o r a t e d i n F i g u r e 3 , w h i c h p r e s e n t s t h e k i n e t i c w o r k i n g c u r v e a l o n g w i t h d a t a f r o m t r a n s i e n t s b , c , d , f, a n d g . O n l y t h e s e d a t a a r e s h o w n for c l a r i t y . F o r e a c h t r a n s i e n t , e x p e r i m e n t a l n o r ­ m a l i z e d a b s o r b a n c e i s p l o t t e d for five o b s e r v a t i o n s (t = 6 , 9 , 1 2 , 1 5 , a n d 18 s) v s . l o g [(k t )/D ] u s i n g t h e a v e r a g e Rvalues f r o m T a b l e I I . I f e x p e r i m e n t fits t h e o r y , a l l five p o i n t s for e a c h t r a n s i e n t s h o u l d f a l l o n t h e w o r k i n g c u r v e a n d t h i s i s i n d e e d t h e c a s e . V a l u e s o b t a i n e d for t = 3 s were not i n c l u d e d i n a n y o f the k ^ a n d a determinations, because t h e i r fit t o t h e w o r k i n g c u r v e w a s n o t g o o d i n s o m e c a s e s . T h i s d e v i a ­ t i o n is p r o b a b l y a r e s u l t o f t h e g r e a t e r r e l a t i v e e r r o r i n h e r e n t i n m e a s u r i n g t h e a b s o r b a n c e - t i m e r e s p o n s e at s h o r t t i m e s . .

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

fih

ll2

m

fth

0

F o r t h e r e d u c t i o n o f c y t o c h r o m e c at fluoride-doped t i n ox­ i d e O T E s i n p H 7.0 Buffer A , a v e r a g i n g the results i n E n t r i e s 1 a n d 2 o f T a b l e I I I y i e l d s logk° \ = - 4 . 7 5 a n d a = 0.32. E n t r i e s 3 a n d 4 o f the s a m e t a b l e i n d i c a t e t h a t t h e effect o f 10 m M p h o s p h a t e ( [ H 2 P O 4 ] / [ H P O l ] — 0.7) i n t h i s s a m e s y s t e m is t o d e c r e a s e l o g k° ' b y ca. 0 . 4 a n d a b y c a . 0.07. I n t h e e l e c t r o c h e m i c a l sense, c y t o c h r o m e c r e d u c ­ t i o n at t i n o x i d e is m o r e i r r e v e r s i b l e i n t h e p r e s e n c e o f p h o s p h a t e . E x p e r i m e n t a l l y , t h i s fact is e v i d e n c e d b y a s i g n i f i c a n t r e d u c t i o n i n the m a g n i t u d e s o f the a b s o r b a n c e - t i m e transients s h o w n i n F i g u r e 2 u p o n a d d i t i o n o f p h o s p h a t e . T h a t t h i s o b s e r v e d d i f f e r e n c e is s i g n i f i ­ c a n t is s h o w n b y t h e e r r o r l i m i t s a n d t h e e x p e r i m e n t a l r e p r o d u c i b i l i t y indicated i n Entries 1-4 of Table III. O n e experiment performed w i t h 10 m M N a C l a d d e d to t h e B u f f e r A s h o w e d a s l i g h t d e c r e a s e i n r e v e r ­ s i b i l i t y as e v i d e n c e d b y a s m a l l e r t r a n s f e r c o e f f i c i e n t {see E n t r y 5 ) . H o w e v e r , c o m p a r e d w i t h t h e p h o s p h a t e effect, t h i s r e s u l t is n o t s t r i k ­ i n g a n d repetitive experiments w i l l b e necessary to establish the v a l i d ­ ity o f this difference. T h e k i n e t i c results presented i n T a b l e I I I are graphed i n F i g u r e 4. s

