The Intercalation of Benzo[a]pyrene and 7,12-Dimethylbenz[a

Jul 19, 1985 - DOI: 10.1021/bk-1985-0283.ch009. ACS Symposium Series , Vol. 283. ISBN13: 9780841209244eISBN: 9780841211131. Publication Date ...
0 downloads 0 Views 2MB Size
9

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

The Intercalation of Benzo[a]pyrene and 7,12-Dimethylbenz[a]anthracene Metabolites and Metabolite Model Compounds into DNA P. R. LEBRETON Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60680

Carcinogenic metabolites and metabolite model com­ pounds of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene intercalate into DNA with physical binding constants in the range 10 -10 M . The association constants for hydrocarbon-base stack­ ing are similar in magnitude to those for base­ -base stacking and are much smaller than those of intercalating drugs such as ethidium bromide which has a value >10 M . The intercalation of these molecules strongly depends on DNA structure and environment. Increases in solvent polarity en­ hance intercalation. The DNA stabilizers Mg and polyamines inhibit intercalation. Hydrocarbon­ -base π interactions are much weaker in heat dena­ tured DNA than in native double-stranded DNA. For metabolites and metabolite models for which com­ parisons were made, binding to native single­ -stranded DNA is favored over binding to circular double-stranded DNA, and binding to poly(dA-dT) is favored over binding to other synthetic polynu­ cleotides. In studies of nonreactive model com­ pounds which have steric and electronic properties similar to those of reactive metabolites of 7,12dimethylbenz [a] anthracene and benzo[a]pyrene, i t is found that analogs of bay region epoxides are better intercalating agents than those of less carcinogenic epoxides. 3

6

4

-1

- 1

+2

M e t a b o l i t e s o f c a r c i n o g e n i c p o l y c y c l i c a r o m a t i c hydrocarbons (PAH) such as (±) t r a n s - 7 , 8 - d i h y d r o x y - a n t i - 9 , 1 0 - e p o x y - 7 , 8 , 9 , 1 0 - t e t r a h y drobenzo[a]pyrene (BPDE) and 7 , 8 , 9 , 1 0 - t e t r a h y d r o x y t e t r a h y d r o b e n ­ zo [a]pyrene (BPT) p a r t i c i p a t e i n TT b i n d i n g i n t e r a c t i o n s w i t h nu­ c l e o t i d e bases (1-19) which l e a d t o t h e r e v e r s i b l e f o r m a t i o n o f p h y s i c a l complexes. Almost a l l t h e p h y s i c a l l y bound hydrocarbon m e t a b o l i t e s a r e i n t e r c a l a t e d between the n u c l e o t i d e bases. A g r e a t d e a l o f i n f o r m a t i o n about events i m p o r t a n t t o c h e m i c a l c a r 0097-6156/ 85/ 0283-0209$08.25/ 0 © 1985 American Chemical Society In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

210

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

c i n o g e n e s i s has r e c e n t l y come t o l i g h t as a r e s u l t of t h e study of r e a c t i v e i n t e r a c t i o n s o c u r r i n g between epoxide c o n t a i n i n g metabo­ l i t e s o f PAH and DNA (20-34). Much l e s s i s known about the n a t u r e and t h e s i g n i f i c a n c e o f r e v e r s i b l e p h y s i c a l i n t e r a c t i o n s between h y d r o c a r b o n m e t a b o l i t e s and DNA. The p o t e n t i a l importance o f hydrocarbon-nucleotide p h y s i c a l b i n d i n g t o the mechanisms o f PAH c a r c i n o g e n e s i s i s shown by t h e data g i v e n i n Table I which g i v e s b i n d i n g c o n s t a n t s f o r s t a c k e d complexes formed from the i n t e r a c ­ t i o n o f n u c l e o t i d e bases w i t h pyrene ( 3 5 ) , BPDE ( 3 ) and e t h i d i u m bromide ( 3 6 ) . Table I a l s o c o n t a i n s b i n d i n g c o n s t a n t s f o r s t a c k e d complexes formed from t h e s e l f - a s s o c i a t i o n o f n u c l e o s i d e s ( 3 7 ) . A comparison of t h e DNA b i n d i n g c o n s t a n t s i n Table I i n d i ­ c a t e s t h a t t h e TT s t a c k i n g i n t e r a c t i o n s of hydrocarbon m e t a b o l i t e s such as BPDE a r e much weaker than those o f s t r o n g i n t e r c a l a t i n g drugs such as e t h i d i u m bromide. The b i n d i n g c o n s t a n t f o r BPDE i n ­ t e r c a l a t i o n i n t o DNA i s s i m i l a r i n magnitude t o t h e b i n d i n g con­ s t a n t s f o r the hydrogen bonding o f base p a i r s . In organic s o l ­ v e n t s (CDCl^ and CCl^) a t 25° C a s s o c i a t i o n c o n s t a n t s f o r basep a i r hydrogen bonding t y p i c a l l y l i e i n the range 10^-10 M~* ( 3 7 ) . An e x a m i n a t i o n o f t h e n u c l e o s i d e and n u c l e o t i d e b i n d i n g d a t a i n Table I a l s o shows t h a t the f o r c e s r e s p o n s i b l e f o r t h e s t a c k e d a s s o c i a t i o n o f n u c l e o s i d e s a r e s i m i l a r i n magnitude t o those l e a d ­ i n g t o b i n d i n g o f pyrene t o m o n o n u c l e o t i d e s . I n v i v o t h e r e v e r s i ­ b l e p h y s i c a l b i n d i n g o f n u c l e o t i d e bases t o one another v i a base s t a c k i n g and hydrogen bonding i s r e s p o n s i b l e f o r the s t o r a g e and t r a n s m i s s i o n o f g e n e t i c i n f o r m a t i o n and p l a y s an important r o l e i n d e t e r m i n i n g the s t r u c t u r e and s t a b i l i t y o f d o u b l e - s t r a n d e d h e l i c a l DNA. The s i m i l a r i t y between t h e p h y s i c a l i n t e r a c t i o n s of bases w i t h one another and the p h y s i c a l i n t e r a c t i o n s o f bases w i t h h y ­ d r o c a r b o n s and hydrocarbon m e t a b o l i t e s may be i m p o r t a n t t o mecha­ nisms o f PAH c a r c i n o g e n e s i s . Recent s t r u c t u r e - a c t i v i t y s t u d i e s o f l - a l k y l b e n z o [ a ] p y r e n e s a l s o suggest t h a t DNA i n t e r c a l a t i o n o f benzo[a]pyrene (BP) metabo­ l i t e s p l a y s a r o l e i n t h e mechanism of BP c a r c i n o g e n e s i s ( 3 8 ) . The a d d i t i o n o f b u l k y a l k y l groups a t t h e 1 - p o s i t i o n o f BP, w h i c h i n h i b i t DNA i n t e r c a l a t i o n o f 1 - a l k y l - B P m e t a b o l i t e s ( 1 9 ) , causes a reduction i n carcinogenic a c t i v i t y . In the e a r l i e s t s t u d i e s of the p h y s i c a l b i n d i n g of carcinoge­ n i c hydrocarbons w i t h DNA t h e e f f e c t s o f DNA upon the s o l u b i l i t y of pyrene and benzo[a]pyrene were examined. I n a s o l u t i o n o f DNA (0.05% by w e i g h t ) the s o l u b i l i t y of these hydrocarbons i s i n c r e a s ­ ed as much as 70 times (39, 4 0 ) . The b i o c h e m i c a l s i g n i f i c a n c e of these e a r l y s t u d i e s has been q u e s t i o n e d ( 4 1 ) , and i t has been a r ­ gued t h a t mechanisms o f h y d r o c a r b o n c a r c i n o g e n e s i s depend much more upon t h e i n t e r a c t i o n o f parent hydrocarbons w i t h p r o t e i n s than w i t h DNA. T h i s c r i t i c i s m i s supported by c u r r e n t s t u d i e s o f hydrocarbon c a r c i n o g e n e s i s w h i c h p o i n t t o the i m p o r t a n t r o l e t h a t a c t i v a t i o n o f parent hydrocarbons by microsomal enzyme systems c o n t a i n i n g cytochrome P-450 p l a y s i n t h e f o r m a t i o n o f u l t i m a t e r e ­ a c t i v e carcinogens (42). Most r e c e n t s t u d i e s o f hydrocarbon i n t e r a c t i o n s w i t h DNA have f o c u s s e d on t h e b i n d i n g o f hydrocarbon m e t a b o l i t e s r a t h e r than on the b i n d i n g o f the parent h y d r o c a r b o n s . Much o f t h i s work d e a l s

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9. LEBRETON

211

Intercalation of Metabolite Model Compounds into DNA

T a b l e I . Comparison of B i n d i n g C o n s t a n t s f o r Stacked Complexes a t 23-25 °C

1

KCM' )

Complex a b Nucleoside-Nucleoside ' Pyrene-Nucleotide BPDE-DNA E t h i d i u m Bromide-DNA » 0

a

a b c d e

e

-1.0 x 1 0 -3.0 x 1 0 6.5 x 1 0 >10 6

In H 0 Taken from r e f . 37. I n H 0 + 5% M e t h a n o l . Taken from r e f . 35. I n H 0 + 2% E t h a n o l . Taken from r e f . 3. Taken from r e f . 36. 2

