51 The Oxidation of o-Xylene in a Transported Bed Reactor MARK
S. WAINWRIGHT
and TERRENCE
W.
HOFFMAN
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
Department of C h e m i c a l Engineering, M c M a s t e r University, Hamilton, Ontario, C a n a d a
o-Xylene was oxidized on a vanadia-on-silica catalyst in a bench-scale fixed bed reactor. Reaction products were analyzed at short on-stream times. These results indicated that reaction rates on freshly oxidized catalyst are much higher than those observed after steady state has been achieved; selectivity to organic oxidation products is also improved significantly. This reaction was also done in a pilot-scale transported bed reactor in which the catalyst was conveyed by the reactant/product gases. Stable operation was achieved at very high solid loadings (solid/gas ratios up to 250 and voidages from 0.60 to 0.86). The high reaction rates and selectivities can be exploited in such reactors, and suggestions for further research on such reactor systems are included.
O
- X y l e n e w a s o x i d i z e d i n a t r a n s p o r t e d b e d r e a c t o r w h e r e t h e finely d i v i d e d catalyst (vanadia on a silica support) was conveyed u p w a r d i n a t u b e b y t h e r e a c t i n g gas m i x t u r e . T h e a d v a n t a g e s o f a t r a n s p o r t e d b e d r e a c t o r a r e : ( a ) n e a r l y p l u g f l o w b e h a v i o r of t h e gas a n d s o l i d a n d h e n c e b e t t e r c o n t r o l of r e s i d e n c e t i m e of t h e r e a c t i n g a n d p r o d u c t gases, ( b ) e s s e n t i a l l y i s o t h e r m a l o p e r a t i o n e v e n a t h i g h r e a c t i o n rates b e c a u s e o f t h e g o o d h e a t t r a n s f e r rates f r o m s o l i d p a r t i c l e s t o gas a n d s o l i d / g a s s l u r r y to w a l l a n d t h e h e a t s i n k p r o v i d e d b y t h e m a s s of s o l i d e n t r a i n e d i n t h e gas, a n d ( c ) c o n t i n u o u s u s e of r e a c t i v a t e d c a t a l y s t s i n c e t h e s o l i d s a r e c o n t i n u a l l y a d d e d a n d withdrawn (I). T h e m a i n disadvantages are: (a) possibly the dilute con centrations of solids i n p n e u m a t i c a l l y c o n v e y e d systems a n d h e n c e the n e e d f o r h i g h s p e c i f i c r e a c t i v i t y of t h e c a t a l y s t , ( b ) p o s s i b l e h i g h a t t r i t i o n of t h e catalyst a n d erosion of reactor internals, a n d (c) c o m p l i c a t e d e q u i p m e n t , especially the catalyst recovery system. T h i s s t u d y w a s d o n e to e v a l u a t e t h e p e r f o r m a n c e of t h i s u n i q u e c o n t a c t i n g r e a c t o r f o r o x i d a t i o n r e a c t i o n s l i k e o - x y l e n e . I n t h i s r e a c t i o n t h e rates a r e h i g h e n o u g h a n d i n t e r m e d i a t e p r o d u c t s a r e d e s i r e d ; m o r e o v e r , i t is h i g h l y e x o t h e r m i c . W o r k w i t h transported b e d reactors has been l i m i t e d because the reactions m u s t b e v e r y fast. M o s t of t h e r e s e a r c h h a s b e e n d o n e b y i n d u s t r i a l g r o u p s a n d is d e s c r i b e d i n p a t e n t s . T h e i r u s e i n c l u d e s c a t a l y t i c c r a c k i n g , F i s h e r T r o p s c h h y d r o c a r b o n synthesis, coal gasification, acetylene generation, a n d 669
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
670
CHEMICAL
REACTION ENGINEERING
II
n u c l e a r r e a c t o r s . E c h i g o y a et al. (2) r e p o r t a b e n c h - s c a l e r e a c t o r f o r c u m e n e decomposition on an alumina-silicate catalyst, a n d recently d e L a s a a n d G a u (3) report the d e c o m p o s i t i o n of ozone i n a pilot-scale u n i t . E x c e p t for the l a t t e r , n o n e o f t h e s e s t u d i e s r e p o r t s o n t h e s e u n i t s as c h e m i c a l r e a c t o r s .
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
The
Oxidation
Reaction
R e a c t i o n Steps. Definitive studies on o-xylene oxidation on v a n a d i a cata lysts h a v e b e e n done b y N o v e l l a a n d B e n l l o c h ( 4 ) , H e r t e n a n d F r o m e n t ( 5 ) , a n d J u u s o l a ( 6 ) . A l t h o u g h these w o r k e r s u s e d different v a n a d i a catalysts, e a c h w i t h d i f f e r e n t a m o u n t s of v a n a d i u m p e n t o x i d e , w i t h p r o m o t e r s of d i f f e r e n t concentration a n d w i t h different catalyst supports, t h e y detected essentially the same p r o d u c t s ; catalyst performance differed only i n reaction rate a n d s e l e c t i v i t y . I n g e n e r a l , t h e r e a c t i o n s c h e m e c a n b e r e p r e s e n t e d b y F i g u r e 1. B o t h M a n n ( 7 ) a n d J u u s o l a ( 6 ) i n d i c a t e p - b e n z o q u i n o n e as a s i g n i f i c a n t r e a c t i o n p r o d u c t , b u t i t is d i f f i c u l t t o see h o w i t c a n b e p a r t o f t h e m a i n r e a c t i o n s e q u e n c e . M o r e o v e r , u s u a l l y o - t o l u i c a c i d is p r e s e n t o n l y i n s m a l l q u a n t i t i e s , i n d i c a t i n g t h a t i t s r e a c t i o n r a t e to p h t h a l i d e is q u i t e fast. O x i d a t i o n rate studies of p h t h a l i d e a n d p h t h a l i c a n h y d r i d e to the c a r b o n oxides a n d m a l e i c a n h y d r i d e suggest t h a t these reactions are n e g l i g i b l e b e l o w 4 0 0 ° C , i n d i c a t i n g t h a t these c o m p o u n d s are s t a b i l i z e d b y the a n h y d r i d e r i n g structure. M a l e i c a n h y d r i d e concentration is u s u a l l y s m a l l . O x i d a t i o n M e c h a n i s m . T h e o x i d a t i o n state o f v a n a d i u m s i g n i f i c a n t l y affects p r o d u c t d i s t r i b u t i o n s . S i m a r d et al. (8) s h o w e d t h a t t h e o x i d a t i o n state of v a n a d i u m i n these catalysts is s o m e w h e r e b e t w e e n 4 a n d 5 d u r i n g reaction. I n n a p h t h a l e n e o x i d a t i o n s t h e h i g h e r o x i d a t i o n state f a v o r s f o r m a t i o n o f t h e o r g a n i c o x i d e s w h e r e a s t h e l o w e r state f a v o r s t h e f o r m a t i o n o f c a r b o n o x i d e s ( 9 ) . T h e most significant systematic studies r e l a t i n g to catalyst properties h a v e b e e n d o n e b y t h e J a p a n e s e g r o u p (10, 11, 12, 13). T h e y were concerned w i t h t h e effect o f s u p p o r t m a t e r i a l , p o t a s s i u m s u l f a t e ( p r o m o t e r ) c o n c e n t r a t i o n , a n d sulfur trioxide a d d i t i o n o n the catalyst activity a n d selectivity. It was s h o w n that the o p t i m a l K S 0 - t o - V 0 mole ratio d e p e n d e d on support material. F r o m a phase d i a g r a m for this system, they c o n c l u d e d that w i t h a silicas u p p o r t e d c a t a l y s t , m o s t o f t h e s u l f a t e is a s s o c i a t e d w i t h t h e s u p p o r t , a n d t h i s , i n t u r n , is i m p o r t a n t i n d e t e r m i n i n g c a t a l y s t p e r f o r m a n c e . T h e i m p o r t a n c e o f s u l f u r t r i o x i d e as a c a t a l y s t a d d i t i o n w a s d e t e r m i n e d b y p r e p a r i n g c a t a l y s t s treated w i t h o l e u m ; p h t h a l i c a n h y d r i d e y i e l d w a s d r a m a t i c a l l y affected. They c o n c l u d e d that the active catalyst c o m p o n e n t has a c o m p o s i t i o n V 0 + 3 V O · 2 K S 0 + n S 0 w i t h p e r h a p s the sulfate i n the f o r m of p o t a s s i u m pyrosulfate. A U t h e s e s t u d i e s h a v e r e l a t e d m o r e to m e a s u r i n g t h e effects o f a d d i t i o n s r a t h e r t h a n d e f i n i n g t h e i r r o l e o r t h e m e c h a n i s m s b y w h i c h t h e s e c o m p o n e n t s affect catalyst behavior. 2
4
2
5
2
2
4
5
2
s
3
M a r s a n d v a n K r e v e l e n (14) p u b l i s h e d a c o m p r e h e n s i v e s t u d y of o x i d a t i o n reactions o n v a n a d i u m pentoxide catalysts. T h e results w e r e interpreted b y a m e c h a n i s m w h i c h h a s b e c o m e k n o w n as t h e r e d o x m e c h a n i s m . I n t h e i r m o d e l t h e o x y g e n f o r t h e o r g a n i c o x i d a t i o n is a s s u m e d to c o m e f r o m t h e v a n a d i a ; it is t h e n a s s u m e d to b e r e p l a c e d b y t h e c a t a l y s t r e a c t i o n w i t h g a s e o u s o x y g e n . Steady-state b e h a v i o r occurs w h e n these t w o o x i d a t i o n rates are e q u a l . T h e m o d e l explains the m u c h higher catalyst activity w i t h fresh catalyst a n d the v e r y fast c a t a l y s t d e c a y t h a t W a i n w r i g h t a n d H o f f m a n (15) o b s e r v e d just after the reactor is p u t o n stream.