-

4

8 th

T h e results just p r e s e n t e d i n d i c a t e that specific i o n b i n d i n g c a n s i g n i f i c a n t l y i n f l u e n c e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r rates o f c y t o ­ c h r o m e c. U s i n g v a l u e s for i o n b i n d i n g constants p r e v i o u s l y r e p o r t e d (44), a 1 0 - m M concentration o f phosphate or c h l o r i d e is sufficient to b i n d e s s e n t i a l l y a l l o f t h e c y t o c h r o m e c m o l e c u l e s at 1 0 0 μΜ c o n ­ c e n t r a t i o n . E v i d e n t l y , t w o a n i o n s b i n d t o e a c h c y t o c h r o m e c (49). T h e results presented i n T a b l e I I I a n d F i g u r e 4 support the v i e w that p h o s p h a t e a n d c h l o r i d e b i n d at d i f f e r e n t sites o n c y t o c h r o m e c (50) a n d suggest the i n v o l v e m e n t o f this m o l e c u l a r feature i n the r e d u c t i o n o f t h i s m e t a l l o p r o t e i n at t i n o x i d e O T E s .

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

168

BIOLOGICAL REDOX COMPONENTS

Table II. Heterogeneous Electron Transfer Rate Constants for the Reduction of Cytochrome c at a Fluoride-Doped Tin Oxide O T E

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

η , mV - 78 -128 -178 -228 -278 -328 -428

k

f ) h

,

cm/s"

3.10(±0.20) 7.49(±0.07) 1.51(±0.02) 2.68(±0.03) 4.53(±0.07) 6.21(±0.02) 1.28(±0.05)

x x x x x x x

1(T ΙΟ" 1(T 1(T ΙΟ" ΙΟ ΙΟ

5

5

4

4

4

- 4

- 3

α

Rate constants are mean values of five observations taken at equal increments over the 6- to 18-s time domain. Parentheses contain one standard deviation. Note: Solution conditions are given in Figure 2.

1/2

1/2

Figure 3. Normalized absorbance vs. log [ ( k , t ) / D ] working curve with typical data for the reduction of cytochrome c at a fluoridedoped tin oxide OTE. Data shown correspond to appropriate transients in Figure 2 and were calculated using the k values from Table II. Key: Ο, η = -128 mV; Α, η = -178 mV; • , η = -228 mV; Φ, η = -328 mV; and Α, Ύ] = -428 mV. f

h

fh

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

7.

BOWDEN E T A L .

Electron

Transfer

Properties

of Cytochrome

c

169

Table III. Anion Effects on the Heterogeneous Electron Transfer Kinetic Parameters for Cytochrome c

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

Entry

1 2 3 4 5

log

k°/ , h

cm/s

-4.79(±0.05) -4.71(±0.01) -5.13(±0.05) -5.14(±0.02) -4.78(±0.03)

a

a

Electrolyte

0.30(±0.01) 0.34(±0.01) 0.24(±0.01) 0.26(±0.01) 0.28(±0.01)

Buffer Buffer Buffer Buffer Buffer

A A A + 10 m M p h o s p h a t e A + 10 m M p h o s p h a t e A + 10 m M N a C l

Note: SPS/CA at Sn0 OTEs, 96 to 98 μΜ cytochrome c, all solutions at pH 7.0, and all experiments are reductive. Parentheses contain one standard deviation. 2

α

I

0

1

0.1

I

I

0.2 0.3 -η,ν.

I

0.4

I

0.5

Figure 4. Anion effect on the SPS/CA reduction kinetics of cytochrome c at fluoride-doped tin oxide OTEs. Key: A, Buffer A, pH 7.0 (Entry 1 of Table III); • , Buffer A + 10 mM NaCl (Entry 5 of Table III); O, Buffer A + 10 mM phosphate (Entry 3 of Table III); andV, 0.07 M phosphate, 0.10 M NaCl, pH 7.0 (Entry 3 of Table I).

