39 The Oxalic Acid Dosimeter Procedure NIELS W. HOLM and K. SEHESTED
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
The Danish Atomic Energy Commission, Research Establishment Risö, Roskilde, Denmark
A review is given on the experiences with the oxalic acid dosimeter.
The system was first suggested by Draganić,
who has carried out extensive investigations on the dosi metric properties. Further experiments have been carried out at various laboratories—e.g., in the United States, Japan, and Denmark. Although the system suffers from some sys tematic weaknesses, it can be applied successfully, when properly calibrated under the conditions where it is to be used. The present report describes its application for and
60
Co
high dose-rate electron dosimetry.
>Tphe o x a l i c - a c i d dosimeter has a h i s t o r y c o m p a r a b l e to that of t h e ceric-sulfate dosimeter.
M u c h w o r k has b e e n c a r r i e d out, p r o m i s
i n g results h a v e b e e n o b t a i n e d , a n d a n a b u n d a n c e of p u b l i c a t i o n s have a p p e a r e d ; b u t o n l y f e w p e o p l e r e a l l y use these systems.
Still both the
ceric-sulfate dosimeter a n d t h e o x a l i c - a c i d d o s i m e t e r m a y b e a p p l i e d successfully, o n c e t h e y a r e " d e b u g g e d " b y t h e p e o p l e w h o a r e to use t h e m i n the d a i l y r o u t i n e . B o t h systems deserve m u c h a t t e n t i o n as t h e y are a m o n g the f e w p r o m i s i n g candidates o f aqueous c h e m i c a l dosimeters for use i n the m e g a r a d range. T h e o x a l i c - a c i d d o s i m e t e r has some s u b s t a n t i a l advantages o v e r t h e ceric-sulfate (1)
dosimeter,
which
made
us investigate
it more
closely:
i t is q u i t e insensitive t o i m p u r i t i e s , ( 2 ) i t h a s v e r y g o o d energy-
a b s o r p t i o n characteristics, a n d ( 3 ) t h e system is v e r y stable t o n o r m a l storage b e f o r e a n d after i r r a d i a t i o n . T h e system also has some d r a w b a c k s : ( 1 ) t h e d e c o m p o s i t i o n of o x a l i c - a c i d does not p r o c e e d l i n e a r l y w i t h t h e a b s o r b e d dose, a n d ( 2 ) t h e c h e m i c a l y i e l d is n o t f u l l y i n d e p e n d e n t of the r a d i a t i o n c o n d i t i o n s . O t h e r difficulties h a v e b e e n r e p o r t e d a n d h a v e h a m p e r e d the p r a c t i c a l use. T h i s p a p e r identifies some of these difficulties a n d suggests p r a c t i c a l solutions. O n basis of n e w e r e v i d e n c e , i t is b e l i e v e d b y the authors that 568 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
39.
H O L M AND SEHESTED
Oxalic Acid
569
Dosimeter
the system is v e r y w e l l s u i t e d f o r d o s i m e t r y in—e.g., r a d i a t i o n s t e r i l i z a t i o n of f o o d a n d m e d i c a l p r o d u c t s . Historical
Background
T h e system w a s first d e s c r i b e d i n 1955 ( 3 ) b y D r a g a n i c , w h o p o i n t e d out the advantages l i s t e d above.
I n later p u b l i c a t i o n s (4, 6, 7, 11), d e
t a i l e d procedures w e r e r e p o r t e d f o r
6 0
C o as w e l l as f o r reactor use.