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
W A I NW R I G H T
S h e l s t a d et al. (16)
therefore models.
a n d chemisorbed
are i d e n t i c a l to those
reaction
671
Reactor
H e r e t h e r e a c t i o n is a s s u m e d t o t a k e
the hydrocarbon molecule
rate expressions
Bed
p r o p o s e d a steady-state adsorption m o d e l to e x p l a i n
t h e b e h a v i o r o f these c a t a l y s t s . between
Transported
AND HOFFMAN
kinetic
oxygen.
derived from
experiments
cannot
place
T h e resultant
the redox
model, and
discriminate between
these
H o w e v e r , t h e f a s t c o l o r c h a n g e o f t h e c a t a l y s t a n d t h e o x i d a t i o n state
of t h e v a n a d i a suggest that t h e redox m e c h a n i s m is t h e m o r e l i k e l y , a l t h o u g h the chemisorbed oxygen m a y be a n important link i n the catalyst reoxidation. T h e essence of t h e m o d e l c a n b e d e m o n s t r a t e d b y d e r i v i n g t h e k i n e t i c rate expression for the o-xylene to t o l u a l d e h y d e reaction.
Consider the follow
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
ing: hydrocarbon - f oxidized catalyst —• reduced catalyst + product reduced catalyst -f- oxygen —* oxidized catalyst A s s u m e , o n t h e b a s i s o f e x p e r i m e n t a l e v i d e n c e , t h a t b o t h r e a c t i o n s a r e first order w i t h respect to h y d r o c a r b o n a n d oxygen, respectively. T h e rate expres sions f o r e a c h s t e p b e c o m e : r
= k C'ιιθ
t
(I)
r
and r
= k Co &
a
Θ)
(1 -
2
(2)
w h e r e θ i s t h e f r a c t i o n o f o x y g e n sites a v a i l a b l e f o r h y d r o c a r b o n o x i d a t i o n . I n the steady state, these rates m u s t b e
equal—viz.,
r
= nr
&
(3)
r
w h e r e η is a s t o i c h i o m e t r i c coefficient f o r the n u m b e r of o x y g e n m o l e c u l e s u s e d p e r m o l e o f h y d r o c a r b o n o x i d i z e d . T h u s t h e f r a c t i o n o f a c t i v e sites a v a i l a b l e becomes ka.Co + nk Cu 2
θ
~ k Co a
2
r
1
+
1 nkrCn
(4)
k&Co
2
o-TOOilC ACID rT^^YCOOH ο - TOLUALDE HYDE I ζ
^YCHO I I
HC
\ ^ C H PHTHALIC / .ANHYDRIDE 2
1
M A L E I C ANHYDRIDE
«=*C0 + H 0 + C O 2
Figure 1.
2
Reaction scheme
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
672
CHEMICAL
REACTION
ENGINEERING
II
a n d the rate of o v e r a l l h y d r o c a r b o n o x i d a t i o n becomes:
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
Γ γ
"
/c Co + nkrCn R
2
K
}
S i m i l a r b u t s o m e w h a t m o r e c o m p l i c a t e d expressions c a n be d e r i v e d for the r e a c t i o n s c h e m e s h o w n i n F i g u r e 1 i n v o l v i n g p a r a l l e l a n d series r e a c t i o n steps. I n i t i a l l y w i t h a f u l l y o x i d i z e d c a t a l y s t 0 = 1, a n d t h e r e a c t i o n r a t e w o u l d b e E q u a t i o n 6, w h i c h is i n d e p e n d e n t o f o x y g e n c o n c e n t r a t i o n . T h i s a s s u m e s t h a t t h e r e a c t i o n is n o t m a s s t r a n s f e r c o n t r o l l e d n o r c o n t r o l l e d b y t h e r a t e of a d s o r p t i o n o f t h e h y d r o c a r b o n m o l e c u l e s o n t o t h e r e a c t i o n sites. T h e a b i l i t y of t h i s m o d e l t o d e s c r i b e t h e s t e a d y - a n d u n s t e a d y - s t a t e b e h a v i o r o f t h i s r e a c t i o n s y s t e m is s h o w n e l s e w h e r e ( 1 5 ) . T h e m o d e l p r o v i d e s a reasonable d e s c r i p t i o n of a n u m b e r of catalysts u s i n g different supports; the i n d i v i d u a l pre-exponential factors a n d activation energies for each catalyst are, h o w e v e r , quite different. H e r e w e r e v i e w briefly some salient results for one catalyst u s e d i n the t r a n s p o r t e d b e d r e a c t o r so its p e r f o r m a n c e i n a f i x e d b e d a n d a t r a n s p o r t e d b e d can be compared. Packed
Bed
Studies
Apparatus. T h e p a c k e d b e d apparatus was designed for all o-xylene con v e r s i o n s i n c l u d i n g 1 0 0 % . T h e f o l l o w i n g effects w e r e a l s o t a k e n i n t o a c c o u n t : (1) T h e reactor must be isothermal, a n d the temperature range cover those e n c o u n t e r e d i n i n d u s t r i a l practice
must
( 2 ) C a t a l y s t d i l u t i o n s h o u l d b e a v o i d e d , i f p o s s i b l e , to a v o i d a n y c a t a l y t i c effect of t h e d i l u e n t s i n c e a n o m o l o u s effects of o t h e r m a t e r i a l s h a v e b e e n reported (6,7) (3) P a r t i c l e s i z e s h o u l d b e s m a l l to a v o i d c a t a l y s t e f f e c t i v e n e s s a n d k e e p t h e p a r t i c l e e s s e n t i a l l y a t t h e s a m e t e m p e r a t u r e as t h e gas (4) effects
effects
Reactor-to-catalyst d i a m e t e r s h o u l d be large to a v o i d s h o r t - c i r c u i t i n g
(5) R e a c t o r length-to-diameter ratio s h o u l d be large to a v o i d a p p r e c i a b l e a x i a l d i f f u s i o n effects ( 6 ) T h e r e a c t o r s h o u l d o p e r a t e at a n a p p r e c i a b l e v e l o c i t y t o e n s u r e g o o d h e a t a n d m a s s t r a n s f e r f r o m gas t o p a r t i c l e ( 7 ) T h e o p e r a t i n g c o n d i t i o n s r e l a t i v e to m a s s o f c a t a l y s t - t o - f l o w r a t e o f reactant s h o u l d be similar to those expected i n the transported b e d reactor. T h e a p p a r a t u s is s h o w n i n F i g u r e 2. O x y g e n a n d n i t r o g e n a r e f e d f r o m h i g h p r e s s u r e c y l i n d e r s a n d m e t e r e d b y c a p i l l a r y flowmeters. A b a c k p r e s s u r e v a l v e m a i n t a i n e d a c o n s t a n t p r e s s u r e o n t h e m e t e r i n g s y s t e m s . T h i s gas m i x ture was f e d t h r o u g h a n o-xylene saturator p l a c e d i n a constant temperature b a t h , a n d the pressure i n the saturator was measured. T h i s mixture was heated to r e a c t i o n t e m p e r a t u r e i n a c o i l i m m e r s e d i n t h e salt b a t h s u r r o u n d i n g t h e reactor a n d t h e n f e d to the top of the reactor. T h e reactor w a s a 1 4 - c m l e n g t h o f 0 . 4 7 5 - c m i d stainless t u b i n g , a n d a k n o w n a m o u n t o f c a t a l y s t w a s c h a r g e d to it ( 6 c m to 1 1 - c m d e p t h ) . T h e reactor w a s p l a c e d i n a 1 2 - i n c h i d b y 1 2 - i n c h h i g h m o l t e n salt b a t h ( p o t a s s i u m n i t r a t e - s o d i u m n i t r a t e - s o d i u m n i t r i t e e u t e c t i c ) . T h e e x i t gases p a s s e d t h r o u g h a C a r l e s a m p l i n g v a l v e . A l l l i n e s a n d t h e v a l v e w e r e h e a t e d t o ca. 2 0 0 ° C b y h o t a i r o r e l e c t r i c h e a t i n g t a p e t o p r e v e n t c o n d e n s a t i o n of p r o d u c t s . I n l e t gases flowed t h r o u g h t h e s a m p l i n g v a l v e a n d t h e n to the reactor or w e r e e x h a u s t e d to t h e atmosphere. T h i s a l l o w e d steadystate o p e r a t i o n o f t h e s a t u r a t o r t o b e a c h i e v e d b e f o r e t h e gases w e r e p a s s e d to the reactor.