2

2

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1

1

3

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

212

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

w i t h t h e r e a c t i o n p r o p e r t i e s of c a r c i n o g e n i c e p o x i d e s of BP and 7 , 1 2 - d i m e t h y l b e n z [ a ] a n t h r a c e n e (DMBA). There i s c o n s i d e r a b l e e v i ­ dence s u g g e s t i n g t h a t DNA l e s i o n s r e s u l t i n g from r e a c t i o n s w i t h those and o t h e r c a r c i n o g e n s a r e an e s s e n t i a l s t e p i n tumor i n i t i a ­ t i o n (43,44). I t i s found t h a t i n a s i g n i f i c a n t number of cases m e t a b o l i t e r e a c t i v i t y p r o v i d e s a good i n d e x f o r p r e d i c t i n g PAH c a r c i n o g e n i c potency (45, 4 6 ) . F o r example, bay r e g i o n epoxides and p r e c u r s o r s of bay r e g i o n e p o x i d e s o f BP and DMBA a r e more mutagenic and c a r ­ c i n o g e n i c than l e s s r e a c t i v e e p o x i d e s , such as K - r e g i o n e p o x i d e s , d e r i v e d from t h e same p a r e n t hydrocarbons ( 4 5 - 5 3 ) . F i g u r e s 1 and 2 show bay r e g i o n e p o x i d e s of BP and DMBA along w i t h s t r u c t u r e s of less a c t i v e epoxides. In v i t r o s t u d i e s of DNA i n t e r a c t i o n s w i t h t h e r e a c t i v e ben­ z o y l pyrene e p o x i d e BPDE i n d i c a t e t h a t p h y s i c a l b i n d i n g of BPDE o c c u r s r a p i d l y on a m i l l i s e c o n d time s c a l e f o r m i n g a complex t h a t then r e a c t s much more s l o w l y on a time s c a l e o f minutes ( 1 7 ) . Se­ v e r a l r e a c t i v e events f o l l o w f o r m a t i o n of the p h y s i c a l complex. The most f a v o r a b l e r e a c t i o n i s the DNA c a t a l y z e d h y d r o l y s i s o f BPDE t o t h e t e t r o l , BPT (3,5,6,8,17). At 25°C and pH=7.0, the hy­ d r o l y s i s o f BPDE t o BPT i n DNA i s as much as 80 times f a s t e r than h y d r o l y s i s w i t h o u t DNA ( 8 ) . Other r e a c t i o n s which f o l l o w forma­ t i o n o f p h y s i c a l complexes i n c l u d e those i n v o l v i n g the n u c l e o t i d e bases and p o s s i b l y t h e p h o s p h o d i e s t e r backbone. These can l e a d t o DNA s t r a n d s c i s s i o n (9> 34, 54-56) and t o the f o r m a t i o n of s t a b l e BPDE-DNA a d d u c t s . Adduct f o r m a t i o n o c c u r s a t t h e e x o c y c l i c amino groups on t h e n u c l e o t i d e bases and a t o t h e r s i t e s (1,2,9,17,20, 28,33,34,57,58). The pathway which leads t o h y d r o c a r b o n adducts c o v a l e n t l y bound t o t h e 2-amino group of guanine has been t h e most widely studied. S e v e r a l l a b o r a t o r i e s have examined whether BPDE c o v a l e n t l y bound t o DNA assumes an i n t e r c a l a t e d c o n f o r m a t i o n o r i s e x t e r n a l l y bound. Different groups have reported different results (5,6,8,20,34,59-69). M o b i l i t y studies using relaxed circular pBR322 DNA i n d i c a t e t h a t r e a c t i o n w i t h BPDE g i v e s r i s e t o r a p i d p o s i t i v e s u p e r c o i l i n g which i s s u g g e s t i v e of a c o n f o r m a t i o n i n which t h e h y d r o c a r b o n o c c u p i e s an i n t e r n a l s i t e i n t h e DNA ( 3 4 ) . On t h e o t h e r hand, from r e s u l t s of the most r e c e n t s p e c t r o s c o p i c s t u d i e s i t i s concluded t h a t t h e c o v a l e n t adduct formed from t h e more c a r c i n o g e n i c (+) enantiomer of BPDE i s i n an e x t e r n a l c o n f o r ­ mation ( 6 8 , 6 9 ) . On t h e b a s i s o f PAH p h y s i c a l b i n d i n g s t u d i e s (18) i t has been p r e v i o u s l y suggested t h a t BPDE adduct c o n f o r m a t i o n s a r e s t r o n g l y dependent upon t h e DNA environment and t h a t t h i s may be p l a y i n g a r o l e i n t h e v a r y i n g r e s u l t s r e p o r t e d by d i f f e r e n t l a b o r a t o r i e s . A mechanism f o r r e a c t i o n has been proposed ( 2 ) which i n v o l v e s i n i ­ t i a l i n t e r c a l a t i o n o f BPDE f o l l o w e d by r e a c t i o n which can l e a d u l ­ t i m a t e l y t o n o n i n t e r c a l a t e d complexes. T h i s mechanism i s s u p p o r t ­ ed by r e c e n t k i n e t i c f l o w d i c h r o i s m s t u d i e s ( 6 9 ) . Two s p e c i f i c s u g g e s t i o n s c o n c e r n i n g t h e r o l e t h a t t h e r e v e r ­ s i b l e p h y s i c a l b i n d i n g of proximate and u l t i m a t e c a r c i n o g e n s de­ r i v e d from BP p l a y i n c a r c i n o g e n e s i s have been made. The f i r s t i s based on r e c o g n i t i o n t h a t DNA-BPDE complex f o r m a t i o n precedes r e -

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9.

LEBRETON

Intercalation of Metabolite Model Compounds into DNA

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

Reactive

Metabolites

213

M e t a b o l i t e Model Compounds

Bay Region Epoxide

7,8,9,10-tetrahydroxy tetrahydro-BP

BPDE

7-hydroxy-7,8,9,10-tetrahydro-BP

Less C a r c i n o g e n i c

Epoxides 7,8-dihydroxy-7,8,9,10-tetrahydro-BP

HO.

trans-9,10- di hydroxy-anU-7,8epoxy-7,8,9,10-tetrahydro-BP

•OH BP-4,5-oxide trans - 4,5 - dihydroxy - 4,5 - dihydro-BP

F i g u r e 1. M e t a b o l i t e s and m e t a b o l i t e model compounds d e r i v e d from benzo[a]pyrene•

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

214

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Less C a r c i n o g e n i c Epoxides

CH

5,6-dihydro-BA

3

DMBA-5,6-oxide

HO* OH

CH

3

8,9,10,11-tetrahydro-BA

8,9-dihydroxy-10,ll-epoxy8,9,10,11-tetrahydro-DMBA

F i g u r e 2.

R e a c t i v e m e t a b o l i t e s and m e t a b o l i t e model compounds de­ r i v e d from 7 , 1 2 - d i m e t h y l b e n z [ a ] a n t h r a c e n e .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9. LEBRETON

Intercalation of Metabolite Model Compounds into DNA

215

action. T h i s has l e d t o s p e c u l a t i o n (1) t h a t t h e s t e r e o c h e m i s t r y a s s o c i a t e d w i t h t h e f o r m a t i o n o f p r e r e a c t i o n i n t e r c a l a t e d com­ p l e x e s w i t h DNA i s r e l a t e d t o the v a r y i n g r e a c t i v e and c a r c i n o g e n ­ i c p r o p e r t i e s o f d i f f e r e n t s t e r e o i s o m e r s o f BP e p o x i d e s . I t has a l s o been suggested ( 9 ) t h a t s i t e s f o r s t r a n d s c i s s i o n a r e d e t e r ­ mined by t h e f o r m a t i o n of i n t e r c a l a t e d complexes b e f o r e r e a c t i o n . The second i s based on t h e o b s e r v a t i o n (18) t h a t t h e nonreact i v e proximate c a r c i n o g e n _trans_-7 ,8-dihydroxy-7,8-dihydro-BP binds f a v o r a b l y t o DNA. T h i s b i n d i n g may l e a d t o i n c r e a s e d i n v i v o n u c l e a r c o n c e n t r a t i o n s of t h e d i o l . N u c l e a r membrane bound c y t o ­ chrome P-450 (70,71) i s a v a i l a b l e f o r f u r t h e r a c t i v i a t i o n o f t h e d i o l , and p o o l i n g o f t h e proximate c a r c i n o g e n i n the n u c l e u s and subsequent metabolism t o BPDE may be i m p o r t a n t . T h i s would p r o ­ v i d e an e f f i c i e n t mechanism by which b i o l o g i c a l l y s i g n i f i c a n t l e ­ v e l s of unstable r e a c t i v e metabolites reach nuclear target s i t e s . S e v e r a l groups have i n v e s t i g a t e d t h e DNA p h y s i c a l b i n d i n g p r o p e r t i e s o f BP (39,40,72), of n o n r e a c t i v e BP m e t a b o l i t e s and o f r e a c t i v e BP m e t a b o l i t e s (1-6,8,11). Nonreactive metabolites which have been studied are trans-7,8-dihydroxy-7,8-dihydro-BP (15,16,18,19), BPT (3-5,7,10,18) and t r a n s - 4 , 5 - d i h y d r o x y - 4 , 5 - d i h y dro-BP ( 1 5 , 1 8 ) . The f i r s t o f these molecules i s a proximate c a r ­ cinogen and a m e t a b o l i c p r e c u r s o r o f BPDE. The second and t h i r d m o l e c u l e s a r e t h e h y d r o l y s i s p r o d u c t s o f BPDE and o f t h e l e s s c a r ­ c i n o g e n i c K-region epoxide, benzo[a]pyrene-4,5-oxide, r e s p e c t i v e ­ ly. Studies of the p h y s i c a l b i n d i n g of r e a c t i v e metabolites of benzo[a]pyrene have f o c u s s e d on BPDE and on t r a n s - 9 , 1 0 - d i h y d r o x y anti-7,8-epoxy-7 ,8,9,10-tetrahydro-BP (J_-4_, _6, JJL_) • These i n v e s ­ t i g a t i o n s of the noncovalent b i n d i n g of r e a c t i v e metabolites t o DNA a r e made d i f f i c u l t by t h e r e a c t i o n s , e s p e c i a l l y h y d r o l y s i s , w h i c h f o l l o w the f o r m a t i o n o f a p h y s i c a l complex. In o r d e r t o g a i n more d e t a i l e d i n f o r m a t i o n about the p h y s i c a l b i n d i n g o f hydrocarbon m e t a b o l i t e s t o DNA, s t u d i e s have a l s o been c a r r i e d o u t w i t h model compounds which have many o f t h e s t e r i c and e l e c t r o n i c p r o p e r t i e s o f c a r c i n o g e n i c epoxides b u t no r e a c t i v e e p o x i d e group. The use o f n o n r e a c t i v e model compounds p e r m i t s t h e c l e a r s e p a r a t i o n o f p h y s i c a l b i n d i n g i n t e r a c t i o n s from r e a c t i v e interactions. Benzo[a]pyrene m e t a b o l i t e model compounds which have been examined i n c l u d e 7-hydroxy-7,8,9,10-tetrahydro-BP (_4) , and c i s ( 4 ) and t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - B P ( 9 ) . The DMBA m e t a b o l i t e model compounds which have been examined i n ­ c l u d e t h e b e n z [ a ] a n t h r a c e n e (BA) d e r i v a t i v e s , 1,2,3,4-tetrahydroBA ( 1 2 , L 3 ) , 5,6-dihydro-BA ( 1 2 ) , and 8,9,10,11-tetrahydro-BA ( 1 2 , 13, 1 4 ) , as w e l l as anthracene ( 1 2 ) and 9,10-dimethylanthracene (DMA) ( 1 4 ) . F i g u r e s 1 and 2 show s t r u c t u r e s o f n o n r e a c t i v e meta­ b o l i t e s and m e t a b o l i t e model compounds d e r i v e d from BP and DMBA f o r which DNA p h y s i c a l b i n d i n g s t u d i e s have been c a r r i e d o u t . The major g o a l s o f r e c e n t s t u d i e s o f t h e p h y s i c a l b i n d i n g t o DNA o f BP and DMBA m e t a b o l i t e s and m e t a b o l i t e models a r e t o d e t e r ­ mine: ( 1 ) t h e magnitudes o f t h e b i n d i n g c o n s t a n t s , (2) t h e con­ f o r m a t i o n s o f p h y s i c a l complexes w h i c h a r e formed and t h e n a t u r e of DNA b i n d i n g s i t e s , (3) how DNA s t r u c t u r e and environment i n f l u ­ ence p h y s i c a l b i n d i n g , ( 4 ) how t h e s t r u c t u r e o f hydrocarbon meta­ b o l i t e s i n f l u e n c e s p h y s i c a l b i n d i n g p r o p e r t i e s , ( 5 ) whether t h e