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
T h e r o u t i n e p r o c e d u r e w a s b a s e d o n the f o l l o w i n g : ( 1 ) T h e oxalic a c i d decomposes w h e n subjected to r a d i a t i o n , a n d the a b s o r b e d dose is d e t e r m i n e d f r o m t h e decrease i n o x a l i c - a c i d c o n c e n tration upon irradiation. ( 2 ) T h e o x a l i c - a c i d c o n c e n t r a t i o n measurements are p e r f o r m e d b y ( a ) K M n 0 titration ( 3 ) , ( b ) cupribenzidine spectrophotometry (11), or ( c ) N a O H t i t r a t i o n (19). 4
( 3 ) T h e c h e m i c a l change is n o t a l i n e a r f u n c t i o n of t h e dose. A s a n a p p r o x i m a t i o n i t w a s suggested to use G = 4.9 u p to 3 0 % d e c o m p o s i t i o n , a n d f r o m t h e n o n calculate the dose f r o m a n expression of the f o r m log D = a log C + b, w h e r e D is the a b s o r b e d dose i n e . v . / g r a m , C the n u m b e r of m o l e c u l e s d e c o m p o s e d p e r g r a m , a n d a a n d b constants d e p e n d i n g o n t h e oxalica c i d c o n c e n t r a t i o n b e f o r e a n d after i r r a d i a t i o n . O n this basis the system w a s u s e d successfully at t h e laboratories at R i s o a n d V i n c a ( B o r i s K i d r i c h Institute of N u c l e a r Sciences, B e l g r a d e , Yugoslavia). accurate,
W h i l e t h e K M n 0 - t i t r a t i o n m e t h o d w a s d i s c a r d e d as less 4
the c u p r i b e n z i d i n e m e t h o d w a s d e v e l o p e d f u r t h e r
(11)
and
p r o v e n to b e satisfactory f o r r o u t i n e use. T h e N a O H t i t r a t i o n w a s c o n s i d e r e d a g o o d alternative m e t h o d .
T h e G - v a l u e f o r less t h a n 3 0 % d e
c o m p o s i t i o n w a s r e - d e t e r m i n e d at V i n c a (20) independent Concurrent
b y calorimetry, a n d a n
G - v a l u e d e t e r m i n a t i o n w a s c a r r i e d out elsewhere investigations
for pulsed
electron
beams
took
(15).
place
at
Riso ( 9 ) . D u r i n g these years, the system g a i n e d interest i n the U n i t e d States (6)
as a p r o s p e c t i v e substitute f o r the ceric-sulfate dosimeter i n f o o d -
i r r a d i a t i o n d o s i m e t r y . A n A S T M ( A m e r i c a n Society f o r T e s t i n g & M a t e r i a l s ) s u b c o m m i t t e e d e a l i n g w i t h d o s i m e t r y p r o b l e m s w o r k e d out tenta tive recommended
procedures,
n u m b e r of laboratories.
a n d circulated them
T h e suggestions
f o r testing
f o r the a n a l y t i c a l
in a
procedure
included both spectrophotometry a n d N a O H - t i t r a t i o n . First ASTM
Round
Robin Test
T w o m e m b e r s of t h e A S T M - c o m m i t t e e h a v e p u b l i s h e d the results of their investigations.
Glass (13)
f o u n d that t h e s p e c t r o p h o t o m e t r i c p r o -
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
570
RADIATION CHEMISTRY
1
c e d i i r e y i e l d e d results 7 - 1 6 % l o w e r t h a n those o b t a i n e d b y the F r i c k e dosimeter.
I n the t i t r a t i o n p r o c e d u r e , the results w e r e 2 - 6 %
lower.