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT A N D H O F F M A N
Transported
Bed
Reactor
673
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
AIR
Figure 2. Β Ε F Gc
Flowsheet of packed bed apparatus
backpressure regulator electrical heating capillary flow meter gas sample valve to gas chromatograph heating elements manometer agitator needle valve
He M Ms Ν
Table I.
NR Ρ R S SB Τ TC W V
non-return valve preheating coil reactor xylene saturator molten salt bath three-way valve thermocouple from constant tempera ture water bath vent
Approximate Composition (wt %)
a n d Properties of C a t a l y s t s
Silica Supported (No. 902)
νο 2
2
so
9 29
δ
K S0 K 0
4
2
3
S i 0 or T i 0 Sb 0 Surface area, m /gram Particle size (screened from original) Bulk density, grams/cm Average pore size 2
2
2
3
2
3
12 50 40 50/70 mesh 0.6 30 A
Titania
Supported
2 2 84 6 5 50/70 mesh 1.2
T h e r a n g e of e x p e r i m e n t a l c o n d i t i o n s c o v e r e d w a s : reactor temperature catalyst o-xylene concentration o-xylene conversions oxygen concentration
330°-390°C 1.0 g r a m 1-3% 1-100% 10-30%
Initially the reactor was instrumented internally w i t h thermocouples i n serted at a b o u t 1-cm intervals over its l e n g t h . E v e n at 1 0 0 % c o n v e r s i o n t h e observed m a x i m u m variation i n temperature never exceeded 2°C. Blank reaction was negligible at a l l temperatures used. If silver solder was i n contact w i t h t h e r e a c t i o n gases, c o n s i d e r a b l e o r g a n i c m a t e r i a l o x i d i z e d so t h a t o n l y stainless s t e e l w a s a l l o w e d t o c o n t a c t t h e gases. F o r t h i s r e a s o n , t h e i n t e r n a l temperature of the reactor w a s not m e a s u r e d d u r i n g the studies; three t h e r m o couples o n the reactor w a l l w e r e used to m o n i t o r the reaction temperature.
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
674
CHEMICAL
REACTION
ENGINEERING
II
T o m a i n t a i n c o n s t a n t c a t a l y s t a c t i v i t y , a s m a l l a m o u n t of s u l f u r d i o x i d e gas w a s i n t r o d u c e d w i t h t h e i n c o m i n g gas ( 0 . 0 1 v o l % ) , c o n s i s t e n t w i t h i n d u s trial experience ( 1 7 ) . I n our experience, no appreciable l o n g term catalyst d e c a y c o u l d b e a t t r i b u t e d t h i s effect. T h e c a t a l y s t w a s a l w a y s o x i d i z e d o v e r n i g h t w i t h a i r a n d s u l f u r d i o x i d e b e f o r e a n y e x p e r i m e n t t o m a i n t a i n its f u l l y o x i d i z e d state. G a s s a m p l e s o f a b o u t 5 m l w e r e a n a l y z e d b y gas c h r o m a t o g r a p h y u s i n g a c o m b i n a t i o n of columns c o n t a i n i n g P o r o p a k Q , m o l e c u l a r sieves, a n d S E 5 2 silicone g u m r u b b e r , w i t h temperature p r o g r a m i n g a n d a complicated switching procedure described elsewhere ( 1 8 ) . P e a k areas were measured b y a H e w l e t t - P a c k a r d 3370 Β electronic integrator. N i t r o g e n w a s u s e d as t h e t i e c o m p o n e n t to a l l o w d i r e c t c o m p a r i s o n o f i n l e t a n d o u t l e t compositions. T h e a c c u r a c y of t h e a n a l y t i c a l p r o c e d u r e w a s t e s t e d o v e r o - x y l e n e c o n v e r s i o n s f r o m 1 t o 1 0 0 % a n d f o r s e l e c t i v i t i e s of a l l o t h e r c o m ponents f r o m 0 to 8 5 % . I n general, a l l c a r b o n balances w e r e w i t h i n 9 6 - 1 0 4 % . L o w e r carbon balances were observed w h e n considerable tar formation o c c u r r e d . P r o b l e m s associated w i t h a c h i e v i n g this a n a l y t i c a l a c c u r a c y are dis cussed elsewhere (18). T h e reactants used were highest p u r i t y oxygen a n d nitrogen f r o m C a n a d i a n L i q u i d A i r , h i g h p u r i t y o-xylene ( E a s t m a n ) , a n d a 0 . 5 0 2 % m i x t u r e of S 0 in nitrogen (Matheson). P a c k e d b e d studies w e r e done (19) w i t h v a n a d i a catalysts i n i n d u s t r i a l u s e . T h e i r a p p r o x i m a t e c o m p o s i t i o n a n d p r o p e r t i e s a r e s h o w n i n T a b l e I , as supplied by W . R. Grace Co. 2
100 T I M E O F Figure 3.
200 R E A C T I O N
300 ( S E C )
Approach to steady-state operation of packed bed
E f f l u e n t gases w e r e a n a l y z e d at d i f f e r e n t t i m e s f r o m t h e start o f r e a c t a n t flows to the reactor i n o r d e r to m o n i t o r catalyst d e c a y a n d p e r f o r m a n c e w i t h time. Because the analysis took approximately 35 minutes, the catalyst was g e n e r a l l y r e a c t i v a t e d f o r at l e a s t 1 h r a t r e a c t i o n t e m p e r a t u r e . T h i s p r o c e d u r e g a v e r e p r o d u c i b l e r e s u l t s . A t r e a c t i o n t i m e s less t h a n a b o u t 2 0 sec, a m a s s
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT
AND
Transported
H O F F M A N
ι Ti0
2
ι
Reactor
675
r
CATALYST 200
T O T A L GAS FLOW WEIGHT OF C A T A L Y S T
08
Bed
CC/MIN.
10
1 0 GM-
TEMPERATURE
3 7 0
ο ο
0-4
φ
υ ΰ to
ANHYDRIDE
PHTHALIDE 0-TOLUALDEHYDE CO CO
STEADY
t
STATE_
CONVERSION
"
0315
0-2
01
0 0 40
80 TIME
Figure
4.
120
(SEC)
Initial rates and selectivities of catalyst
TiOi-supported
b a l a n c e w a s o f t e a n o t a c h i e v e d ; t h e b a l a n c e w a s p o o r e r as r e a c t i o n t i m e d e c r e a s e d , p r o b a b l y b e c a u s e of a d s o r p t i o n a n d flow effects. Results. S i n c e t h e r e s u l t s o f t h i s p r o g r a m a l o n g w i t h t h a t w i t h o t h e r catalysts are r e p o r t e d i n great d e t a i l elsewhere ( 1 5 ) , o n l y those results salient to the t r a n s p o r t e d b e d are i n d i c a t e d here. A c o m p l e t e t w o - l e v e l f a c t o r i a l d e s i g n was conducted on the 902 catalyst. I n a d d i t i o n , eight center-point experiments w e r e d o n e b e t w e e n e a c h e x p e r i m e n t to m o n i t o r l o n g t e r m c a t a l y s t effects. R e p l i c a t i o n of f o u r o p e r a t i n g c o n d i t i o n s p r o v i d e d v a r i a n c e e s t i m a t e s o v e r a w i d e range of conversions. Unsteady-State Performance. A t y p i c a l p l o t of o - x y l e n e c o n v e r s i o n w i t h t i m e is s h o w n i n F i g u r e 3 for this catalyst. I n i t i a l conversions of o-xylene, a n d h e n c e r e a c t i o n rates, are a p p r o x i m a t e l y 3 0 to 4 0 times those o b t a i n e d after t h e c a t a l y s t a c h i e v e s s t e a d y - s t a t e a c t i v i t y . O x y g e n i n t h e f e e d gas d o e s affect t h e c o n v e r s i o n , b u t t h i s effect b e c o m e s less i m p o r t a n t at s h o r t r e a c t i o n t i m e s . T h e r e is a s u g g e s t i o n t h a t a t z e r o t i m e t h e effect o f o x y g e n c o n c e n t r a t i o n d i s a p p e a r s , t h u s s u g g e s t i n g t h a t a m o d e l w i t h θ = 1 is r e a s o n a b l e . I n a d d i t i o n , i t has b e e n s h o w n h e r e a n d b y H e r t e n a n d F r o m e n t ( 5 ) t h a t selectivities to p a r t i a l o x i d a t i o n p r o d u c t s i m p r o v e w i t h decreasing temperature. T h i s is i m p o r t a n t s i n c e a p p r e c i a b l e r e a c t i o n rates c a n b e a c h i e v e d a t t e m p e r a t u r e s m u c h l o w e r t h a n those u s u a l l y e m p l o y e d i n d u s t r i a l l y .