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

216

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

p h y s i c a l b i n d i n g of h y d r o c a r b o n m e t a b o l i t e s e x h i b i t s s p e c i f i c i t y f o r c e r t a i n base sequences i n DNA, and (6) whether d i f f e r e n t meta­ b o l i t e s d e r i v e d from t h e same parent hydrocarbon but w i t h v a r y i n g c a r c i n o g e n i c potency e x h i b i t d i f f e r e n t DNA p h y s i c a l b i n d i n g p r o ­ perties.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

S p e c t r o s c o p i c Probes of P h y s i c a l B i n d i n g P r o p e r t i e s Most s t u d i e s o f t h e p h y s i c a l b i n d i n g o f h y d r o c a r b o n m e t a b o l i t e s and m e t a b o l i t e model compounds have measured t h e e f f e c t o f DNA b i n d i n g on h y d r o c a r b o n f l u o r e s c e n c e intensities, fluorescence l i f e t i m e s and UV a b s o r p t i o n s p e c t r a . R a d i o a c t i v e l a b e l l i n g has a l s o been used, but l e s s f r e q u e n t l y . S p e c t r o s c o p i c methods a r e p a r t i c u l a r l y convenient. These methods, e s p e c i a l l y f l u o r e s c e n c e methods, a r e a l s o v e r y s e n s i t i v e . A l l o f t h e hydrocarbons i n F i g u r e 1 e x c e p t t h e e p o x i d e s have h i g h f l u o r e s c e n c e quantum y i e l d s , which permit r o u t i n e d e t e c t i o n i n t h e 10~^-10 M concen­ t r a t i o n range. W i t h s p e c t r o s c o p i c methods i t i s p o s s i b l e t o o b t a i n i n f o r m a ­ t i o n about t h e c o n f o r m a t i o n of hydrocarbon-DNA complexes. The f l u o r e s c e n c e quantum y i e l d s o f a r o m a t i c hydrocarbons a r e g r e a t l y reduced when they b i n d t o DNA i n i n t e r c a l a t e d c o n f o r m a t i o n s . F i g u r e 3 shows how t h e i n t e n s i t y of t h e e m i s s i o n spectrum o f DMA d e c r e a s e s w i t h i n c r e a s i n g c o n c e n t r a t i o n s of DNA i n 15% methanol. ( I n F i g u r e 3 and throughout t h i s d i s c u s s i o n DNA c o n c e n t r a t i o n s and a s s o c i a t i o n c o n s t a n t s have been r e p o r t e d i n terms o f P0^~ m o l a r i t y u n l e s s o t h e r w i s e i n d i c a t e d . The s o l u t i o n content o f o r g a n i c s o l ­ v e n t s i s g i v e n i n percent volume.) The mechanism o f t h e f l u o r e s c e n c e quenching p r o c e s s which a c ­ companies h y d r o c a r b o n i n t e r c a l a t i o n i s n o t t h o r o u g h l y under­ stood. However, i n s t u d i e s o f 9-methylanthracene and phenan­ t h r e n e , which have p r o p e r t i e s s i m i l a r t o the m o l e c u l e s c o n s i d e r e d h e r e , i t i s found t h a t s m a l l p e r t u r b a t i o n s such as those a r i s i n g from temperature v a r i a t i o n (73) o r from d e u t e r i u m s u b s t i t u t i o n f o r hydrogen a t s p e c i f i c p o s i t i o n s (74) can s t r o n g l y a l t e r f l u o r ­ escence quantum y i e l d s . These changes i n quantum y i e l d s a r e due almost e x c l u s i v e l y t o changes i n t h e r a t e of i n t e r s y s t e m c r o s s ­ ing. I t i s r e a s o n a b l e t o e x p e c t t h a t quenching due t o DNA i n t e r ­ c a l a t i o n a l s o i n v o l v e s an i n c r e a s e i n t h e r a t e o f i n t e r s y s t e m c r o s s i n g which accompanies b i n d i n g . T h i s c o n c l u s i o n i s supported by t h e o b s e r v a t i o n t h a t t h e r e i s n e a r l y a 1:1 correspondence be­ tween the d i s a p p e a r a n c e of s i n g l e t e x c i t e d s t a t e s and the appear­ ance o f t r i p l e t s i n i n t e r c a l a t e d DNA complexes formed from p o l y ­ c y c l i c a r o m a t i c hydrocarbons ( 7 2 , 7 5 ) . I n some cases i t i s p o s s i b l e t o o b t a i n a measure of the a s ­ s o c i a t i o n c o n s t a n t f o r i n t e r c a l a t i o n d i r e c t l y from f l u o r e s c e n c e quenching d a t a . T h i s method i s a p p l i c a b l e when t h e dynamic quenching of t h e hydrocarbon f l u o r e s c e n c e by DNA i s s m a l l and when the i n t e r c a l a t e d h y d r o c a r b o n has a n e g l i g i b l e f l u o r e s c e n c e quantum y i e l d compared t o t h a t of t h e f r e e h y d r o c a r b o n . I f these c o n d i ­ t i o n s a r e met, t h e a s s o c i a t i o n c o n s t a n t f o r i n t e r c a l a t i o n , KQ, i s e q u a l t o the Stern-Volmer quenching c o n s t a n t Kgy (76) and i s g i v e n by E q u a t i o n 1.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9. LEBRETON

Intercalation of Metabolite Model Compounds into DNA

390

410 430 450 470 490

510

X (nm)

Figure

3. U n c o r r e c t e d e m i s s i o n s p e c t r a o f DMA i n 15% methanol measured a t v a r y i n g c a l f thymus DNA c o n c e n t r a t i o n s . The s p e c t r a were measured under the c o n d i t i o n s d e s c r i b ­ ed i n r e f . 14.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

217

218

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

K

Q

- K

g v

- [DNA ]

1

[ ^ - - 1]

(1)

I n E q u a t i o n 1, IQ i s t h e f l u o r e s c e n c e i n t e n s i t y o f t h e hydrocarbon measured w i t h o u t DNA, and I i s the i n t e n s i t y measured w i t h DNA. F i g u r e 4 shows Stern-Volmer p l o t s measured f o r t h e DNA quenching of DMA, 1,2,3,4-tetrahydro-BA, 5,6-dihydro-BA, 8,9,10,11-tetrahydro-BA and a n t h r a c e n e . F i g u r e 5 shows s i m i l a r p l o t s f o r t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o - B P and t r a n s - 4 , 5 - d i h y doxy-4,5-dihydro-BP. F i g u r e s 4 and 5 c o n t a i n d a t a o b t a i n e d b o t h w i t h n a t i v e DNA and w i t h h e a t - d e n a t u r e d DNA. Both f i g u r e s show t h a t t h e s i g n i f i c a n t f l u o r e s c e n c e quenching which i s observed i n n a t i v e DNA i s g r e a t l y d i m i n i s h e d i n denatured DNA. This strong dependence o f the s p e c t r o s c o p i c p u r t u r b a t i o n due t o b i n d i n g , on DNA secondary s t r u c t u r e i s i n d i c a t i v e o f an i n t e r c a l a t i v e b i n d i n g process (36). Measurements o f t h e h y d r o c a r b o n f l u o r e s c e n c e l i f e t i m e s p r o ­ vide important i n f o r m a t i o n which i s u s e f u l i n i n t e r p r e t i n g the Stern-Volmer p l o t s . I n cases where E q u a t i o n 1 i s v a l i d , the hy­ d r o c a r b o n f l u o r e s c e n c e decay p r o f i l e s must be the same w i t h and w i t h o u t DNA. I n some c a s e s , BP f o r example, t h i s i s n o t t h e case. F o r BP t h e observed decay p r o f i l e changes s i g n i f i c a n t l y when DNA i s added ( 7 2 ) . However f o r s e v e r a l o f t h e m o l e c u l e s shown i n F i g u r e s 1 and 2, DNA has o n l y a s m a l l e f f e c t on the observed f l u o r e s c e n c e l i f e ­ time. These m o l e c u l e s i n c l u d e t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o - B P (15,18,19), trans-4,5-dlhydroxy-4,5-dihydro-BP (15,18), BPT ( 7 , 1 8 ) , 1,2,3,4-tetrahydro-BA ( 1 2 ) , 8,9,10,11-tetrahydro-BA ( 1 4 ) , 5,6-dihydro-BA ( 1 2 ) , anthracene (12) and DMA ( 1 4 ) . T y p i c a l decay p r o f i l e s o b t a i n e d i n f l u o r e s c e n c e l i f e t i m e measurements of t r a n s 7,8-dihydroxy-7,8-dihydro-BP and o f 8,9,10,11-tetrahydro-BA a r e shown i n F i g u r e 6. The l i f e t i m e s e x t r a c t e d from t h e decay p r o ­ f i l e s shown here have been o b t a i n e d by u s i n g a l e a s t - s q u a r e s dec o n v o l u t i o n procedure which c o r r e c t s f o r t h e f i n i t e d u r a t i o n o f the e x c i t a t i o n lamp p u l s e ( 7 7 ) . F o r 8,9,10,11-tetrahydro-BA t h e l i f e t i m e s measured w i t h and w i t h o u t DNA a r e t h e same w i t h i n e x p e r i m e n t a l e r r o r (± 2 n s e c ) . Without DNA t h e decay p r o f i l e o f t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o BP f o l l o w s a s i n g l e - e x p o n e n t i a l decay l a w . W i t h DNA the decay p r o f i l e has a s m a l l c o n t r i b u t i o n from a s h o r t - l i v e d component ( x = 5 nsec) which a r i s e s from DNA complexes. This i n d i c a t e s that E q u a t i o n 1 i s not s t r i c t l y v a l i d . However, the a n a l y s i s o f the decay p r o f i l e w i t h DNA a l s o i n d i c a t e s t h a t t h e s h o r t l i f e t i m e com­ ponent c o n t r i b u t e s l e s s than 11% t o t h e t o t a l e m i s s i o n observed a t [ P O a ~ ] » 5 x 10~* M. Under these c o n d i t i o n s E q u a t i o n 1 s t i l l y i e l d s a good approximate v a l u e t o t h e a s s o c i a t i o n c o n s t a n t f o r intercalation. F o r BP m e t a b o l i t e s and m e t a b o l i t e model compounds UV a b s o r p ­ t i o n e x p e r i m e n t s p r o v i d e an independent means by which b i n d i n g c o n s t a n t s f o r hydrocarbon i n t e r c a l a t i o n i n t o DNA can be measur­ ed. I n t e r c a l a t i v e b i n d i n g g i v e s r i s e t o a r e d s h i f t (~ 10 nm) i n the hydrocarbon UV a b s o r p t i o n spectrum of PAH. F i g u r e 7 shows ab­ s o r p t i o n spectra of trans-7,8-dihydroxy-7,8-dihydro-BP at varying

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9.