T h e s e measurements c o m p r i s e d 100 m M , 300 m M , a n d 750 m M oxalica c i d solutions. C o n n a l l y a n d G e v a n t m a n n (2)
u s e d the s p e c t r o p h o t o m e t r i c m e t h o d
a n d f o u n d , w i t h i n ± 5 — 1 0 % , agreement w i t h values e x t r a p o l a t e d f r o m measurements w i t h the F r i c k e dosimeter. H a r m e r (14)
a n d W e i s s (22)
h a d i n d i c a t i o n s of i n s t a b i l i t y to u l t r a
v i o l e t l i g h t of the d i l u t e d c o m p l e x s o l u t i o n f o r the s p e c t r o p h o t o m e t r i c Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
measurement. C h e e k a n d L i n n e n b o m ( 1 ) f o u n d f o r the s p e c t r o p h o t o m e t r i c m e t h o d s t a n d a r d d e v i a t i o n s of the o r d e r of ± 1 0 % b a s e d o n a G - v a l u e of 4.9. F o r the N a O H - t i t r a t i o n m e t h o d t h e y effective r e m o v a l o f C 0
2
emphasized the importance
of
f r o m the i r r a d i a t e d s o l u t i o n . A s a n alternative
to h e a t i n g t h e y p r o p o s e d to r e m o v e the C 0
2
b y p u r g i n g the s o l u t i o n
w i t h a stream of H 0 - s a t u r a t e d , C 0 - f r e e a i r . B y t i t r a t i o n t h e y f o u n d 2
2
the G - v a l u e to b e 4.4 f o r a 75 m M o x a l i c - a c i d s o l u t i o n . Fenger
u s e d the dosimeter f o r g a m m a - f l u x measurements i n
(12)
the t h e r m a l c o l u m n of the D R 2 reactor a n d c a l i b r a t e d the system i n the R i s o C o - 6 0 f a c i l i t y . H e f o u n d f o r a 50 m M o x a l i c - a c i d s o l u t i o n a G - v a l u e of 4.6 ± 0.3. T h e earlier experiences of this l a b o r a t o r y w e r e g o o d i n so f a r as the a c c u r a c y o b t a i n e d w i t h the system w a s i n a c c o r d a n c e w i t h w h a t h a d b e e n stated b y D r a g a n i c (better t h a n 1 0 % ). T h e d i f f i c u l t y i n o b t a i n i n g good
results
procedure.
as r e p o r t e d
above,
however,
made
us re-examine
the
( T h i s w o r k w a s started b y one of the authors ( N . W . H . )
d u r i n g a one-year
stay as v i s i t i n g scientist
at t h e R a d i a t i o n
Sources
B r a n c h of the U . S . A r m y N a t i c k L a b o r a t o r i e s , N a t i c k , M a s s . , U n i t e d States. ) Re-examination
of
Procedure
T h e i n f o r m a t i o n a c c u m u l a t e d b y the first A S T M r o u n d r o b i n test i n d i c a t e d t w o k i n d s of d i f f i c u l t i e s : ( 1 ) T h e scattering of results i n i n d i v i d u a l tests at a n y p a r t i c u l a r l a b o r a t o r y i n d i c a t e d that t h e a n a l y t i c a l p r o c e d u r e w a s either too c o m p l i c a t e d f o r r o u t i n e use, or i n a c c u r a t e o w i n g to systematic errors—e.g., i n s t a b i l i t y to u l t r a v i o l e t l i g h t of the c u p r i b e n z i d i n e c o m p l e x s o l u t i o n . ( 2 ) A p p l i c a t i o n of G = 4.9 f o r 0 - 3 0 % d e c o m p o s i t i o n a n d of t h e l o g - l o g e q u a t i o n d i d n o t fit t h e true d e c o m p o s i t i o n c u r v e a d e q u a t e l y . Analytical Procedures. T h e d e m a n d s o n the c h e m i c a l analysis are v e r y strict as the a b s o r b e d dose is d e t e r m i n e d as a difference b e t w e e n t w o concentrations. T h r e e a n a l y t i c a l m e t h o d s h a v e b e e n suggested f o r use i n o x a l i c - a c i d d o s i m e t r y :
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
39.