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
676
CHEMICAL
REACTION ENGINEERING
II
-2
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
10
-4
10
Ο
1-4
1-6
o-i
3
Ι_ι_ 1-8
2 0
( T K).I0
Figure 5. Rates of xylene congersion for different catalysts at .01 atm o-xylene and 0.21 aim oxygen pressures A after 10 sec contact on 902 cat alyst in packed bed Β transported bed data for 902 catalyst C steady-state packed bed data of Herten and Froment (5) D steady-state packed bed data on 902 catalyst Ε steady-state packed bed data of Juusola (6)
A h i g h l y o x i d i z e d c a t a l y s t also p r o d u c e s g r e a t e r s e l e c t i v i t y t o p a r t i a l oxidation products. P h t h a l i c a n h y d r i d e is m o r e e a s i l y o x i d i z e d to m a l e i c a n h y d r i d e w h e n o x y g e n l e a n m i x t u r e s a r e u s e d (20). T h i s is t h o u g h t to b e t h e r e s u l t of t h e h i g h r a t i o o f V 0 / V 0 r ; e x i s t i n g i n t h e c a t a l y s t . T h u s , t h e i n i t i a l s e l e c t i v i t i e s s h o u l d b e h i g h e r t h a n t h o s e o b t a i n e d i n t h e s t e a d y s t a t e ; t h i s effect is s h o w n i n F i g u r e 4. 2
4
2
Steady-State Performance. W a i n w r i g h t a n d H o f f m a n (15) show that the redox reaction m o d e l , w i t h suitable parameter estimates, predicts the reaction p r o d u c t d i s t r i b u t i o n q u i t e w e l l o v e r t h e r a n g e of o p e r a t i n g c o n d i t i o n s u s e d here a n d thus provides support for this m e c h a n i s m . F i g u r e 5 summarizes the steady-state reaction rate d a t a for the 9 0 2 catalyst. T h e p a c k e d - b e d e x p e r i m e n t s are a n e x c e l l e n t b a s e f o r d i s c u s s i n g t h e p e r f o r m a n c e of t h e t r a n s p o r t e d b e d reactor ( b e l o w ) .
Transported Bed Studies I n a t r a n s p o r t e d b e d r e a c t o r , t h e r e a c t a n t a n d p r o d u c t gases p n e u m a t i c a l l y c o n v e y t h e p a r t i c l e s u s e d to c a t a l y z e t h e r e a c t i o n i n a v e r t i c a l p i p e . The o - x y l e n e o x i d a t i o n , c a t a l y z e d b y v a n a d i a , w a s u s e d to d e t e r m i n e t h e o p e r a t i n g c h a r a c t e r i s t i c s a n d to e v a l u a t e s u c h a r e a c t o r f o r o x i d a t i o n r e a c t i o n s . P r e l i m i n a r y design consideration based on meager literature information suggested the f o l l o w i n g criteria for a pilot plant u n i t : ( a ) T o a c h i e v e s m o o t h o p e r a t i o n , c h a r a c t e r i s t i c of n o n - c h o k i n g s o l i d s - g a s flow, s o l i d l o a d i n g s w o u l d h a v e to b e l o w — i . e . , d i l u t e p h a s e t r a n s p o r t w o u l d p r e v a i l a n d voidages w o u l d be greater t h a n 9 7 % . T h u s , v e r y little catalyst w o u l d b e i n c o n t a c t w i t h t h e r e a c t i n g gases. ( b ) S u p e r f i c i a l gas v e l o c i t i e s w o u l d h a v e t o b e g r e a t e r t h a n 2 0 f t / s e c to c o n v e y the particles. T h i s , c o u p l e d w i t h the l o w solids h o l d - u p , suggested that t h e v e r t i c a l p i p e w o u l d h a v e t o b e f a i r l y l o n g to a c h i e v e r e a s o n a b l e c o n t a c t times. (c) T o achieve near t u r b u l e n t conditions i n the c o n v e y i n g system to p r o v i d e s o m e m i x i n g of t h e gas, t h e c o n v e y i n g p i p e d i a m e t e r w o u l d h a v e to b e about % inch.
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT
AND
H O F F M A N
Transported
Bed
Reactor
677
( d ) T o a c h i v e f u l l c o n t r o l of t h e s o l i d s flow r a t e t o t h e s y s t e m , s o m e f o r m of f o r c e d s o l i d s f e e d i n g w o u l d b e n e e d e d . (e) Solids l o a d i n g s h o u l d be h i g h e n o u g h to p r o v i d e a g o o d sink for the heat generated b y the reaction a n d thus control the reaction temperature over the reactor length.
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
(f) Solids f e e d rate a n d solids h o l d - u p measurements evaluate reactor performance.
are necessary
to
T h e s e criteria w e r e u s e d to d e s i g n the a p p a r a t u s u s e d here. A p p a r a t u s . T h e a p p a r a t u s is s h o w n i n F i g u r e 6. T h e s o l i d s c i r c u i t is a solids hold-tank, a solids feed-control tank, the entry section, the v e r t i c a l reactor, a cyclone separator, a n d a solids receiver tank. T h e t w o u p p e r tanks a r e 1 5 i n c h e s i n d i a m e t e r , a n d t h e s o l i d s f e e d c o n t r o l t a n k is 6 i n c h e s i n d i a m e t e r ; a l l are h e a t e d to a n y d e s i r e d t e m p e r a t u r e b y l o w v o l t a g e , h i g h c u r r e n t K a n t h a l s t r i p h e a t e r s i m b e d d e d i n H i l o s e t c e m e n t a r o u n d t h e t a n k s . A i r is s u p p l i e d f r o m t h e 1 0 0 p s i g m a i n s , filtered, a n d p a s s e d t h r o u g h a s o n i c o r i f i c e w h o s e u p s t r e a m p r e s s u r e is c o n t r o l l e d b y a c o n t r o l l e r / p n e u m a t i c v a l v e . S o m e of t h e gas is s p l i t to p r o v i d e t h e d r i v i n g gas f o r t h e s o l i d s f e e d s y s t e m ; t h e r e m a i n d e r is h e a t e d i n a s t e a m h e a t e r a n d e l e c t r i c a l l y h e a t e d s y s t e m a n d t h e n p a s s e d t h r o u g h a s h o r t h o r i z o n t a l s e c t i o n of p i p e w h e r e t h e s o l i d s a r e d r o p p e d i n t o t h e gas. T h e y a r e c o n v e y e d a b o u t 8 i n c h e s a n d t h e n t r a n s p o r t e d a r o u n d a 9 0 ° b e n d t o a v e r t i c a l % - i n c h o d b y 0 . 6 8 - i n c h i d stainless s t e e l t u b e 2 7 f t l o n g . D u r i n g a n y r u n , t h e s o l i d s a n d gas t e m p e r a t u r e s w e r e c o n t r o l l e d t o b e at e s s e n t i a l l y t h e s a m e t e m p e r a t u r e at t h e i n l e t . E l e c t r i c a l h e a t e r s o n t h e reactor m a i n t a i n e d isothermal operation. A 90° b e n d a n d an 8-inch horizontal s e c t i o n of t u b i n g a n d e x p a n s i o n b e l l o w s c o n n e c t t h e r e a c t o r t o t h e c y c l o n e s e p a r a t o r . T h e gas l e a v i n g t h e c y c l o n e is c o n v e y e d t o a n o t h e r c y c l o n e a n d a s p r a y s c r u b b i n g s e c t i o n b e f o r e i t is d i s c h a r g e d . T h e p r i m a r y c y c l o n e s e p a r a t e d m o s t of t h e s o l i d s so t h a t s o l i d s loss w a s s m a l l . T h e s o l i d s r e c e i v e r h a d a 2 - i n c h b a l l v a l v e o n its b o t t o m t o c o l l e c t s o l i d s . T h e s e w e r e d i s c h a r g e d b a c k i n t o t h e s o l i d s f e e d t a n k at t h e e n d of a r u n ; t h u s , t h e s y s t