LEBRETON

Intercalation of Metabolite Model Compounds into DNA

219

[P0 ~] X I 0 M 4

F i g u r e 4.

4

Stern-Volmer p l o t s and quenching c o n s t a n t s d e r i v e d from the f l u o r e s c e n c e quenching o f DMA ( T ) , 1 , 2 , 3 , 4 - t e t r a ­ hydro-BA ( • ) , 5,6-dihydro-BA ( A ) , 8 , 9 , 1 0 , 1 1 - t e t r a h y d r o BA (•) and anthracene (•) by DNA i n 15% methanol a t 23° C. E m i s s i o n and e x c i t a t i o n wavelengths and d e t a i l s concerning the experimental conditions are given i n r e f s , 12 and 14. The open symbols, o and V, show I ^ / I f o r 1,2,3,4-tetrahydro-BA and DMA r e s p e c t i v e l y i n dena­ t u r e d DNA([PO "] = 4.4 x 1 0 ~ M). 4

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

220

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

F i g u r e 5.

Stern-Volmer p l o t s and quenching c o n s t a n t s d e r i v e d from the f l u o r e s c e n c e quenching o f _trans_-7,8-dihydroxy-7,8dihydro-BP and t r a n s - 4 , 5 - d i h y d r o x y - 4 , 5 - d i h y d r o - B P i n n a t i v e DNA ( c l o s e d symbols) and i n denatured DNA (open symbols) i n 15% methanol a t 23° C. D e t a i l s about t h e e x p e r i m e n t a l c o n d i t i o n s a r e g i v e n i n r e f . 15.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9.

Intercalation of Metabolite Model Compounds into DNA

LEBRETON

221

CO

6

5

15 25 35 4 5 5 5 6 5

5 15 2 5 35 4 5 5 5 6 5

t (nanoseconds) F i g u r e 6. F l u o r e s c e n c e decay p r o f i l e s o f trans_-7,8-dihydroxy-7,8dihydro-BP and 8,9,10,11-tetrahydro-BA measured a t 23 °C w i t h and w i t h o u t n a t i v e DNA. Taken from r e f s . 14 and 15. The upper l e f t - h a n d c o r n e r c o n t a i n s an i n ­ strument response p r o f i l e . E m i s s i o n and e x c i t a t i o n w a v e l e n g t h s , l i f e t i m e s , and v a l u e s o f x o b t a i n e d from d e c o n v o l u t i o n o f the l i f e t i m e d a t a are a l s o g i v e n . 2

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

222

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

350

360

370

380

390

WAVELENGTH (nm)

Figure

7. A b s o r p t i o n s p e c t r a i n 15% methanol a t 23°C o f t r a n s 7,8-dihydroxy-7,8-dihydrobenzo[5]pyrene i n n a t i v e DNA a t c o n c e n t r a t i o n s ^ o f 0.0, 8.0 x _ l O , 1.6 x 10 **, 2.4 x lo""4, 3.2 x lo"*4 and 4.0 x lo"*4 M. The broken l i n e shows a spectrum i n t h e presence o f 3.2 x 10 M DNA and 3.2 x 10 M spermine. (Reproduced w i t h p e r m i s s i o n from R e f . 15. C o p y r i g h t 1985, A l a n R. L i s s . ) 5

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9. LEBRETON

Intercalation of Metabolite Model Compounds into DNA

223

DNA c o n c e n t r a t i o n s . The appearance of t h e r e d - s h i f t e d UV a b s o r p ­ t i o n spectrum i s s t r o n g l y dependent upon DNA secondary s t r u c t u r e and i s g r e a t l y reduced i n denatured DNA. L i k e t h e f l u o r e s c e n c e quenching t h e r e d - s h i f t e d a b s o r p t i o n spectrum i s due t o h y d r o c a r ­ bon i n t e r c a l a t i o n ( 1 5 , 1 8 ) . Standard methods f i r s t d e r i v e d by B e n e s i and H i l d e b r a n d (78) and l a t e r m o d i f i e d (_3, 4_, 9_, 79) have been used t o a n a l y z e t h e UV d a t a . Table I I contains a s s o c i a t i o n c o n s t a n t s o b t a i n e d from Stern-Volmer quenching d a t a a l o n g w i t h a s ­ s o c i a t i o n c o n s t a n t s o b t a i n e d from UV b i n d i n g s t u d i e s o f BP metabo­ l i t e s and m e t a b o l i t e models. F o r a l l t h r e e o f t h e m o l e c u l e s con­ t a i n e d i n Table I I , f l u o r e s c e n c e l i f e t i m e s t u d i e s (9_, 15) i n d i c a t e t h a t decay p r o f i l e s measured w i t h and w i t h o u t DNA a r e v e r y s i m i ­ lar. I n each case t h e f l u o r e s c e n c e s p e c t r a and t h e a b s o r p t i o n s p e c t r a were measured under i d e n t i c a l c o n d i t i o n s . A comparison o f the r e s u l t s o b t a i n e d from t h e two d i f f e r e n t methods i n d i c a t e s t h a t the agreement i n v a l u e s f o r t h e i n t e r c a l a t i o n b i n d i n g c o n s t a n t s i s good. For the DMBA m e t a b o l i t e models s t u d i e d t o date a s i m i l a r com­ p a r i s o n of r e s u l t s from f l u o r e s c e n c e and a b s o r p t i o n s t u d i e s has not been c a r r i e d o u t . I n these m o l e c u l e s a l l o f t h e more i n t e n s e a b s o r p t i o n bands occur a t wavelengths below 300nm where DNA ab­ s o r p t i o n i n t e r f e r e s . T h i s makes i t d i f f i c u l t t o determine t h e DNA b i n d i n g c o n s t a n t s u s i n g a b s o r p t i o n measurements. However t h e good agreement between t h e a b s o r p t i o n and f l u o r e s c e n c e r e s u l t s f o r t h e BP d e r i v a t i v e s supports t h e c o n c l u s i o n t h a t when t h e hydrocarbon f l u o r e s c e n c e decay p r o f i l e measured w i t h o u t DNA i s s i m i l a r t o t h a t w i t h DNA, the Stern-Volmer quenching c o n s t a n t p r o v i d e s a good mea­ sure o f the a s s o c i a t i o n c o n s t a n t f o r PAH i n t e r c a l a t i o n . Review Of R e s u l t s I n t e r c a l a t i o n o f BPDE. S e v e r a l groups have s t u d i e d t h e r e v e r s i b l e i n t e r c a l a t i v e b i n d i n g o f BPDE t o DNA. The f l u o r e s c e n c e quantum y i e l d o f BPDE i s much lower than t h a t o f BP d e r i v a t i v e s which do not c o n t a i n an epoxide group and f l u o r e s c e n c e t e c h n i q u e s have n o t been w i d e l y used t o study BPDE p h y s i c a l b i n d i n g t o DNA (A_). A s s o ­ c i a t i o n c o n s t a n t s f o r the DNA i n t e r c a l a t i o n o f BPDE have been ob­ t a i n e d by measuring r e d s h i f t s i n t h e UV a b s o r p t i o n s p e c t r a o f BPDE which o c c u r upon t h e f o r m a t i o n of i n t e r c a l a t e d complexes (3_»A.».§.»JD and from f l u o r e s c e n c e s t u d i e s ( 8 ) o f the k i n e t i c s of DNA c a t a l y z e d h y d r o l y s i s o f BPDE. The h y d r o l y s i s r e a c t i o n I s c o n v e n i ­ e n t l y m o n i t o r e d by f o l l o w i n g t h e f l u o r e s c e n c e o f t h e h y d r o l y s i s p r o d u c t , BPT, which has a quantum y i e l d many times g r e a t e r than BPDE. A summary o f BPDE a s s o c i a t i o n c o n s t a n t s f o r i n t e r c a l a t i o n ob­ t a i n e d from d i f f e r e n t s t u d i e s i s g i v e n i n Table I I I . The wide v a r i a t i o n i n r e p o r t e d a s s o c i a t i o n c o n s t a n t s can be a t t r i b u t e d i n p a r t t o d i f f e r e n c e s i n s o l v e n t c o n d i t i o n s . The low b i n d i n g c o n ­ s t a n t o b t a i n e d i n r e f . ^_ i s due t o t h e h i g h i o n i c s t r e n g t h and h i g h c o n c e n t r a t i o n o f o r g a n i c s o l v e n t employed i n t h e e x p e r i ­ ments. The d i f f e r e n c e i n t h e v a l u e s o f a s s o c i a t i o n c o n s t a n t s r e ­ p o r t e d i n r e f s . 3_ and 8_ i s most l i k e l y due t o t h e d i f f e r e n c e i n the o r g a n i c content o f t h e s o l u t i o n s used.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

224

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Table I I . I n t e r c a l a t i o n A s s o c i a t i o n Constants and Stern-Volmer Quenching Constants f o r Benzo[a]pyrene M e t a b o l i t e s and M e t a b o l i t e Model Compounds w i t h C a l f Thymus DNA 3

KpV" )

KsV

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

1

trans-7,8-dihydroxy7,8-dihydro-BP trans-4,5-dlhydroxy4,5-dihydro-BP trans-7,8-dihydroxy7,8,9,10-tetrahydro-

C(!rl)

5400

6100

1900

2100

750-910

740

d

d

The e s t i m a t e d u n c e r t a i n t y i n t h e a s s o c i a t i o n c o n s t a n t s and quenching c o n s t a n t s i s ± 10%. A s s o c i a t i o n c o n s t a n t s from UV a b s o r p t i o n s t u d i e s . *T Stern-Volmer Quenching C o n s t a n t s . Measured i n 15% methanol. Taken from r e f s . 15 and 18. Measured i n 2.5% DMSO. Taken from r e f . 9. d

e

Table I I I . DNA I n t e r c a l a t i o n A s s o c i a t i o n Constants Reported f o r trans-7,8-Dihydroxy-ant i-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene Type o f DNA

Buffer (pH)

Salmon Testes (sheared) Calf Thymus (sonicated) C a l f Thymus

a,b

a , C

Additional Ions

20 mM Tris«HCl (7.4) 10 mM NaHCOo (9.0) 5 mM Sodium Cacodylate (7.1)