H O L M AND SEHESTED
Oxalic Acid
Dosimeter
571
( 1 ) TITRATION WITH K M N 0 (4, 6). T h i s m e t h o d is n o t v e r y spe cific as h y d r o g e n p e r o x i d e a n d o r g a n i c b y - p r o d u c t s f o r m e d b y the r a d i olysis are t i t r a t e d together w i t h the oxalic a c i d . G o o d r e p r o d u c i b i l i t y is d e p e n d e n t u p o n a subjective k i n d of r o u t i n e o n the p a r t of the operator, a n d the m e t h o d is therefore not c o n s i d e r e d s u i t a b l e as a s t a n d a r d dosimetry procedure. 4
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
(2)
SPECTROPHOTOMETRY
OF
THE
CUPRIBENZIDINE
COMPLEX
OF
O X A L I C A C I D (4, 5,6). Z . D r a g a n i c a n d I. D r a g a n i c (10,11) h a v e d e v e l o p e d a m e t h o d f o r s p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n of o x a l i c a c i d b y means of a reagent m a d e u p of a n aqueous s o l u t i o n of c u p r i c acetate, b e n z i d i n e d i h y d r o c h l o r i d e , a n d acetic a c i d . T h e o x a l i c - a c i d s o l u t i o n is d i l u t e d a n d m i x e d w i t h the c o m p l e x i n g reagent, a n d the o p t i c a l d e n s i t y is r e a d at 2 4 6 τημ. T h e m o l a r e x t i n c t i o n coefficient of t h e c o m p l e x is r e p o r t e d to be 2490, a n d it is stated that it m a y v a r y w i t h i n 1 0 % f r o m b a t c h to b a t c h a c c o r d i n g to reagent p u r i t y (6). A negative temperature coefficient of 0 . 7 % / ° C . is r e p o r t e d for the c o m p l e x a n d the c e l l c o m p a r t m e n t s h o u l d therefore b e t e m p e r a t u r e c o n t r o l l e d . ( 3 ) T I T R A T I O N W I T H N A O H . T h i s m e t h o d w a s suggested b y M a t s u i ( 1 9 ) , w h o r e m o v e d the c a r b o n d i o x i d e f r o m the i r r a d i a t e d s o l u t i o n b y h e a t i n g the s a m p l e i n a w a t e r b a t h f o r 3 0 m i n u t e s . O t h e r experimenters (6, 13, 17) h a v e c h e c k e d this m e t h o d , b u t the agreement o b t a i n e d w a s not q u i t e satisfactory. T h e reason seems to b e i n a d e q u a t e r e m o v a l of carbon dioxide. T h e experiments at N a t i c k a n d at R i s e r e g a r d i n g the a n a l y t i c a l p r o cedures gave the f o l l o w i n g results (9): ( 1 ) S P E C T R O P H O T O M E T R Y . T h e a n a l y t i c a l reagents w e r e p r e p a r e d as d e s c r i b e d b y D r a g a n i c et al. (5) a n d the a n a l y t i c a l p r o c e d u r e w a s c h e c k e d b y p r e p a r i n g a set of 0.1, 0.2, a n d 0.3 m M o x a l i c - a c i d c o m p l e x solutions. T h e measurements w e r e c a r r i e d out o n a G a r y m o d e l 15, d u a l b e a m spectrophotometer ( N a t i c k ) a n d o n a Zeiss P M Q I I s i n g l e - b e a m spectrophotometer ( R i s e ) , b o t h w i t h t e m p e r a t u r e - c o n t r o l l e d c e l l c o m partments. A c a l i b r a t i o n c u r v e o b t a i n e d w i t h t h e s t a n d a r d D r a g a n i c ( 5 ) reagent is s h o w n i n F i g u r e 1. T h e O . D . of a 0.1 m M o x a l i c - a c i d c o m p l e x s o l u t i o n w a s d e t e r m i n e d to b e 0.250 ( c o r r e s p o n d i n g to a m o l a r e x t i n c t i o n coeffi cient of 2 5 0 0 ) . A s s u m i n g L a m b e r t - B e e r ' s l a w to b e v a l i d i t w a s t h e n expected that the O . D . of a 0.2 m M a n d 0.3 m M w o u l d b e 0 . 