e m w a s o p e r a t e d b a t c h w i s e . A s o l i d s i n v e n t o r y o f a p p r o x i m a t e l y 3 0 0 - 3 5 0 l b s a l l o w e d a t least a 1 0 - m i n r u n at t h e h i g h e s t s o l i d s f e e d r a t e . T h e s o l i d s r e c e i v e r w a s c o n n e c t e d t o t h e s o l i d s f e e d t a n k b y a 2 - i n c h s t a i n l e s s steel b e l l o w s . T h e r e c e i v e r is h e l d b y a y o k e a r r a n g e m e n t c o n n e c t e d t o a c a l i b r a t e d s t r a i n - g a g e w e i g h s y s t e m so t h e receiver c o u l d be w e i g h e d continuously. A % - i n c h d i a m e t e r orifice w a s inserted o n t h e b o t t o m of t h e s o l i d s f e e d c o n t r o l t a n k . T h e s o l i d s l e v e l h e r e w a s c o n trolled b y measuring it b y a capacitance probe (Drexelbrook E n g . C o . , G l e n s i d e , P a . ) w h i c h c o n t r o l l e d t h e o p e n - c l o s e o p e r a t i o n of a 2 - i n c h b u t t e r f l y v a l v e o n t h e b o t t o m of t h e t a n k . A i r p r e s s u r e i n b o t h t a n k s w a s c o n t r o l l e d b y p n e u m a t i c v a l v e s o n t h e a i r l i n e s . U p s t r e a m p r e s s u r e o n these v a l v e s w a s k e p t c o n s t a n t b y r e s t r i c t i n g t h e m a i n a i r flow b y a m a n u a l l y c o n t r o l l e d v a l v e . T h e s y s t e m p r o v i d e d e x c e l l e n t c o n t r o l as e v i d e n c e d b y t h e r a t e o f w e i g h t i n c r e a s e of t h e s o l i d s r e c e i v e r , a n d i t a l l o w e d a f a i r l y w i d e r a n g e o f s o l i d s f e e d rates to b e a c h i e v e d . o - X y l e n e w a s f e d as l i q u i d f r o m a n i t r o g e n p r e s s u r i z e d f e e d t a n k ; its flow rate w a s c o n t r o l l e d b y a needle v a l v e a n d m e t e r e d b y a R o t a m e t e r . A s t e a m h e a t e d e x c h a n g e r v a p o r i z e d t h e o - x y l e n e just p r i o r t o e n t e r i n g t h e r e a c t o r , a n d this v a p o r w a s f e d t h r o u g h a V s - i n c h t u b e to m i x w i t h the a i r - s o l i d m i x t u r e about 2 inches b e y o n d the elbow. O r i g i n a l l y , o-xylene was v a p o r i z e d i n a c a r b u r e t o r u p s t r e a m of t h e s o l i d s a d d i t i o n p o i n t , b u t s i n c e a p p r e c i a b l e r e a c t i o n o c c u r r e d i n t h e h o r i z o n t a l s e c t i o n p r i o r to t h e v e r t i c a l r e a c t o r , t h e f e e d p o i n t l o c a t i o n w a s c h a n g e d . I n one e x p e r i m e n t o-xylene w a s a d m i t t e d 7 ft a b o v e the elbow. T h r e e a i r - a c t i v a t e d , q u i c k s h u t - o f f b a l l v a l v e s w e r e i n s t a l l e d at 9, 1 5 8 , a n d 281 inches f r o m the reactor bottom. G a s samples were r e m o v e d , a n d pressure was m e a s u r e d b y m e r c u r y m a n o m e t e r s near these valves. G a s samples w e r e
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
678
CHEMICAL
REACTION
ENGINEERING
II
c o l l e c t e d t h r o u g h p o r o u s stainless s t e e l filters i n t o p r e - e v a c u a t e d b o t t l e s (ca. 1 0 0 0 c c ) . T h e l i n e s to these b o t t l e s w e r e s t e a m t r a c e d ( 1 0 0 - p s i g ) t o p r e v e n t c o n d e n s a t i o n . A l l l i n e s a n d filters w e r e flushed w i t h h e l i u m j u s t b e f o r e s a m p l i n g . G a s samples w e r e d r a w n t h r o u g h the s a m p l i n g v a l v e a n d a n a l y z e d b y the chromatographic technique described. S u l f u r d i o x i d e w a s f e d t o m a i n t a i n t h e s a m e c o n c e n t r a t i o n l e v e l as i n t h e p a c k e d b e d experiments. Before a r u n , the solids w e r e c i r c u l a t e d t h r o u g h the system w i t h air a n d S 0 to ensure that the catalyst w a s f u l l y regenerated. A n o r i f i c e o n t h e e x i t l i n e i n d i c a t e d c o n s t a n t gas flow r a t e a n d p r o v i d e d a m a t e r i a l b a l a n c e c h e c k o n t h e a i r flow r a t e . T h e c a t a l y s t u s e d w a s N o . 9 0 2 ( W . R . G r a c e ) , t h e s a m e as i n t h e p a c k e d b e d e x p e r i m e n t s . T h e m e a n p a r t i c l e s i z e w a s 125μ a n d its d e n s i t y w a s d e t e r m i n e d as 0 . 9 5 g r a m / c c . T h e e x p e r i m e n t a l c o n d i t i o n s are s h o w n i n T a b l e I I . N o s i g n i f i c a n t h o m o g e n e o u s r e a c t i o n o c c u r r e d i n t h e r e a c t o r at t e m p e r a t u r e s a b o v e 4 0 0 ° C o r i n t h e s a m p l e b o t t l e s at t h e i r o p e r a t i n g t e m p e r a t u r e o f ca. 2 0 0 ° C .
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
2
Figure 6. Flowsheet of transported bed apparatus AB AN AV Β C CA CP D F FC FT G GC H HT LC Ν Ο OX Ρ PC R SB SG SO ST Τ TV V WT W
air-operated butter fly valve air-operated needle valve air-operated ball valve stainless steel bellows cyclone carburetor capacitance probe water overflow filter catalyst fines feed tank sight ghss filtered sample to gas chromatograph preheater catalyst hold tank on-off level con troller manually-operated needle valve orifice xylene feed tank pressure tap proportional pres sure controller Rotameter support beam strain gage weigh ing device sonic orifice scrubbing tower thermocouple three-way valve manually-operated ball valve high pressure water weighing tank
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT
T a b l e II.
AND
H O F F M A N
Bed
Reactor
679
Experimental Conditions for the Transported B e d Reactor
Temperature Solids flow rate Air flow rate o-Xylene concentration W/F ao
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
Transported
233°-342 °C 35 lb/min. 2.0-3.5 S C F M 1-3 mole % 63-350 grams hr/gram mole
T h e p r o b l e m of i n t e r p r e t i n g r e s u l t s f r o m a c h e m i c a l r e a c t o r r e s o l v e s i t s e l f i n t o t w o s e p a r a t e p r o b l e m s . F i r s t , t h e fluid m e c h a n i c a l b e h a v i o r o f t h e r e a c tants a n d catalyst m u s t be established a n d (perhaps) d e s c r i b e d m a t h e m a t i c a l l y . S e c o n d , s o m e u n d e r s t a n d i n g of t h e c h e m i c a l b e h a v i o r a n d d e s c r i p t i o n of t h e chemical kinetics should be obtained. T h e p a c k e d b e d study p r o v i d e d the c h e m i c a l u n d e r s t a n d i n g a n d s o m e i n d i c a t i o n of t h e m o d e l i n g t o d e s c r i b e t h e k i n e t i c s . S i n c e t h e r e is l i t t l e i n f o r m a t i o n o n s o l i d s - g a s flow, p a r t i c u l a r l y a t h i g h solids l o a d i n g , it was i m p o r t a n t to h a v e e x p e r i m e n t a l i n f o r m a t i o n relating to t h e i r fluid m e c h a n i c a l b e h a v i o r u n d e r r e a c t o r c o n d i t i o n s (see b e l o w ) .