50 mM NaCl

Organic Solvent

T(°C) K(M"

•1

2% E t h a n o l

21

6,580

10% Acetone

25

377

0.2% T e t r a hydrofuran

25

12,000

^Based on UV a b s o r p t i o n measurements. Taken from r e f 3. R e s u l t s w i t h c a l f thymus DNA are r e p o r t e d t o be s i m i l a r t o those w i t h salmon t e s t e s DNA. T a k e n from r e f . 4. Based on UV a b s o r p t i o n s t u d i e s and on f l u o r e s c e n c e s t u d i e s of t h e k i n e t i c s o f DNA c a t a l y z e d BPDE h y d r o l y s i s . Taken from r e f . 8. c

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9. LEBRETON

Intercalation of Metabolite Model Compounds into DNA

225

The d e r i v a t i o n of an i n t e r c a l a t i o n a s s o c i a t i o n c o n s t a n t from k i n e t i c s t u d i e s o f BPDE h y d r o l y s i s presumes t h a t t h e r e a c t i o n p r o ­ ceeds v i a an i n t e r c a l a t e d complex. T h i s mechanism i s s u p p o r t e d by the o b s e r v a t i o n s t h a t the c a t a l y t i c a c t i v i t y o f denatured DNA i s lower than t h a t o f n a t i v e DNA ( 8 ) , t h a t c a t a l y s i s i s i n h i b i t e d a t h i g h i o n i c s t r e n g t h s (_3, 8^, 1 7 ) , and t h a t mononucleotides such as GMP e x h i b i t much g r e a t e r c a t a l y t i c a c t i v i t y than does f r e e phos­ phate ( 8 0 ) . I n a d d i t i o n t o UV b i n d i n g s t u d i e s o f BPDE, one o t h e r l e s s carcinogenic epoxide, (±) trans-9,10-dihydroxy-anti-7,8-epoxy7,8,9,10-tetrahydro-BP, was examined. Table IV which c o n t a i n s r e ­ s u l t s o b t a i n e d i n t h i s study i n d i c a t e s t h a t t h e i n t e r c a l a t i o n b i n d i n g c o n s t a n t i s 23% lower than t h a t o f BPDE ( 3 ) . T a b l e IV a l s o c o n t a i n s r e s u l t s o f UV a b s o r p t i o n s t u d i e s o f h y d r o x y l a t i o n e f f e c t s on t h e DNA i n t e r c a l a t i v e b i n d i n g o f ben­ zo [a] pyrene m e t a b o l i t e s and m e t a b o l i t e model compounds. The most i m p o r t a n t f e a t u r e o f these r e s u l t s i s t h a t h y d r o l y s i s o f BPDE t o BPT causes a f o u r - f o l d r e d u c t i o n i n the i n t e r c a l a t i o n a s s o c i a t i o n constant. Of a l l t h e BP d e r i v a t i v e s s t u d i e d , t h e t e t r o l has t h e lowest b i n d i n g c o n s t a n t f o r i n t e r c a l a t i o n . The s m a l l b i n d i n g con­ s t a n t o f t h e t e t r o l compared w i t h BPDE, coupled w i t h t h e DNA c a t a ­ l y z e d h y d r o l y s i s o f BPDE t o t h e t e t r o l may p r o v i d e a d e t o x i f i c a ­ t i o n pathway f o r removal o f a p o r t i o n o f u n r e a c t e d i n t e r c a l a t e d BPDE. P h y s i c a l B i n d i n g o f M e t a b o l i t e s and M e t a b o l i t e Model Compounds t o Secondary S i t e s on DNAT F o r BPT a secondary DNA b i n d i n g s i t e has been r e p o r t e d on t h e b a s i s of d i a l y s i s experiments (_7). I n f l u o r ­ escence l i f e t i m e s t u d i e s i t was found t h a t t h e f l u o r e s c e n c e decay p r o f i l e o f BPT bound a t the secondary s i t e i s very s i m i l a r t o t h a t of t h e unbound m e t a b o l i t e . T h i s suggests t h a t t h e secondary s i t e o c c u r s on t h e o u t s i d e o f DNA. I n i t i a l r e s u l t s from t h e d i a l y s i s e x p e r i m e n t s i n d i c a t e d t h a t f o r BPT t h e b i n d i n g c o n s t a n t f o r e x t e r ­ n a l b i n d i n g i s 2 t o 4 times lower than t h a t f o r i n t e r c a l a t i o n . More r e c e n t s t u d i e s (75,81) i n d i c a t e t h a t t h e b i n d i n g c o n s t a n t f o r complex f o r m a t i o n a t secondary s i t e s i s a t l e a s t 2 times s m a l l e r than that o r i g i n a l l y reported. D i a l y s i s experiments c a r r i e d out on t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o - B P , trans-4,5-dihydroxy-4,5-dihydro-BP and pyrene i n d i c a t e t h a t f o r these m o l e c u l e s b i n d i n g a t secondary s i t e s o c c u r s w i t h b i n d i n g c o n s t a n t s which a r e about 9 times lower than those f o r i n t e r c a l a t i o n ( 1 8 ) . F o r a l l these mol­ e c u l e s i n t e r c a l a t i o n i s by f a r t h e most important b i n d i n g mode. Base S p e c i f i c i t y o f P h y s i c a l B i n d i n g . To determine whether t h e p h y s i c a l b i n d i n g o f hydrocarbon m e t a b o l i t e s t o DNA e x h i b i t s base s p e c i f i c i t y , the binding of trans-7,8-dihydroxy-7,8,9,10-tetrahydro-BP was examined u s i n g f l u o r e s c e n c e and a b s o r p t i o n techniques (9) . A comparison was a l s o made o f t h e v a r y i n g degrees t o which d i f f e r e n t s y n t h e t i c p o l y n u c l e o t i d e s a r e a b l e t o s o l u b i l i z e BPT (10) . Results with trans-7,8-dihydroxy-7,8,9,10-tetrahydro-BP i n d i ­ c a t e t h a t i n 100 mM NaCl and 2.5% DMSO a t pH 7.0 t h e a s s o c i a t i o n c o n s t a n t f o r i n t e r c a l a t i o n i n t o poly(dA-dT) i s more than 5 times

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

226

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Table IV. Comparison of R e s u l t s from UV A b s o r p t i o n S t u d i e s o f the I n t e r c a l a t i o n B i n d i n g C o n s t a n t s f o r Benzo[a]pyrene M e t a b o l i t e s and M e t a b o l i t e Model Compounds i n t o DNA Compound BPDE

K(M

a

)

6580

±trans-9,10-dihydroxy-anti-7,8-epoxy7,8,9,10-tetrahydro-BP

5080

a

7,8,9,10-tetrahydroxytetrahydro-BP ibid,

a

1650

b

44

7-hydroxy-7,8,9,10-tetrahydro-BP

b

160

trans-9,10-dihydroxy-7,8,9,10-tetrahydro-BP cis-7,8-dihydroxy-7,8,9,10-tetrahydro-BP

b

b

177 257

a

Measured w i t h sheared salmon t e s t e s DNA a t 21 °C i n 2% e t h a n o l b u f f e r e d t o a pH o f 7.4 w i t h 20 mM t r i s # H C l . Taken from r e f . 3.

b

Measured w i t h s o n i c a t e d c a l f thymus DNA i n 200 mM N a C l , 2 mM Mg and 10% acetone b u f f e r e d t o a pH o f 9.0 w i t h 10 mM NaHC0 . Taken from r e f . 4. o

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9. LEBRETON

Intercalation of Metabolite Model Compounds into DNA

227

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

g r e a t e r than t h e a s s o c i a t i o n c o n s t a n t s f o r i n t e r c a l a t i o n i n t o pol y ( d G - d C ) , p o l y d G r p o l y d C , p o l y d A r p o l y d T o r c a l f thymus DNA ( 9 ) . S o l u b i l i z a t i o n s t u d i e s w i t h BPT y i e l d e d s i m i l a r r e s u l t s ( 1 0 ) . F o r BPT i n 10 mM sodium phosphate, 10 mM NaCl and 1 mM EDTA a t pH 7.0 the s o l u b i l i z i n g a c t i v i t y o f the p o l y n u c l e o t i d e s s t u d i e d i n c r e a s e s i n the order polydArpolydT * polydGrpolydC < poly(dA-dC)rpoly(dGdT) « poly(dG-dC) < p o l y ( d A - d T ) . T h i s base s p e c i f i c i t y a l s o e x ­ h i b i t s a pH dependence. When t h e p o l y n u c l e o t i d e s a r e p r o t o n a t e d i n 10 mM sodium c i t r a t e (pH=3.8) t h e s o l u b i l i z i n g a c t i v i t y o f p o l y ( d A - d T ) , poly(dG-dC) and p o l y ( d A - d C ) r p o l y ( d G - d T ) a r e a p p r o x i ­ mately e q u i v a l e n t . Comparison o f The P h y s i c a l B i n d i n g P r o p e r t i e s o f BP and DMBA Meta­ b o l i t e Model Compounds. The r e s u l t s i n F i g u r e s 4 and 5 show how s t r u c t u r a l d i f f e r e n c e s t h a t occur i n d i f f e r e n t m e t a b o l i t e s d e r i v e d from BP and DMBA i n f l u e n c e p h y s i c a l b i n d i n g t o DNA. The r e s u l t s i n d i c a t e that both trans-7,8-dihydroxy-7,8-dihydro-BP and t r a n s 4 , 5 - d i h y d r o x y - 4 , 5 - d i h y d r o - B P a r e b e t t e r i n t e r c a l a t i n g agents than the DMBA m e t a b o l i t e model compounds. W h i l e no b i n d i n g s t u d i e s o f the bay r e g i o n d i o l epoxide o f DMBA have yet been c a r r i e d o u t , t h e model compound s t u d i e s suggest t h a t BPDE i s the b e t t e r i n t e r c a l a t ­ i n g agent. The r e s u l t s i n F i g u r e s 4 and 5 a l s o show t h a t f o r a g i v e n p a ­ r e n t h y d r o c a r b o n , bay r e g i o n m e t a b o l i t e model compounds are b e t t e r i n t e r c a l a t i n g agents than model compounds o f l e s s c a r c i n o g e n i c me­ tabolites. F o r example, t h e i n t e r c a l a t i o n b i n d i n g c o n s t a n t s f o r 1,2,3,4-tetrahydro-BA and DMA are more than 4.4 times g r e a t e r than those f o r 5,6-dihydro-BA, 8,9,10,11-tetrahydro-BA and anthracene ( 1 2 , 14). The i n t e r c a l a t i o n b i n d i n g c o n s t a n t f o r t r a n s - 7 , 8 - d i h y droxy-7,8-dihydro-BP i s 2.9 times g r e a t e r than t h a t f o r t r a n s - 4 , 5 dihydroxy-4,5-dihydro-BP (15). E l e c t r o n i c I n f l u e n c e s on S t a c k i n g I n t e r a c t i o n s . The r e s u l t s o f r e c e n t s t u d i e s o f t h e i n t e r c a l a t i v e b i n d i n g of hydrocarbon metabo­ l i t e models t o DNA show how e l e c t r o n i c f a c t o r s i n f l u e n c e TT b i n d i n g i n t e r a c t i o n s between n u c l e o t i d e s and p o l y c y c l i c a r o m a t i c h y d r o c a r ­ bons. I n some s t a c k e d complexes i n v o l v i n g DNA and RNA b a s e s , a s ­ s o c i a t i o n c o n s t a n t s i n c r e a s e as t h e TT i o n i z a t i o n p o t e n t i a l s o f t h e bases decrease ( 8 2 , 8 3 ) . T h i s o c c u r s when charge t r a n s f e r o r d i s ­ p e r s i o n f o r c e s between t h e i n t e r a c t i n g p a r t n e r s a r e important (37,82,84,). F i g u r e 8 shows how a s s o c i a t i o n c o n s t a n t s f o r TT s t a c k i n g v a r y w i t h n u c l e o s i d e i o n i z a t i o n p o t e n t i a l s i n complexes formed from the s e l f a s s o c i a t i o n o f n u c l e o s i d e s and from the b i n d ­ ing of r i b o f l a v i n to nucleosides. I n b o t h examples t h e a s s o c i a ­ t i o n c o n s t a n t s i n c r e a s e as t h e n u c l e o s i d e i o n i z a t i o n p o t e n t i a l s decrease. This r e l a t i o n s h i p i s u s e f u l f o r understanding the d i f f e r e n t i n t e r c a l a t i o n b i n d i n g c o n s t a n t s o f hydrocarbons w i t h s i m i l a r TT systems. T h i s i s i n d i c a t e d i n F i g u r e 4, by a comparison o f d a t a f o r 1,2,3,4-tetrahydro-BA, DMA and a n t h r a c e n e . F o r 1 , 2 , 3 , 4 - t e t r a hydro-BA the presence o f a n o n p l a n a r a l i c y c l i c group i s e x p e c t e d to s t e r i c a l l y i n h i b i t i n t e r c a l a t i o n . The n o n p l a n a r m e t h y l groups of DMA p l a y a s i m i l a r s t e r i c r o l e . However f o r b o t h 1,2,3,4-te-