5 0 0 a n d 0.750 respectively. T h e readings, h o w e v e r , w e r e persistently h i g h e r , n a m e l y 0.530 a n d 0.815. T h i s w a s o b s e r v e d at b o t h laboratories a n d c h e c k e d i n several d e t e r m i n a t i o n s . ( I n a c c e l e r a t o r - i r r a d i a t e d solutions w e f o u n d that some of the r e a c t i o n p r o d u c t s f r o m the r a d i o l y s i s h a d a n a b s o r p t i o n of t h e i r o w n , w h i c h i n t e r f e r e d ( u p to 5 - 1 0 % ) w i t h the o x a l i c - a c i d deter m i n a t i o n . ) A systematic i n v e s t i g a t i o n w a s u n d e r t a k e n to c l a r i f y w h e t h e r other s t o i c h i o m e t r i c c o m p o s i t i o n s m i g h t l e a d to a better straight-line r e l a t i o n s h i p . It w a s f o u n d that the f o l l o w i n g concentrations gave a better a p p r o x i m a t i o n to a straight l i n e : ( 1 ) Solution A: D i s s o l v e 51.4 m g . b e n z i d i n e h y d r o c h l o r i d e i n 1 0 m l . 3 0 % v o l . acetic a c i d a n d d i l u t e w i t h d i s t i l l e d w a t e r to 2 5 0 m l . ( 0 . 8 m M ) ; a n d ( 2 ) Solution B: D i s s o l v e 159.7 m g . c u p r i c acetate i n 2 5 0 m l . d i s t i l l e d w a t e r ( 3 . 2 m M ) .
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
572
RADIATION CHEMISTRY
1
T h e m o l a r e x t i n c t i o n coefficient of the c o m p l e x w a s 2100. T h e re agent w a s u s e d i n a 1:4 ratio as earlier. T h e s t a b i l i t y of the reagent has b e e n q u e s t i o n e d b y some users, a n d a test w a s m a d e to examine this p r o b l e m . A set of solutions A a n d Β was stored f o r one m o n t h . A n o t h e r set of solutions w a s m i x e d to ( A + B ) a n d s i m i l a r l y stored. A f t e r the storage p e r i o d a f r e s h set of reagents was p r e p a r e d , a n d a l l three sets of reagents w e r e tested. T h e y gave i d e n t i c a l r e a d i n g s , b u t the p r e m i x e d a n d stored reagent w a s u n s t a b l e i n the spectrophotometer. A n o t h e r k i n d of i n s t a b i l i t y was o b s e r v e d i n the w o r k w i t h the C a r y s p e c t r o p h o t o m e t e r at N a t i c k . T h e O . D . readings decreased as i f a d e c o m p o s i t i o n of the c o m p l e x was t a k i n g place. T h i s p h e n o m e n o n was not o b s e r v e d w i t h the s i n g l e - b e a m spectrophotometer at R i s o . A s i m p l e test i n w h i c h a c o m p l e x s o l u t i o n was exposed to intense u l t r a v i o l e t l i g h t s h o w e d that a f e w m i n u t e s ' exposure decreased the o p t i c a l d e n s i t y some 5 0 % . A p r o c e d u r e , w h i c h takes care of this p r o b l e m is d e s c r i b e d i n Ref. 25. N A O H T I T R A T I O N . T h e o n l y p r o b l e m w i t h this m e t h o d is the q u a n t i tative r e m o v a l of C 0 , p r o d u c e d b y the d e c o m p o s i t i o n of oxalic a c i d . P u r g i n g of the s o l u t i o n w i t h w a t e r - s a t u r a t e d air w o r k s w e l l . A n easier m e t h o d is to take a n a l i q u o t f r o m the i r r a d i a t e d sample, w e i g h it, d i l u t e w i t h d i s t i l l e d w a t e r , a n d heat the s o l u t i o n for 30 m i n u t e s before t i t r a t i o n . 2
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
39.