Figure 7. Fressure drop per unit length of reactor as a function of gas velocity at con stant solids flow rate. V„ superficial gas ve locity. ΔΡ total pressure drop. ΔΡ, pressure drop caused by solids. &P„ frictional loss. Γ
S o l i d - G a s F l o w Experiments. Z e n z a n d O t h m e r (21) suggest that the flow c h a r a c t e r i s t i c s of a g a s - s o l i d s c o n v e y i n g s y s t e m c a n b e i n t e r p r e t e d f r o m p r e s s u r e d r o p o b s e r v a t i o n s as a f u n c t i o n o f s o l i d s a n d gas flow r a t e . We o b t a i n e d t h i s i n f o r m a t i o n at r e a c t i o n t e m p e r a t u r e s , a n d a t y p i c a l p l o t is s h o w n i n F i g u r e 7 f o r t h e u p p e r s e c t i o n o f t h e r e a c t o r . H e r e , t h e s o l i d s flow r a t e w a s
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
680
CHEMICAL
REACTION
ENGINEERING
II
0 4 r
0 3 U - € ) -
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
0 2 -
0 1 -
• MEASURED [ ο CALCULATED | W
Q 0 10
S
= 3 2 L B / M I N
Τ = 2 2 0 I
2 0
3 0
U
g
C ι
4 0
FT/SEC
Figure 8. Solids loading as a function of super ficial gas velocity at constant solids flow rate h e l d constant b y j u d i c i o u s c h o i c e of a i r pressure i n t h e f e e d t a n k , a n d t h e gas flow w a s v a r i e d . S i n c e t h e s o l i d s h o l d - u p i n t h e 1 0 - f t s e c t i o n o f t u b i n g w a s m e a s u r e d directly, the static pressure caused b y the solids-gas m i x t u r e c o u l d be evaluated. T h e frictional pressure d r o p w a s obtained b y difference. T h e p r e s s u r e d r o p b e h a v i o r i n F i g u r e 7 is s i m i l a r t o t h a t r e p o r t e d b y Z e n z a n d O t h m e r ( 2 1 ) , b u t t h e p r e s s u r e d r o p fluctuations r e c o r d e d o v e r t h e r a n g e o f gas flows a r e n o t . A t g a s flow rates b e l o w t h a t w h e r e t h e m i n i m u m p r e s s u r e d r o p is r e c o r d e d , t h e s y s t e m is e x p e c t e d t o b e i n c h o k e d flow a n d e x h i b i t characteristic large pressure fluctuations. These were observed i n the region s h o w n o n F i g u r e 7—i.e., n e a r t h e m i n i m u m p r e s s u r e d r o p ; h o w e v e r , a t l o w e r gas flow r a t e s , t h e s e fluctuations b e c a m e s m a l l , e v e n less t h a n t h o s e a t t h e h i g h g a s flow r a t e s , a n d t h e s y s t e m w a s r e m a r k a b l y s t a b l e . F i g u r e 8 shows the fraction of solids i n t h e tube c o r r e s p o n d i n g to t h e e x p e r i m e n t s i n d i c a t e d i n F i g u r e 7. T h o s e c a l c u l a t e d v o i d a g e s c o r r e s p o n d i n g t o h o m o g e n e o u s t w o - p h a s e flow a r e also s h o w n f o r c o m p a r i s o n . T h e r e g i o n o f l a r g e p r e s s u r e fluctuations is i n d i c a t e d . I f w e a s s u m e t h a t t h e p r e s s u r e fluctua t i o n s i n d i c a t e s l u g flow, t h e n f o r W = 3 2 l b / m i n a n d b e l o w a s u p e r f i c i a l g a s v e l o c i t y o f a b o u t 2 8 f t / s e c , t h e s o l i d - g a s s u s p e n s i o n flows as a h o m o g e n e o u s mass similar to particulate fluidization b u t w i t h a s o l i d s v e l o c i t y m u c h less t h a n t h a t o f t h e gas. T h i s flow p h e n o m e n o n is d i f f i c u l t t o e x p l a i n ; i f t h e p a r t i c l e s are f r e e l y s u s p e n d e d a n d i n p a r t i c u l a t e flow, t h e d r a g coefficient o n e a c h p a r ticle w o u l d have to b e r e d u c e d b y orders of m a g n i t u d e to achieve s u c h h i g h p a r t i c l e - g a s s l i p v e l o c i t i e s . A t t h e s a m e t i m e , t h e v o i d a g e s a r e so h i g h t h a t particles m u s t b e freely s u s p e n d e d a n d n o t m o v i n g t h r o u g h t h e b e d (as a m o v i n g fixed b e d ) as m i g h t b e e x p e c t e d i f t h e e x i t l i n e w e r e r e s t r i c t i n g t h e flow of p a r t i c l e s b u t n o t t h e gas. I f , h o w e v e r , t h e p a r t i c l e s f o r m e d c o n c e n t r a t e d c l o u d s o r a g g l o m e r a t e s w h i c h c a n b r e a k a n d r e f o r m i n t h e r e a c t o r via t h e w a k e s
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT
mechanism
(21),
Transported
AND HOFFMAN
Bed
681
Reactor
t h e n larger s l i p velocities are possible since this
agglomerate
h a s a t e r m i n a l v e l o c i t y d e t e r m i n e d b y its d i a m e t e r a n d a p p a r e n t s o l i d s d e n s i t y . Another which
explanation
a slow
might be
moving
the f o r m a t i o n
concentrated
particle
of
an annular
mass
flowed
as
flow an
regime outer
a r o u n d a c e n t r a l c o r e of g a s - s o M d s u s p e n s i o n i n d i l u t e p h a s e t r a n s p o r t . knowledge
t h i s is t h e first r e p o r t i n g of t h i s s o l i d s - g a s
h i g h solids-to-gas
flow
in ring
To
our
behavior with such
loadings.
O p e r a t i o n of t h e t r a n s p o r t e d b e d r e a c t o r w a s r e s t r i c t e d t o t h e h i g h s o l i d s f r a c t i o n r e g i o n b e l o w t h e o n s e t of l a r g e p r e s s u r e
fluctuations.
F o r lack of
better
i n f o r m a t i o n , w e a s s u m e d t h a t t h e gas a n d s o l i d s a r e i n i n t i m a t e c o n t a c t t h r o u g h out
the
reactor
length;
assumed negligible.
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
mechanics
thus,
by-passing
is n o w u n d e r s t u d y .
ditions were
not
of
gas
by
bubble
formation
T h i s is a w e a k n e s s i n o u r a n a l y s i s , a n d t h e s o l i d - g a s
excessive.
c a t a l y s t as s u p p l i e d .
C a t a l y s t losses f r o m a t t r i t i o n u n d e r t h e s e
Some
fine
material was
lost
initially
from
was fluid con the
L i k e w i s e , erosion of the reactor t u b e d i d not o c c u r .
9 0 2
C A T A L Y S T
T R A N S P O R T E D
0- TOLL)ALDEHYDE
φ φ
CO, C0
ο •
LU LU
R E A C T O R
0- ΤOLUALDEHYDE
ο
ο
B E D
A
CO CO
•12
0 8
φ φ
0 4
J*
φ
Φ^ΓΦ-^-^ν»"®"* Τ
Figure 9.
φ
^•j.or^oooro-cpo-o-oo
0 0 1
0
^0
2 3
I 0Ι _ 4 O - X Y L E N E
ι
0I -ι6 _ 0 - 8 C O N V E R S I O N
Selectivity data from transported bed reactor
C h e m i c a l R e a c t i o n . F i g u r e 9 s h o w s s e l e c t i v i t i e s at ca. 3 0 0 ° a n d 3 4 0 ° C . S e l e c t i v i t y t o t h e m a i n p a r t i a l o x i d a t i o n p r o d u c t o t o l u a l d e h y d e is v e r y h i g h . I n d u s t r i a l r e a c t o r s r a r e l y e x c e e d 7 0 % . T h e l o w y i e l d s of p h t h a l i c a n h y d r i d e are c a u s e d b y t h e c a t a l y s t u s e d . W a i n w r i g h t a n d H o f f m a n (15) found that silica gel-supported catalysts have p o o r selectivity for p h a t h a l i c a n h y d r i d e production. T h i s accounts for the lack of success i n o x i d i z i n g o-xylene i n fluidized beds. A s i l i c a - s u p p o r t e d catalyst w a s u s e d since n o catalyst w i t h the desired selectivity a n d fluidization c h a r a c t e r i s t i c s is a v a i l a b l e i n q u a n t i t i e s sufficient for a p i l o t - p l a n t s t u d y . F i g u r e 9 also shows t h a t the amounts of over-oxidation products—carbon dioxide and carbon monoxide—are doubled
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
682
CHEMICAL
b y a 4 0 ° C temperature change.
REACTION
ENGINEERING
II
Therefore, the reactions s h o u l d b e done at l o w
temperature for h i g h yields of partial oxidation products.
Selectivities for other
r e a c t i o n p r o d u c t s — p h t h a l i c a n h y d r i d e , p h t h a l i d e , m a l e i c a n h y d r i d e , a n d ot o l u i c a c i d — a r e n o t i n c l u d e d i n F i g u r e 9 since these w e r e present i n s m a l l amounts. A n a l y s i s o f R e s u l t s . Because of t h e gas analysis a n d solids h o l d - u p meas u r e m e n t s , t h e reactor w a s a n a l y z e d i n t w o sections.