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

228

8.0

8.5

9.0

IONIZATION POTENTIAL (eV)

8.0

8.5

9.0

IONIZATION POTENTIAL (eV)

F i g u r e 8. Dependence o f TT complex b i n d i n g c o n s t a n t s upon n u c l e o ­ s i d e i o n i z a t i o n p o t e n t i a l s f o r (•) u r i d i n e , (») t h y m i ­ d i n e , (A) c y t i d i n e , ( o ) adenosine, ( D ) guanosine, and (A) N,N,-dimethyladenosine. P a n e l A shows a s s o c i a t i o n constants f o r the binding of nucleosides t o r i b o f l a ­ vin. P a n e l B shows a s s o c i a t i o n c o n s t a n t s f o r t h e s e l f a s s o c i a t i o n of n u c l e o s i d e s . (Reproduced from R e f . 82. C o p y r i g h t 1981, American Chemical S o c i e t y . )

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

9.

LEBRETON

Intercalation of Metabolite Model Compounds into DNA

229

t r a h y d r o - B A and DMA the a s s o c i a t i o n c o n s t a n t s f o r i n t e r c a l a t i o n are g r e a t e r than t h a t f o r a n t h r a c e n e . F o r 1,2,3,4-tetrahydro-BA the enhanced b i n d i n g i s accompanied by a decrease i n the i o n i z a ­ t i o n p o t e n t i a l s o f the f i v e h i g h e s t o c c u p i e d ir o r b i t a l s compared t o c o r r e s p o n d i n g o r b i t a l s i n anthracene ( 8 5 ) . T h i s i s shown i n F i g u r e 9 which g i v e s the p h o t o e l e c t r o n spectrum o f 1 , 2 , 3 , 4 - t e t r a hydro-BA. Previous photoelectron studies of p o l y c y c l i c aromatic hydrocarbons i n d i c a t e t h a t the methyl groups p l a y a s i m i l a r r o l e i n d e s t a b i l i z i n g the m a n i f o l d o f upper o c c u p i e d TT o r b i t a l s i n DMA (85-87). For b o t h 1,2,3,4-tetrahydro-BA and DMA e l e c t r o n i c e f ­ f e c t s which accompany the a d d i t i o n o f a l i c y c l i c groups and m e t h y l groups enhance i n t e r c a l a t i o n . These e f f e c t s are more i m p o r t a n t t h a n s t e r i c e f f e c t s , which i n h i b i t i n t e r c a l a t i o n . The I n f l u e n c e o f DNA S t r u c t u r e and Environment on the I n t e r c a l a ­ t i o n o f Hydrocarbon M e t a b o l i t e s and M e t a b o l i t e Model Compounds. The p h y s i c a l b i n d i n g o f hydrocarbon m e t a b o l i t e s t o DNA i s v e r y s e n s i t i v e t o DNA s t r u c t u r e and environment. T h i s i s demonstrated by the d a t a i n F i g u r e s 4 and 5, which show how heat d e n a t u r a t i o n of DNA i n h i b i t s h y d r o c a r b o n quenching. These r e s u l t s are c o n s i s ­ t e n t w i t h e a r l y s t u d i e s which i n d i c a t e t h a t the a b i l i t y o f n a t i v e DNA t o s o l u b i l i z e pyrene and BP i s much g r e a t e r than t h a t o f dena­ t u r e d DNA ( 4 0 ) . I n a d d i t i o n t o d e n a t u r a t i o n , hydrocarbon p h y s i c a l b i n d i n g i s s e n s i t i v e t o o t h e r DNA s t r u c t u r a l changes. Radioactive l a b e l l i n g s t u d i e s have been c a r r i e d out t o compare the b i n d i n g of t r a n s - 7 , 8 d i h y d r o x y - 7 , 8 - d i h y d r o - B P t o d o u b l e - s t r a n d e d DNA v e r s u s s i n g l e s t r a n d e d DNA ( 1 6 ) . The r e s u l t s show t h a t b i n d i n g t o b a c t e r i o p h a g e s i n g l e - s t r a n d e d x 174 DNA i s more than 4.9 times s t r o n g e r than b i n d i n g t o a r e p l i c a t i v e form d o u b l e - s t r a n d e d c i r c u l a r X DNA. The a b i l i t y of hydrocarbon m e t a b o l i t e s t o i n t e r c a l a t e i n t o DNA i s s t r o n g l y dependent on DNA environment as w e l l as on DNA s t r u c t u r e , as demonstrated i n F i g u r e 10. The top p a n e l o f F i g u r e 10 shows the e f f e c t o f methanol on the f l u o r e s c e n c e quenching o f DMA by DNA. The r e d u c t i o n o f DMA b i n d i n g a t i n c r e a s i n g methanol c o n c e n t r a t i o n i s due t o the decrease i n s o l v e n t p o l a r i t y . The bottom p a n e l o f F i g u r e 10 shows how DMA quenching i s g r e a t l y r e ­ duced by the a d d i t i o n of the DNA s t a b i l i z e r Mg - S i m i l a r r e s u l t s have been o b t a i n e d f o r BPDE (3,4,8,11,63). I t has a l s o been shown t h a t i n c r e a s i n g i o n i c s t r e n g t h by a d d i n g NaCl i n h i b i t s i n t e r c a l a ­ t i v e b i n d i n g o f BPDE ( 4 , 6 3 ) . Polyamine DNA s t a b i l i z e r s such as spermine have the same e f f e c t on the i n t e r c a l a t i o n o f b o t h BPDE and on t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o - B P ( 4 , 1 1 , 1 5 ) . T h i s i s i n ­ d i c a t e d by F i g u r e 7, which shows how the i n t e n s i t y o f the r e d s h i f t e d band a r i s i n g from DNA complexes w i t h t r a n s - 7 , 8 - d i h y d r o x y 7,8-dihydro-BP i s reduced when spermine i s added. For BPDE (4,63) the r e l a t i v e e f f i c i e n c y of DNA s t a b i l i z e r s f o r i n h i b i t i n g i n t e r c a ­ l a t i o n i n c r e a s e s i n the o r d e r NaCl < M g C l < s p e r m i n e . I t i s i m ­ p o r t a n t t o note t h a t i n v i v o polyamine and Mg c o n c e n t r a t i o n s a r e i n the m i l l i m o l a r range ( 8 8 , 8 9 ) . I t i s expected that a t these l e v e l s they w i l l e f f i c i e n t l y p r o t e c t DNA a g a i n s t h y d r o c a r b o n i n ­ tercalation. The dependence o f hydrocarbon i n t e r c a l a t i o n on DNA conforma2

2

+

2

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

230

10.10

6.0

7.0

8.0

9.0

Ionization Potential

Figure

10.0 (eV)

9. H e ( I ) p h o t o e l e c t r o n s p e c t r a o f 1,2,3,4-tetrahydro-BA. Assignments a r e g i v e n a l o n g w i t h probe t e m p e r a t u r e s . Numbers i n p a r e n t h e s e s a r e i o n i z a t i o n p o t e n t i a l s f o r c o r r e s p o n d i n g o r b i t a l s i n a n t h r a c e n e . (Reproduced w i t h p e r m i s s i o n from Ref. 12. C o p y r i g h t 1983, Academic.)