H O L M AND SEHESTED
Oxalic Acid
Dosimeter
573
C O N C L U S I O N . T h e experiments s h o w e d that t h e s p e c t r o p h o t o m e t r i c m e t h o d as w e l l as t h e t i t r i m e t r i c m e t h o d c o u l d r e n d e r r e p r o d u c i b l e r e sults ( w i t h i n ± 2 - 3 % ) . T h e t i t r i m e t r i c m e t h o d m a y b e p r e f e r r e d as b e i n g m o r e r e l i a b l e a n d s i m p l e i n r o u t i n e use. Decomposition Curve. T h e refinements i n the a n a l y t i c a l p r o c e d u r e p e r m i t t e d a m o r e a c c u r a t e d e t e r m i n a t i o n of t h e o x a l i c - a c i d d e c o m p o s i t i o n c u r v e . T h e e x p e r i m e n t a l d a t a d e m o n s t r a t e d that t h e y i e l d decreases c o n t i n u o u s l y w i t h i n c r e a s i n g dose t h r o u g h o u t t h e d e c o m p o s i t i o n range. A d e c o m p o s i t i o n c u r v e f o r a 100 m M o x a l i c - a c i d s o l u t i o n o b t a i n e d at R i s o is s h o w n i n F i g u r e 2. ANx10" mol/ i
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
,8
m
Riso 100mM oxalic acid
40
32
24
16 Δ = spectre^photometry Ο = titratio η 8
Dx10- ev/ 9 , 16 M
"θ
4
8
12
Figure 2. Calibration curve for oxalic-acid de composition vs. absorbed dose as determined by titration and by spectrophotometry for 100 mM oxalic acid D r a g a n i c suggested ( 8 ) that first order r e a c t i o n kinetics w o u l d a p p l y for t h e r a d i o l y t i c d e c o m p o s i t i o n . S u c h a r e l a t i o n corresponds v e r y w e l l w i t h t h e e x p e r i m e n t a l results o b t a i n e d at R i s o a n d at V i n c a as seen i n F i g u r e s 3 a , 3 b , a n d 3c. T h e d a t a
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
574
RADIATION
CHEMISTRY
1
f r o m the t i t r a t i o n analysis are u s e d as they are c o n s i d e r e d t o b e m o r e accurate. R e c e n t d a t a o b t a i n e d at V i n c a (18) b y s p e c t r o p h o t o m e t r y are plotted for comparison.
0.8
50mM oxalic acid
togSc
Δ
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
0.6 - o - Natick -Δ-
Risô
-χ-
Vinca
1 M Ci
Δ
10 k Ci 2 kCi
χ
A,^^
0.4
^
Ο
—^ x
0.2
D * ev/g »10" 1
2
3
4
5
20
6
Figure 3a. Calibration curves for oxalic-acid decomposition (log c /c vs. absorbed dose) obtained at Natick, Risô and Vinca (Ref. 18) 0
CONCLUSION.
F r o m F i g u r e s 3a, 3 b a n d 3c, i t m a y b e seen t h a t :
( 1 ) T h e v a l i d i t y of a l o g a r i t h m i c e q u a t i o n is s u p p o r t e d b y a l l t h e e x p e r i m e n t a l data. ( 2 ) A systematic bend-off of d a t a f r o m the straight l i n e c a n b e seen at h i g h e r d e c o m p o s i t i o n values, o w i n g to the b u i l d - u p of r a d i o l y t i c b y - p r o d u c t s w h i c h take p a r t i n the process. T h i s sets a n u p p e r l i m i t of a p p r o x . 6 0 % d e c o m p o s i t i o n to the range of u s e f u l a p p l i c a t i o n o f the dosimeter at a p a r t i c u l a r i n i t i a l c o n c e n t r a t i o n . ( 3 ) Results o b t a i n e d at the different installations s h o w different yields—i.e., different p r o p o r t i o n a l i t y factors i n a l o g a r i t h m i c e q u a t i o n . It is b e l i e v e d that the differences i n y i e l d b e t w e e n the different i n s t a l l a tions m a y b e caused b y a " l e n g t h of i r r a d i a t i o n " effect. A m o n g t h e first p r o d u c t s f o r m e d are g l y o x a l a n d g l y o x y l i c a c i d (21), w h i c h react f u r t h e r i n s l o w c o n d e n s a t i o n reactions. W h e n the i r r a d i a t i o n t i m e is of t h e same o r d e r o f m a g n i t u d e — o r l e s s — t h a n the " l i f e t i m e " of g l y o x a l a n d g l y o x y l i c a c i d i n the s o l u t i o n , these p r o d u c t s w i l l react to a greater extent w i t h t h e p r i m a r y r a d i c a l s thus decreasing the y i e l d . F o r t h e c o n d i t i o n s e x a m i n e d here the difference i n y i e l d c a n b e m o r e t h a n 1 0 % .