G a s a n a l y s i s a t t h e first
sample port gave the feed composition for the lower section.
T h e composition
of t h e f e e d f o r t h e u p p e r s e c t i o n w a s t h a t o b t a i n e d f r o m m i d - r e a c t o r s a m p l e s . T h e d a t a w e r e a n a l y z e d as i f t h e y c a m e f r o m t w o s e p a r a t e r e a c t o r s .
Since no
significant difference c o u l d b e detected b e t w e e n the p e r f o r m a n c e of these t w o reactors, t h e results are presented f o r t h e o v e r a l l reactor.
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
T h e data were
analyzed according to a simple parallel m o d e l i n w h i c h
o-xylene reacts to o - t o l u a l d e h y d e
a n d c a r b o n oxides.
T h i s is r e a s o n a b l e
since
f e w other products were detected, consistent w i t h the p a c k e d b e d study w i t h this catalyst. 100
χ ω 10 LU
cr
•
O-XYLENE FED 7 FT-FROM ENTRANCE
16
_L_
IT
1-8
(T Figure
.
1-9 —I
3
10. Arrhenius plot for k values ob tained in transported bed reactor r
T h e disappearance of o-xylene w a s m o d e l e d b y a r that is, assuming θ =
20
K ) . 10
1 i n a l l cases.
r
first-order
reaction:
= hCn
(6)
V a l u e s o f k a r e p l o t t e d vs. l/T r
in Figure
1 0 . A n A r r h e n i u s - t y p e t e m p e r a t u r e d e p e n d e n c e is o b e y e d b e l o w 3 0 0 ° C , w i t h a n activation produce
energy
of
16,700
cal/gram
mole.
o n l y s m a l l increases i n reaction rate
t h i r d of that at lower
H i g h e r reaction
temperatures
(activation energies
at least a
temperatures), except for one experiment where the
solids l o a d i n g i n the reactor w a s quite h i g h .
T h e f o l l o w i n g analysis attempts
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51.
WAINWRIGHT
AND
H O F F M A N
Transported
Bed
Reactor
683
to e x p l a i n these o b s e r v a t i o n s a n d t o i n d i c a t e t h e v a r i o u s effects w h i c h m u s t be considered i n transported b e d reactors. MASS TRANSFER LIMITED REACTION. T h e mass transfer rate m a y be l i m i t i n g t h e r e a c t i o n r a t e at t h e h i g h e r t e m p e r a t u r e s . T h e c a l c u l a t e d m a s s t r a n s f e r r a t e is at least t w o o r d e r s of m a g n i t u d e l a r g e r t h a n t h e r e a c t i o n r a t e ; m o r e o v e r , t h e m e a s u r e d c o n v e r s i o n s are a l m o s t t h e s a m e f o r s o m e of t h e l o w e r t e m p e r a t u r e r u n s as t h o s e at t h e h i g h t e m p e r a t u r e , t h u s i n d i c a t i n g a l m o s t t h e s a m e r a t e of r e a c t i o n . Loss O F C A T A L Y T I C A C T I V I T Y A T T H E H I G H E R T E M P E R A T U R E S . Perhaps c a t a l y s t a c t i v i t y is r e d u c e d at h i g h e r t e m p e r a t u r e s . T h e l o n g t e r m a c t i v i t y d i d n o t c h a n g e s i n c e t h e e x p e r i m e n t s ca. 3 0 0 ° C ( 1 / T = 1.75 Χ 1 0 " ) w e r e d o n e a f t e r e a c h e x p e r i m e n t at o t h e r c o n d i t i o n s t o m o n i t o r c a t a l y s t a c t i v i t y . N o s i g n i f i c a n t o r s y s t e m a t i c v a r i a t i o n is o b s e r v e d . S h o r t - t e r m a c t i v i t y r e l a t e s to t h e a s s u m p t i o n t h a t 0 = 1. I f t h e o x y g e n c o n s u m e d p e r g r a m of c a t a l y s t w a s g r e a t e r at h i g h e r t e m p e r a t u r e s t h a n at l o w e r o n e s , a d e c r e a s e i n a c t i v i t y m i g h t be s u g g e s t e d . A g a i n t h e r e is n o c o r r e l a t i o n of t h e d e v i a t i o n w i t h t h i s r a t i o . F u r t h e r , t h e r e a c t i o n r a t e c o n s t a n t s are e s s e n t i a l l y t h e s a m e f o r b o t h r e a c t o r s e c t i o n s . I t m i g h t b e a r g u e d t h a t less o f t h e c a t a l y s t c o n t a c t s t h e r e a c t i o n gases i n t h e l o w e r s e c t i o n b e c a u s e of t h e r e a c t o r l e n g t h r e q u i r e d t o disperse the o-xylene over the entire reactor cross-section. It seems i m p r o b a b l e t h a t t h i s effect w o u l d p r o d u c e t h e s a m e r e s u l t f o r a l l t h e e x p e r i m e n t s c o n s i d e r i n g t h e r a n g e of o p e r a t i n g v a r i a b l e s .
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
3
T h e e x t r e m e l y h i g h r e a c t i o n rates i n t h e t r a n s p o r t e d a n d p a c k e d b e d r e a c t o r s at s h o r t o n - s t r e a m t i m e s s u g g e s t p o s s i b l e d i f f e r e n t t y p e s of a c t i v e o x y g e n — i . e . , o x y g e n i n t h e s u r f a c e l a y e r s of t h e c a t a l y s t l a t t i c e a n d o x y g e n w h i c h is c h e m i s o r b e d t o t h e c a t a l y s t s u r f a c e . K a k i n o k i et al. (11) h a v e s h o w n , b y e x p e r i m e n t s i n a B E T a p p a r a t u s a t 4 0 0 ° C , t h a t 2 c c of o x y g e n c a n b e a d s o r b e d o n 1 g r a m of a s i m i l a r c a t a l y s t . E v e n m o r e o x y g e n is e x p e c t e d t o b e a d s o r b e d at l o w e r t e m p e r a t u r e s . T h e r e g e n e r a t i o n stage i n t h e t r a n s p o r t e d b e d reactor not only reoxidizes the catalyst b u t replenishes the chemisorbed o x y g e n . T h e a m o u n t of c h e m i s o r b e d o x y g e n w i l l b e r e d u c e d at t h e h i g h e r temperatures, a n d this c o u l d explain the r e d u c e d activity. T h i s m e c h a n i s m , h o w e v e r , s h o u l d p r o d u c e a g r a d u a l c h a n g e of a c t i v i t y w i t h t e m p e r a t u r e u n l e s s t h e r e are d i f f e r e n t t y p e s of c h e m i s o r b e d o x y g e n a b o v e a n d b e l o w 3 0 0 ° C . S u c h differences have b e e n detected i n other catalyst systems. ADSORPTION OF HYDROCARBON ON T H E CATALYST. T h e m o d e l assumes that t h e r a t e o f a d s o r p t i o n is i n s t a n t a n e o u s — i . e . , i t r e a c h e s its e q u i l i b r i u m c o n c e n tration o n the catalyst surface w i t h i n a short reactor l e n g t h a n d hence does not i n f l u e n c e t h e r e a c t i o n r a t e . I t is also a s s u m e d t h a t t h e a m o u n t o f r e a c t a n t a d s o r b e d is s m a l l r e l a t i v e t o t h a t i n t h e gas p h a s e . I f t h i s w e r e a n i m p o r t a n t effect, p e r f o r m a n c e w o u l d c o r r e l a t e s t r o n g l y w i t h s o l i d s h o l d - u p ; t h i s w a s n o t o b s e r v e d . A l s o , a d s o r p t i o n is a s s u m e d to b e n o n - s e l e c t i v e — i . e . , t h e r a t i o of c o n c e n t r a t i o n s of a d s o r b e d species is t h e s a m e as i n t h e gas p h a s e .