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Intercalation of Metabolite Model Compounds into DNA

9. LEBRETON

231

5.0 r 4.0

\

CH

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

- \

I

3.0

~

3

\

X

i

CH

3

2.0 , 1.0 0

20

40 60 % Me OH

80

B 2.5

iCH

I

3

2.0 ^

1.5

1.0

CH

3

r-\

1.0

2.0

3.0

4.0

r = [Mg* ]/[Po ] 2

4

Figure

10. A. E f f e c t s o f v a r y i n g methanol l e v e l s on the f l u o r e s ­ cence quenching o f 9,10-dimethylanthracene and 8,9,10,11-tetrahydro-BA by n a t i v e DNA ( [ p O i / ] - 5.0+x 10 M). B. E f f e c t s o f Mg on h y d r o c a r b o n f l u o r e s c e n c e quench­ i n g by n a t i v e DNA ([po ] 5.0 x io" * M) • (Reproduced w i t h p e r m i s s i o n from Ref. 14. Copyright 1984, Adenine.) 2

s

1

u

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

232

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

t i o n , on t h e p o l a r i t y of t h e DNA environment, and on t h e presence of DNA s t a b i l i z e r s i n d i c a t e s t h a t ±n_ v i v o hydrocarbon i n t e r c a l a ­ t i o n i n t o DNA i s a p r o c e s s which can o c c u r t o d i f f e r e n t degrees as DNA f u n c t i o n changes d u r i n g t h e course of a c e l l c y c l e . I t i s i n t e r e s t i n g t h a t t r a n s - 7 , 8 - d i h y d r o x y - 7 , 8 - d i h y d r o - B P ex­ h i b i t s l i t t l e f l u o r e s c e n c e quenching w i t h h e a t - d e n a t u r e d c a l f t h y ­ mus DNA b u t b i n d s s t r o n g l y t o s i n g l e - s t r a n d e d X 174 DNA. A t p r e ­ sent t h e r e i s no i n f o r m a t i o n c o n c e r n i n g t h e nature of t h e b i n d i n g t o s i n g l e - s t r a n d e d DNA. However, n a t i v e s i n g l e - s t r a n d e d DNA i s l e s s s t e r i c a l l y crowded than d o u b l e - s t r a n d e d DNA and has secondary s t r u c t u r e t h a t i n v o l v e s r e g i o n s w i t h a s i g n i f i c a n t degree o f base stacking (90). The b i n d i n g s t u d i e s w i t h trans_-7,8-dihydroxy-7,8d i h y d r o - B P i n d i c a t e t h a t t h i s s t r u c t u r e may p r o v i d e a v e r y f a v o r ­ able host f o r hydrocarbon metabolite i n t e r c a l a t i o n . The g r e a t e r a f f i n i t y of trans-7,8-dihydroxy-7,8-dihydro-BP t o s i n g l e - s t r a n d e d DNA than t o d o u b l e - s t r a n d e d DNA and the e f f e c t i v e i n h i b i t i o n o f h y d r o c a r b o n i n t e r c a l a t i o n by DNA s t a b i l i z e r s has l e d t o s p e c u l a ­ t i o n t h a t h y d r o c a r b o n i n t e r c a l a t i o n i n t o d o u b l e - s t r a n d e d DNA may be most f a v o r a b l e when DNA i s p a r t i a l l y unwound (14, 1 6 ) . Such c o n f o r m a t i o n s a r e thought t o o c c u r when DNA i s u n d e r g o i n g r e p l i c a ­ t i o n and when gene e x p r e s s i o n i s t a k i n g p l a c e ( 9 1 ) . Summary Benzo[a]pyrene and 7 , 1 2 - d i m e t h y l b e n z [ a ] a n t h r a c e n e metabolites which a r e u l t i m a t e c a r c i n o g e n s and bay r e g i o n m e t a b o l i t e model compounds which s i m u l a t e t h e IT s t r u c t u r e o f u l t i m a t e c a r c i n o g e n s are good i n t e r c a l a t i n g a g e n t s . Bay r e g i o n model compounds of BP m e t a b o l i t e s a r e b e t t e r i n t e r c a l a t i n g agents than comparable model compounds o f DMBA m e t a b o l i t e s . F o r a g i v e n p a r e n t h y d r o c a r b o n (BP or DMBA) bay r e g i o n m e t a b o l i t e model compounds which have been s t u d i e d t o date a r e b e t t e r i n t e r c a l a t i n g agents than model com­ pounds of l e s s c a r c i n o g e n i c m e t a b o l i t e s examined under i d e n t i c a l conditions. The i n t e r c a l a t i o n o f a r o m a t i c hydrocarbons i n t o DNA i s h i g h l y dependent upon t h e c o n f o r m a t i o n and t h e environment o f the DNA. There a r e a l a r g e number o f p o t e n t i a l l y i m p o r t a n t ways i n w h i c h p h y s i c a l b i n d i n g o f hydrocarbon m e t a b o l i t e s t o DNA can i n ­ fluence carcinogenic a c t i v i t y . The p h y s i c a l b i n d i n g o f nonreac­ t i v e p r o x i m a t e c a r c i n o g e n s t o DNA may l e a d t o t h e p o o l i n g o f t h e s e molecules at u l t i m a t e t a r g e t s i t e s . Current r e s u l t s i n d i c a t e that p h y s i c a l b i n d i n g o f r e a c t i v e hydrocarbon m e t a b o l i t e s t o DNA p r e ­ cedes r e a c t i o n and enhances m e t a b o l i t e r e a c t i v i t y . Following the f o r m a t i o n o f p h y s i c a l complexes o f r e a c t i v e m e t a b o l i t e s w i t h DNA, r e a c t i o n s o c c u r which l e a d t o epoxide h y d r o l y s i s and t o DNA modi­ f i c a t i o n . The base s p e c i f i c i t y and t h e s t e r e o c h e m i s t r y a s s o c i a t e d w i t h i n t e r c a l a t e d complexes may i n f l u e n c e these r e a c t i o n s . In a d d i t i o n t o i n f l u e n c i n g hydrocarbon metabolite-DNA r e a c ­ t i o n s , the p h y s i c a l b i n d i n g p r o p e r t i e s of hydrocarbon metabolites c o v a l e n t l y bound t o DNA may a l s o be i m p o r t a n t t o c a r c i n o g e n i c a c ­ tivity. The c o v a l e n t b i n d i n g o f u l t i m a t e c a r c i n o g e n s d e r i v e d from BP and DMBA t o DNA produces adducts w i t h IT b i n d i n g p r o p e r t i e s s i ­ m i l a r t o those o f n a t u r a l l y o c c u r r i n g n u c l e o t i d e s . These adducts

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9. LEBRETON Intercalation of Metabolite Model Compounds into DNA 233

can p a r t i c i p a t e i n TT b i n d i n g i n t e r a c t i o n s w i t h DNA, w i t h RNA and w i t h DNA r e g u l a t i n g enzymes.

other

s t r a n d s of

Acknowledgments

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

Support of t h i s work by t h e N a t i o n a l I n s t i t u t e s of H e a l t h , the American Cancer S o c i e t y and the R e s e a r c h Board o f the U n i v e r s i t y of I l l i n o i s i s g r a t e f u l l y acknowledged. The a u t h o r a l s o w i s h e s t o thank P r o f e s s o r s Ronald G. Harvey, N i c h o l a s G e a c i n t o v , M i c h a e l MacLeod and Nien-chu Yang f o r h e l p f u l d i s c u s s i o n s and P a t r i c i a Campbell and R e g i n a G i e r l o w s k i f o r p r e p a r a t i o n of t h i s m a n u s c r i p t .

Literature Cited 1.

Meehan, T.; Straub, K. Nature 1979, 277, 410-412.

2.

Lin, J.-H.; LeBreton, P. R.; Shipman, L. L. J. Phys. Chem. 1980, 84, 642-649.

3.

MacLeod, M. C.; Selkirk, J. K. Carcinogenesis 1982, 3, 287292.

4.

Meehan, T.; Gamper, H.; Becker, J. F. J. Biol. Chem. 1982, 257, 10479-10485.

5.

Geacintov, N. E.; Ibanez, V.; Gagliano, A. G.; Yoshida, H.; Harvey, R. G. Biochem. Biophys. Res. Commun. 1980, 92, 13351342.

6.

Geacintov, N. E.; Yoshida, H.; Ibanez, V.; Harvey, R. G. Bio­ chem. Biophys. Res. Commun. 1981, 100, 1569-1577.

7.

Ibanez, V.; Geacintov, N. E.; Gagliano, A. G.; Brandimarte, S.; Harvey, R. G. J. Am. Chem. Soc. 1980, 102, 5661-5666.

8.

Geacintov, N. E.; Yoshida, H.; Ibanez, V.; Harvey, R. G. Bio­ chemistry 1982, 21, 1864-1869.

9.

Yang, N. C.; Hrinyo, T. P.; Petrich, J. W.; Yang, D.-D. H. Biochem. Biophys. Res. Commun. 1983, 114, 8-13.

10. Chen, F.-M. Carcinogenesis 1984, 5, 753-758. 11. Meehan, T.; Becker, J. F.; Gamper, H. Proc. Amer. Assoc. Can­ cer Res. 1981, 22, 92. 12. Shahbaz, M.; Harvey, R. G.; Prakash, A. S.; Boal, T. R.; Zegar, I. S.; LeBreton, P. R. Biochem. Biophys. Res. Commun. 1983, 112, 1-7. 13. Prakash, A. S.; Zegar I. S.; Shahbaz, M.; LeBreton, P. R. Int. J. Quant. Chem. Quantum Biology Symposium 1983, 10, 349356.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

234

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

14. Zegar, I. S.; Prakash, A. S.; LeBreton, P. R. J. Biomol. Struct. Dynamics 1984, 2, 531-542. 15. Abramovich, M.; Zegar, I. S.; Prakash, A.S.; Harvey, R. G.; LeBreton, P. R. in "The Molecular Basis of Cancer, Part A; Macromolecular Structure Carcinogens, and Oncogenes"; Rein, R. Ed.; Alan R. Liss: New York, 1985, pp. 217-225.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

16. Hsu, W.-T.; Harvey, R. G.; Weiss, S. B. Biochem. Biophys. Res. Commun. 1981, 101, 317-325. 17. Geacintov, N. E.; Hibshoosh, H.; Ibanez, V.; Benjamin, M. J.; Harvey, R. G. Biophysical Chemistry 1984, 20, 121-133. 18. Abramovich, M.; Prakash, A. S.; Harvey, R. G.; Zegar, I. S.; LeBreton, P. R. Chem.-Biol. Interactions submitted. 19. Paulius, D. E.; Prakash, A. S.; Harvey, R. G., Abramovich, M.; LeBreton, P. R. in "Proceedings of the Ninth Internation­ al Symposium on Polynuclear Aromatic Hydrocarbons, Polynucle­ ar Aromatic Hydrocarbons: Chemistry, Characterization and Carcinogenesis"; Cooke, M.; Dennis, A. G. Eds.; Battelle: Columbus, Ohio, 1985, in press. 20. Harvey, R. G. Acc. Chem. Res. 1981, 14, 218-226. 21. Remsen, J.; Jerina, D.; Yagi, H.; Cerrutti, P. Biochem. Bio­ phys. Res. Commun. 1977, 74, 934-940. 22. Sims, P.; Grover, P. L. in "Advances in Cancer Research"; Klein, G.; Weinhouse, S., Eds.; Academic: New York, 1974 pp. 165-274. 23. Sims, P.; Grover, P. L.; Swaisland, A.; Pal, K.; Hewer, A. Nature 1974, 252, 326-328. 24. Kootstra A.; Haas, B. L.; Slaga, T. J. Biochem. Biophys. Res. Commun. 1980, 94, 1432-1438. 25. Pelling, J. C.; Slaga, T. J. Carcinogenesis 1982, 3, 11351141. 26. Kootstra, A. Carcinogenesis 1982, 3, 953-955. 27. Ivanovic, V.; Geacintov, N. E.; Jeffrey, A. M.; Fu, P. P.; Harvey, R. G.; Weinstein, I. B. Cancer Lett. 1978, 4, 131140. 28. Weinstein, I. B.; Jeffrey, A. M. Jennette, K. W.; Blobstein, S. H.; Harvey, R. G.; Harris, C. Autrup, H.; Kasai, H.; Na­ kanishi, K. Science 1976, 193, 592-595. 29. Grover, P. L. in "Drug Metabolism-From Microbe to Man"; Parke, D. V.; Smith, R. L., Eds.; Taylor and Francis: London, 1977 pp. 105-122.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9. LEBRETON

235

Intercalation of Metabolite Model Compounds into DNA

30. Leffler, S.; Pulkrabek, P.; Grunberger, D.; Weinstein, I. B. Biochemistry 1977, 16, 3133-3136. 31. Pulkrabek, P.; Leffler, S.; Grunberger, D.; Weinstein, I. B. Biochemistry 1979, 18, 5128-5134.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

32. King, H. W. S.; Osborne, M. R.; Beland, F. A.; Harvey, R. G.; Brookes, P. Proc. Natl. Acad. Sci. USA 1976, 73, 2679-2681. 33. Brookes, P.; Osborne, M. R. Carcinogenesis 1982, 3, 12231226. 34. Agarwal, K. L.; Hrinyo, T. P.; Yang, N. C. Biochem. Biophys. Res. Commun. 1983, 114, 14-19. 35. Lianos, P.; Georghiou, S. Photochem. and Photobiol. 29, 13-21.