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
39.
H O L M AND SEHESTED
Oxalic Acid
575
Dosimeter
100 mM oxalic acid 0.8
0.6 -o-
Natick
1 M Ci
- Δ -
Riso
10 I
χ
Vinca
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
0.4
0.2
Figure 3b. Calibration curves for oxalic-acid decomposition (log c /c vs. absorbed dose) obtained at Natick, Riso and Vinca (Ref. IS) G
log :
200 mM oxalic acid
0.8
Δ Risô Q6
χ Vinca
10 k Ci 2 k Ci
Q4
02
Dx10' ev/g 20
12
16
20
24
Figure 3c. Calibration curves for oxalic-acid decomposition (log c /c vs. absorbed dose) obtained at Natick, Riso and Vinca (Ref. IS) 0
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
576
RADIATION CHEMISTRY
Second ASTM
1
Round Robin Test
T h e s e c o n d r o u n d r o b i n test w h i c h took p l a c e i n 1966 w a s b a s e d o n a proposed procedure w o r k e d out b y H o l m
(15).
F i v e laboratories i n
t h e U n i t e d States took p a r t i n testing the p r o c e d u r e , w h i c h was b a s e d o n NaOH-titration.
It s h o w e d that laboratories a c c u s t o m e d to w o r k i n g o n
a n a l y t i c a l - c h e m i c a l p r o b l e m s got f a i r l y consistent a n d r e p r o d u c i b l e re sults. W h e n the results w e r e r e c a l c u l a t e d so as to express a values, these values r a n f r o m 37 to 49 (16).
A t V i n c a w h e r e these d a t a w e r e c o m p i l e d
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
f o r c o m p a r i s o n , the dose r e l a t i o n is u s e d i n the f o l l o w i n g f o r m : D = -c a
0
log^-.
D is the a b s o r b e d dose i n e.v./grams, a a p r o p o r t i o n a l i t y factor a n d
c
0
a n d c the concentrations i n m o l e c u l e s p e r m l . b e f o r e a n d after i r r a d i a t i o n .
Figure 4. Dose-rate dependence of 50 m M , 100 mM and 200 mM oxalicacid solutions, plotted as the number of molecules decomposed per unit energy input vs. the distance in centimeters from the beam exit window
Conclusions for
Co
60
Dosimetry
E x p e r i e n c e has s h o w n that the o x a l i c - a c i d dosimeter is not as s i m p l e i n use as o r i g i n a l l y a n t i c i p a t e d . T h e m o r e recent experiments h a v e l e d to refinements i n the a n a l y t i c a l p r o c e d u r e s a n d a d d e d to the u n d e r s t a n d i n g of the d e c o m p o s i t i o n process. It is necessary t h o u g h to c a l i b r a t e the system u n d e r the c o n d i t i o n s w h e r e it is to b e u s e d . W h e n that is d o n e , the system c a n b e expected to r e n d e r precise, r e l i a b l e a n d s i m p l e service.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
39.