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

170

BIOLOGICAL REDOX COMPONENTS

The results and conclusions just presented are the first reported evidence for specific ion effects on heterogeneous electron transfer kinetics for a biological redox molecule. Although the effect is thought to arise from binding to cytochrome c molecules, the anions may pos­ sibly be exerting an important effect on the oxide semiconductor sur­ face. Additional experiments, including variation of anion concentra­ tion, will be required to assess these potential causes. A final point that requires clarification concerns the phosphate effect. At p H 7.0, both H P O j and H P O l " are present at significant concentrations and it is not clear whether there is a difference in their ion binding behavior. Addi­ tional experiments performed over a p H range of ca. 6-8 should resolve this question. 2

Acknowledgments The support of the National Science Foundation (PCM79-12348), the National Institutes of Health (GM27208-02), and the University of Delaware Institute of Neuroscience (NIH Biomedical VII) is grate­ fully acknowledged. The assistance of Charlene D . Crawley and Eric E . Bancroft in some aspects of this work is gratefully acknowledged.

Literature Cited 1. Sutin, N. In "Bioinorganic Chemistry-II," Raymond, K. N., Ed.; ACS ADVANCES IN CHEMISTRY SERIES, No. 162, ACS: Washington, D.C.; 1977; pp. 156-172. 2. Cusanovich, M. A. In "Bioorganic Chemistry"; Ε. E . van Tamelen, Ed.; Academic: New York, 1978; Vol. 4, pp. 117-145. 3. Ferguson-Miller, S.; Brautigan, D. L.; Margoliash, E . In "The Porphy­ rins"; D. Dolphin, Ed.; Academic: New York, 1979; Vol. 7, pp. 149-240. 4. Timkovich, R., Ibid., pp. 241-294. 5. Wherland, S.; Gray, H. B. In "Biological Aspects of Inorganic Chemistry"; A. W. Addison et al., Eds.; Wiley: New York, 1977; pp. 289-368. 6. Williams, R. J. P.; Moore, G. R.; Wright, P. E., Ibid., pp. 369-401. 7. Walz, D. Biochim. Biophys. Acta 1979, 505, 279-353. 8. Dickerson, R. E.; Takano, T.; Kallai, Ο. B.; Samson, L. In "Structure and Function of Oxidation Reduction Enzymes"; A. A. Keison; A. Ehren­ berg, Eds.; Pergamon: Oxford, England, 1972; p. 69. 9. Dickerson, R. E.; Timkovich, R. In "The Enzymes"; P. D. Boyer, Ed.; Academic: New York, 1975; Vol. 11, Part A, pp. 397-547. 10. Dolphin, D.; Felton, R. H. Acc. Chem. Res. 1974, 7, 26. 11. DeVault, D.; Chance, B. Biophys. J. 1966, 6, 825. 12. Hopfield, J. J. Proc. Nat. Acad. Sci. U.S.A. 1974, 71, 3640. 13. Salemme, F. R. J. Mol. Biol. 1976, 102, 563. 14. Castro, C. E.; David, H. F. J. Am. Chem. Soc. 1969, 91, 5405. 15. Salemme, F. R.; Kraut, J.; Kamen, M. C. J. Biol. Chem. 1973, 248, 7701. 16. Griggio, L.; Pinamonti, S. Atti. Ist. Veneto Sci. Lett. Arti. 1965-1966, 124, 15. 17. Betso, S. R.; Klapper, M. H.; Anderson, L. B. J. Am. Chem. Soc. 1972, 94, 8197.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by NORTH CAROLINA STATE UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch007