1979,

36. LePecq, J.-B.; Paoletti, C. J. Mol. Biol. 1967 27, 87-106. 37. Ts'o, P. O. P. in "Basic Principles in Nucleic Acid Chemis­ try"; Ts'o, P. O. P., Ed.; Academic: New York, 1974; Vol. I, pp. 453-584. 38. Osborne, M. R.; Connell, J. R.; Venitt, S.; Crofton-Sleigh, C.; Brookes, P.; DiGiovanni, J.; Potaki, J.; Harvey, R. G. in "The Role of Chemicals and Radiation in the Etiology of Can­ cer"; Huberman, E., Ed.; Raven: New York, 1985, in press. 39. Boyland, E.; Green, B. Brit. J. Cancer 1962, 16, 507-517. 40. Boyland, E.; Green, B.; Liu, S.-L. Biochim. Biophys. Acta 1964, 87, 653-663. 41. Giovanella, B. C.; McKinney, L. E.; Heidelberger, C. J. Mol. Biol. 1964, 8, 20-27. 42. Yang, S. K.; Deutsch, J.; Gelboin, H. V. in "Polycyclic Hy­ drocarbons and Cancer"; Gelboin, H. V.; Ts'o, P. O. P., Eds.; Academic: New York, 1978; Vol. I, pp. 205-231. 43. Weinstein, I. B. J. Supramol. Struct, and Cell. Biochem. 1981, 17, 99-120. 44. Trosko, J. E.; Chang, C. C. in "Chemical Carcinogens and DNA"; Grover, P. L.; Ed.; CRC Press: Boca Raton, 1979; Vol. II, pp. 181-200. 45. Jerina, D. M.; Lehr, R. E. in "Microsomes and Drug Oxida­ tions"; Ullrich, V.; Roots, I.; Hildebrandt, A.; Estabrook, R. W.; Conney, A. H. Eds.; Pergamon: Oxford, 1977; pp. 709720. 46. Nordqvist, M. M.; Thakker, D. R.; Yagi H.; Lehr, R. E.; Wood, A. W.; Levin, W.; Conney, A. H.; Jerina, D. M. in "Molecular Basis of Environmental Toxicity"; Bhatnagar, R. S. Ed.; Ann Arbor Science Publishers: Ann Arbor, 1980 pp. 329-357. In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

236

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

47. Huberman, E.; Chou, M. W.; Yang, S. K. Proc. Natl. Acad. Sci. USA 1979, 76, 862-866. 48. Flesher, J. W.; Harvey, R. G.; Syndor, K. L. Int. J. Cancer 1976, 18, 351-353. 49. Slaga, T. J.; Gleason, G. L.; DiGiovanni, J.; Sukuraaran, K. B.; Harvey, R. G. Cancer Res. 1979, 39, 1934-1936.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

50. Dipple, A.; Pigott, M.; Moschel; R. C.; Costantino, N. Cancer Res. 1983, 43, 4132-4135. 51. Vigny, P.; Kindts, M.; Cooper, C. S.; Grover P. L.; Sims, P. Carcinogenesis 1981, 2, 115-119. 52. Slaga, T. J.; Gleason, G. L.; DiGiovanni, J.; Berry, D. L.; Juchau, M. R.; Fu, P. P.; Sukumaran, K. B.; Harvey, R. G. in "Polynuclear Aromatic Hydrocarbons"; Jones, P. W.; Leber, P., Eds.; Ann Arbor Science: Ann Arbor, 1979; pp. 753-764. 53. Slaga, T. J.; Bracken, W. M.; Viaje, A.; Levin, W.; Yagi, H.; Jerina, D. M.; Conney, A. H. Cancer Res. 1977, 37, 4130-4133. 54. Kakefuda, T.; Yamamoto, H. in "Polycyclic Hydrocarbons and Cancer"; Gelboin, H.; Ts'o, P.O.P. Eds.; Academic: New York, 1978; Vol. II, 63-74. 55. Drinkwater, N. R.; Miller, E. C.; Miller, A. J. Biochemistry 1980, 19, 5087-5092. 56. Gamper, H. B.; Bartholomew, J. C.; Calvin, M. Biochemisty 1980, 19, 3948-3956. 57. Jeffrey, A. M.; Weinstein, I. B.; Jennette, K. W.; Grzeskowiak, K.; Nakanishi, K.; Harvey, R. G.; Autrup, H.; Harris, C. Nature 1977, 269, 348-350. 58. Ivanovic, V.; Geacintov, N. E.; Yamasaki, H.; Weinstein, I. B. Biochemistry 1978, 17, 1597-1603. 59. Geacintov, N. E.; Gagliano, A.; Ivanovic, V.; Weinstein, I. B. Biochemistry 1978, 17, 5256-5262. 60. Yang, N. C.; Ng, L.-K.; Neoh, S. B.; Leonov, D. Biochem. Bio­ phys. Res. Commun. 1978, 82, 929-934. 61. Undeman, O.; Lycksell, P.-O.; Graslund, A.; Astlind, T.; Ehrenberg, A.; Jernstro'm, B.; Tjerneld, F.; Norden, B. Cancer Res. 1983, 43, 1851-1860. 62. Prusik, T.; Geacintov, N. E. Biochem. Biophys. Res. Commun. 1979, 88, 782-790. 63. Gamper, H. B.; Straub, K.; Calvin, M.; Bartholomew, J. C. Proc. Natl. Acad. Sci. USA 1980, 77, 2000-2004.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9. LEBRETON Intercalation of Metabolite Model Compounds into DNA

237

64. Hogan, M. E. Dattagupta, N.; Whitlock, J. P. J. Biol. Chem. 1981, 256, 4504-4513. 65. Geacintov, N. E.; Gagliano, A. G.; Ibanez, V.; Harvey, R. G. Carcinogenesis 1982, 3, 247-253. 66. MacLeod, M. C.; Mansfield, B. K.; Selkirk, J. K. Carcinogene­ sis 1982, 3, 1031-1037.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

67. Undeman, O.; Sahlin, M.; Graslund, A.; Ehrenberg, A. Biochem. Biophys. Res. Commun. 1980, 94, 458-465. 68. Geacintov, N. E.; Ibanez, V.; Gagliano, A. G.; Jacobs, S. A.; Harvey, R. G. J. Biomol. Struct. Dyanmics 1984, 1, 14731484. 69. Geacintov, N. E.; Yoshida, H.; Ibanez, V.; Jacobs, S. A.; Harvey, R. G. Biochem. Biophys. Res. Commun. 1984, 122, 3339. 70. Pezutto, J. M.; Yang, C. S.; Yang, S. K.; McCourt, D. W.; Gelboin, H. V. Cancer Res. 1978, 38, 1241-1245. 71.

Chou, M. W.; Yang, S. K.; Sydor, W.; Yang, C. S. Cancer Res. 1981, 41, 1559-1564.

72. Geacintov, N. E.; Prusik, T.; Khosrofian, J. M. J. Am. Chem. Soc. 1976, 98, 6444-6452. 73. Bennett, R. G.; McMartin, P. J. J. Chem. Phys. 1966, 44, 1969-1972. 74. O'Brien, J. J.; Henry, B. R.; Selinger, B. K. Chem. Phys. Lett. 1977, 46, 271-274. 75. Geacintov, N. E. private communication. 76. Moon, A. Y.; Poland, D. C.; Scheraga, H. A. J. Phys. Chem. 1965, 69, 2960-2966. 77. Hui, M.-H.; Ware, W. R. J. Am. Chem. Soc. 1976, 98, 47184727. 78. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703-2707. 79. Schmechel, D. E. V.; Crothers, D. M. Biopolymers 1971, 10, 465-480. 80. Gupta, S. C.; Pohl, T. M.; Friedman, S. L.; Whalen, D. L.; Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1982, 104, 31013104. 81. MacLeod, M. C. private communication.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

238 POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

82. Yu, C.; O'Donnell, T. J.; LeBreton, P. R. J. Phys. Chem. 1981, 85, 3851-3855. 83. Hush, N. S.; Cheung, A. S. Chem. Phys. Lett. 1975, 34, 11-13. 84. Peng, S.; Padva, A.; LeBreton, P. R.; Proc. Natl. Acad. Sci. USA 1976, 73, 2966-2968.

Downloaded by UNIV OF MISSOURI COLUMBIA on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch009

85. Boschi, R.; Clar, E.; Schmidt, W. J. Chem. Phys. 1974, 60, 4406-4418. 86. Akiyama, I.; Harvey, R. G.; LeBreton, P. R. J. Am. Chem. Soc. 1981, 103, 6330-6332. 87. Shahbaz, M.; Akiyama, I.; LeBreton, P. R. Biochem. Biophys. Res. Commun. 1981, 103, 25-30. 88. Cohen, S. S. in "Introduction to the Polyamines"; Prentice­ -Hall: Englewood Cliffs, 1971; pp. 29-63. 89. Hughes, M. N. in "The Inorganic Chemistry of Biological Pro­ cesses"; John Wiley: New York, 1981, p. 258. 90. Freifelder, D. in "The DNA Molecule Structure and Proper­ ties"; W. H. Freeman: San Francisco, 1978 pp. 268-270. 91. Lewin, B. in "Genes"; John Wiley: New York, 1983; pp. 503536. RECEIVED May 13, 1985

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.