H O L M AND SEHESTED
Application
Oxalic Acid
of the Oxalic-Acid
577
Dosimeter
Dosimeter for High Dose-Kate
Work
A n u m b e r of experiments h a v e b e e n c a r r i e d o u t at Risô (8, 9) o n the b e h a v i o r of the o x a l i c - a c i d system at extreme h i g h dose rates. T h e results of those experiments are s u m m a r i z e d i n F i g u r e 4, w h i c h shows the n u m b e r of m o l e c u l e s d e c o m p o s e d p e r u n i t energy i n p u t vs. t h e distance i n c m . f r o m the b e a m exit w i n d o w . B a s e d o n a dose c a l i b r a t i o n , these figures c o u l d b e r e c a l c u l a t e d so as to express the y i e l d as a f u n c t i o n of dose rate i n t h e p u l s e at a t o t a l d e c o m p o s i t i o n of 2 5 % .
It w a s f o u n d
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
that the d e c o m p o s i t i o n f o r a g i v e n dose is i n d e p e n d e n t of dose rate u p to : 2 X 1 0 rads/sec. for 50 m M oxalic acid 8
2 X 1 0 rads/sec. for 100 m M oxalic acid 9
2 X 10
1 0
rads/sec. for 200 m M oxalic acid
It is i m p o r t a n t t o note that t h e system is o n l y safe i n a r e a s o n a b l y homogeneous
field.
I n a v e r y i n h o m o g e n e o u s field a large s p e c t r u m of
t o t a l a b s o r b e d doses is f o u n d i n t h e s a m p l e a n d therefore also large differences i n c h e m i c a l y i e l d s .
Literature Cited (1) Cheek, Linnenbom, Naval Research Laboratory, Washington, D.C.,pri vate communication (1964). (2) Connally, E. F., Gevantmann, L. H., U. S. Naval Radiol. Defense Lab. USNRDL-ER-14 (1963). (3) Draganic, I. G.,J.Chim. Phys. 52, 595 (1955). (4) Ibid., J. Chim. Phys. 56, 9 (1959). (5) Draganić, I. G., Holm, N. W., Maul, J. E., Risö Report No. 22 (1961). (6) Draganić, I. G., Nucleonics 21 No. 2, 33-35 (1963). (7) Draganić, I. G., Radak, B. B., Marković, V. M., Intern. J. Appl. Radiation Isotopes 16, 145-152 (1965). (8) Draganić, I. G., Proc. Symp. Radiation Chem. 2nd, Budapest, Hungary, 1967. (9) Draganić, I. G., Sehested, K., Holm, N. W., Risö Report No. 112 (1967). (10) Draganić, Z. D., Draganić, I. G., Bull. Inst. Nucl.Sci."Boris Kidrich" (Belgrade) 7, No. 126 (1957). (11) Draganić, Z. D., Anal. Chim. Acta 28, 394 (1963). (12) Fenger, J., Risö Report No. 67 (1963). (13) Glass, A. L., AML Report No. NAEC-AML-1854 (1964). (14) Harmer, D., Dow Chemical Company, private communication ( 1964). (15) Holm, N. W., Bjergbakke, E., Sehested,K.,Draganić,I. G.,RisöReport No. 111 (1967). (16) Holm, N. W., Draganić, I. G. (in press). (17) Josimovic, Lj., Draganić, I., Sci. Paper I.P.C.R. Japan, 57, No. 1, 29-30 (1963). (18) Marković, V., Draganić, I. G., IBK Report (to be published)-and unpub lished results. (19) Matsui, M., Sci. Paper I.P.C.R. Japan 53, No. 1528 (1954). (20) Radak, B. B., Karapandzić, M., Gal, O., Nucleonics 22, No. 11, 52-54 (1964).
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
578
RADIATION CHEMISTRY
1
(21) Sehested, K., Bjergbakke, E., Holm, N. W., Proc. Symp. Radiation Chem. 2nd, Budapest, Hungary, pp. 149-160, 1967. (22) Weiss, J., HIRDL, Brookhaven National Laboratory, private communica tion (1964).
Downloaded by UNIV OF ROCHESTER on June 12, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch039
RECEIVED January 16, 1968.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.