7. BOWDEN ET AL.

Electron Transfer Properties of Cytochrome c

171

18. Scheller, F.; Jänchen, M.; Lampe, J.; Prümke, H. J.; Blanck, J.; Palecek, E . Biochim. Biophys. Acta 1975, 412, 157. 19. Scheller, F.; Prümke, H. J. Stud. Biophys. 1976, 60, 137. 20. Scheller, F. Bioelectrochem. Bioenerg. 1977, 4, 490. 21. Kuznetsov, Β. Α.; Mestechkina, N. M.; Shumakovich, G. P. Bioelec­ trochem. Bioenerg. 1977,4,1. 22. Haladjian, J.; Bianco, P.; Serre, P. A. J. Electroanal. Chem. 1980, 106, 397. 23. Kuznetsov, Β. Α.; Shumakovich, G. P.; Mestechkina, Ν. M. Bioelec­ trochem. Bioenerg. 1977, 4, 512. 24. Haladjian, J.; Bianco, P.; Serre, P. A. Bioelectrochem. Bioenerg. 1979, 6, 555. 25. Heineman, W. R.; Norris, B. J.; Goelz, J. F. Anal. Chem. 1975, 47, 79. 26. Yeh, P.; Kuwana, T. Chem. Lett. 1977, 1145. 27. Eddowes, M. J.; Hill, H. A. O. J. Chem. Soc., Chem. Commun. 1977, 771. 28. Eddowes, M. J.; Hill, H. A. O. J. Am. Chem. Soc. 1979, 101, 4461. 29. Eddowes, M. J.; Hill, H. A. O.; Uosaki, K. J. Am. Chem. Soc. 1979, 101, 7113. 30. Cass, A. E . C.; Eddowes, M. J.; Hill, H. A. O.; Uosaki, K.; Hammond, R. C.; Higgins, I. J.; Plotkin, E. Nature 1980, 285, 673. 31. Eddowes, M. J.; Hill, H. A. O.; Uosaki, K. Bioelectrochem. Bioenerg. 1980, 7, 527. 32. Albertson, D. E.; Blount, H. N.; Hawkridge, F. M. Anal. Chem. 1979, 51, 556. 33. Bancroft, E. E.; Blount, H. N.; Hawkridge, F. M., Anal. Chem. 1981, 53, 1862. 34. Landrum, H. L.; Salmon, R. T.; Hawkridge, F. M. J. Am. Chem.Soc.1977, 99, 3154. 35. Stargardt, J. F.; Hawkridge, F. M.; Landrum, H. L. Anal. Chem. 1978, 50, 930. 36. Bowden, E. F.; Hawkridge, F. M.; Blount, H. N. Bioelectrochem. Bioenerg. 1980, 7, 447. 37. Crawley, C. D.; Hawkridge, F. M. Biochem. Biophys. Res. Commun. 1981, 99, 516. 38. Bowden, E . F.; Wang, M.; Hawkridge, F. M. J. Electrochem. Soc. 1980, 127, 131C. 39. Shu, F. R.; Wilson, G. S. Anal. Chem. 1976, 48, 1676. 40. Armstrong, N. R.; Lin, A. W. C.; Fujihira, M.; Kuwana, T. Anal. Chem. 1976, 48, 741. 41. Van Gelder, B. F.; Slater, E. C. Biochim. Biophys. Acta 1962, 58, 593. 42. Van Buuren, K. J. H.; Van Gelder, B. F.; Wilting, J.; Braams, R. Biochim. Biophys. Acta 1974, 333, 421. 43. Bard, A. J.; Faulkner, L. R. "Electrochemical Methods"; Wiley: New York, 1980. 44. Nicholls, P. Biochim. Biophys. Acta 1974, 346, 261. 45. Osheroff, N.; Koppenol, W. H.; Margoliash, E . In "Frontiers of Biological Energetics"; P. L. Dutton; J. S. Leigh; A. Scarpa, Eds.; Academic: New York, 1978; Vol. 1, p. 439. 46. Cusanovich, Μ. Α.; Miller, W. G. Bioelectrochem. Bioenerg. 1974, 1, 448. 47. Cummins, D.; Gray, H.B.J.Am. Chem. Soc. 1977, 99, 5158. 48. Barlow, G. H.; Margoliash, E. J. Biol. Chem. 1966, 241, 1473. 49. Margalit, R.; Schejter, A. Eur. J. Biochem. 1973, 32, 500. 50. Osheroff, N.; Borden, D.; Koppenol, W. H.; Margoliash, E. J. Biol. Chem. 1980, 255, 1689. RECEIVED for review June 2, 1981. ACCEPTED November 4, 1981.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.