T h e s e a d s o r p t i o n effects c o u l d b e i m p o r t a n t i n t r a n s p o r t e d b e d r e a c t o r s s i n c e t h e y d i f f e r i n t h i s r e s p e c t f r o m n o r m a l r e a c t o r s w h i c h c o n t a i n a fixed c a t a l y s t c h a r g e w h i c h h a s t i m e to e q u i l i b r a t e w i t h t h e s u r r o u n d i n g gas. H o w ever, this adsorption p h e n o m e n a cannot e x p l a i n the observed v a r i a t i o n w i t h temperature. SOLIDS-GAS CONTACTING. H e r e t h e gas a n d s o l i d s are a s s u m e d t o b e i n t i m a t e l y m i x e d . T h e fluid m e c h a n i c a l b e h a v i o r is a s s u m e d to b e t h e s a m e u n d e r a l l o p e r a t i n g c o n d i t i o n s . O n the o t h e r h a n d , as t h e r e a c t i o n t e m p e r a t u r e
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
684
CHEMICAL
REACTION
ENGINEERING
II
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
is i n c r e a s e d , f o r t h e s a m e m a s s flow r a t e o f gases, t h e v e l o c i t y m u s t i n c r e a s e . M o s t o f t h e r u n s at t h e h i g h e r t e m p e r a t u r e s w e r e at a b o u t t h e s a m e m a s s flow rates as those a t t h e l o w e r t e m p e r a t u r e s . I f t h i s i n c r e a s e d gas v e l o c i t y c a u s e d a c h a n g e i n flow b e h a v i o r of t h e s o l i d s - g a s m i x t u r e at j u s t a b o v e 3 0 0 ° C , a n d t h i s i n t u r n c a u s e d p a r t of t h e gas t o b y p a s s t h e c a t a l y s t , a n a p p a r e n t loss i n r e a c t i o n r a t e w o u l d b e o b s e r v e d . S i n c e o p e r a t i o n is so c l o s e to t h e a p p a r e n t s l u g g i n g r e g i m e , this seems to be a l o g i c a l e x p l a n a t i o n for the l o w e r reaction rates. T h e o n e p o i n t w h i c h is m u c h h i g h e r is at a m u c h h i g h e r s o l i d s l o a d i n g a n d l o w e r gas v e l o c i t y , a n d t h e flow r e g i m e u n d e r these c o n d i t i o n s m a y b e s i m i l a r t o t h a t at t h e l o w e r t e m p e r a t u r e s , t h u s s o m e w h a t s u b s t a n t i a t i n g t h i s h y p o t h e s i s . T h u s , o n l y w h e n t h e flow r e g i m e s are p r o p e r l y m a p p e d f o r t h i s reactor, can reactor performance be a n a l y z e d adequately. O v e r a l l R e s u l t s . T h e t r a n s p o r t e d b e d is o n e w a y t o o b t a i n e x t r e m e l y h i g h r e a c t i o n rates f o r o x i d a t i o n s i n v o l v i n g t h e c a t a l y t i c m e c h a n i s m s a s s o c i a t e d w i t h o - x y l e n e o x i d a t i o n . F i g u r e 5 s h o w s t h a t t h e r e a c t i o n rates o b s e r v e d i n t h i s s y s t e m are m u c h h i g h e r t h a n those o b s e r v e d b y o t h e r s f o r s i m i l a r c a t a l y s t s i n fixed b e d s ; t h e y a r e e v e n h i g h e r t h a n t h o s e i n t h e p a c k e d b e d a f t e r i t w a s o n - s t r e a m f o r o n l y 1 0 sec. T h e s e h i g h rates c a n b e e x p l o i t e d b y d o i n g h y d r o c a r b o n oxidations at temperatures l o w e r t h a n n o r m a l l y used. I n this w a y , h i g h e r selectivities to p a r t i a l o x i d a t i o n p r o d u c t s c a n be a c h i e v e d . T h e i n d u s t r i a l potential becomes a n e c o n o m i c tradeoff b e t w e e n the savings i n feedstocks a n d t h e a d d i t i o n a l costs of m o r e c o m p l e x e q u i p m e n t a n d p o s s i b l e c a t a l y s t losses. T h e u n s t e a d y - s t a t e p e r f o r m a n c e of a n o t h e r i n d u s t r i a l c a t a l y s t u s e d t o p r o d u c e p h t h a l i c a n h y d r i d e f r o m o - x y l e n e is s h o w n i n F i g u r e 4. I n i t i a l rates are o n l y s e v e r a l t i m e s g r e a t e r t h a n s t e a d y - s t a t e rates. H o w e v e r , e v e n t h i s i n c r e a s e c o u l d r e s u l t i n t h e s a m e y i e l d as f r o m a fixed b e d at a 4 0 ° C l o w e r r e a c t i o n temperature, thereby i m p r o v i n g selectivity to p h t h a l i c a n h y d r i d e . A c o m p a r i s o n b e t w e e n t h e t w o c a t a l y s t t y p e s is n o t n e c e s s a r y . B o t h s h o w c o n s i d e r a b l y i n c r e a s e d a c t i v i t y i n a h i g h l y o x i d i z e d state. Conclusions T h e a d v a n t a g e s of c o n d u c t i n g o - x y l e n e o x i d a t i o n o n a h i g h l y o x i d i z e d v a n a d i a c a t a l y s t h a v e b e e n d e s c r i b e d , p a r t i c u l a r l y w i t h r e s p e c t to r e a c t i o n rates a n d s e l e c t i v i t i e s . T h e d e n s e - p h a s e c o n v e y i n g of a c o m m e r c i a l fluidization c a t a l y s t is e x t r e m e l y s t a b l e w h e r e s l u g g i n g w o u l d b e e x p e c t e d . T h e o x i d a t i o n of o - x y l e n e i n a t r a n s p o r t e d b e d is w e l l d e s c r i b e d b y a s s u m i n g i t to b e first o r d e r w i t h r e s p e c t to o - x y l e n e c o n c e n t r a t i o n a n d a f u l l y o x i d i z e d c a t a l y s t (Θ = 1). T h i s provides additional support for the redox a n d S S A M models. Acknowledgments T h i s research p r o g r a m has b e e n s u p p o r t e d b y grants f r o m the N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a . C y a n a m i d of C a n a d a p r o v i d e d c a t a l y s t f o r t h e initial studies, a n d W . R . G r a c e s u p p l i e d catalyst samples. C . M . C r o w e pro v i d e d m a n y u s e f u l s u g g e s t i o n s i n t h e e a r l y stages of t h e p r o g r a m . Nomenclature CR> C02
c o n c e n t r a t i o n of h y d r o c a r b o n a n d o x y g e n , r e s p e c t i v e l y , gram-moles/liter
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
51. F k
A
WAINWRIGHT
o
r
k
&
η ΔΡ , ΔΡ , A P Τ
r
8
F
r
r Si
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
a
Γ U W W
g
s
Greek Θ ε
A N D H O F F M A N
Transported
Bed Reactor
685
f e e d rate of o-xylene, g r a m - m o l e s / h r r e a c t i o n rate c o n s t a n t f o r t h e h y d r o c a r b o n r e a c t i o n , l i t e r s / ( g r a m catalyst ) ( h r ) reaction rate constant f o r catalyst o x i d a t i o n reaction, liters / ( g r a m catalyst ) ( h r ) stoichiometric coefficient, gram-moles of o x y g e n c o n s u m e d / gram-mole of hydrocarbon reacted total pressure d r o p , hydrostatic pressure of solids, frictional pressure d r o p p e r ft of reactor, respectively, p s i / f t rate of reaction of h y d r o c a r b o n reactant, g r a m - m o l e s / ( g r a m catalyst) ( h r ) rate o f oxidation of catalyst, g r a m m o l e s / ( g r a m catalyst) ( h r ) selectivity of component i , g r a m moles of component i pro d u c e d p e r g r a m moles of o-xylene reacted temperature, °K. superficial velocity of gas, f t / s e c mass of catalyst i n the reactor, g r a m mass of catalyst f e d to the reactor, l b / m i n
Letters f r a c t i o n o f c a t a l y s t s u r f a c e sites i n f u l l y o x i d i z e d state v o i d fraction i n the reactor
Literature Cited 1. Weekman, V. W., Jr., Ind. Eng. Chem., Process Design Develop. (1968 ) 7, 90. 2. Echigoya, E., Yen, S., Morikawa, K., Kagaku Kogaku (1969) 32, 1002-7. 3. de Losa, H., Gau, G., Chem. Eng. Sci. (1973) 28, 1875-84. 4. Novella, E. C., Benllock, A. E., An. Real Soc. Espan. Fis. Quint. Ser. (1962) 783-802. 5. Herten,J.,Froment, G. F., Ind. Eng. Chem., Process Design Develop. (1968) 7, 516-26. 6. Juusola, J. Α., Ph.D. Thesis, Queen's University, Kingston, Canada (1971). 7. Mann, R. F., Ph.D. Thesis, Queen's University, Kingston, Canada (1966). 8. Simard, G. L., Steger, J. F., Arnott, R.J.,Siegel, L. Α., Ind. Eng. Chem. (1955) 47, 1424-30. 9. Ushakova, V. P., Korneichuk, G. P., Zhigailo, Ya. V., Ukrain, Khim. Zh. (1957) 23, 191. 10. Kakinoki, H., Sahara, N., Kamata, I., Aigami, Y., Shokubar. (1962 ) 4, 113. 11. Kakinoki, H., Mizushina, F., Tanaka, T., Aigami, Y., Suzuki, H., Sekiyu, Gakkai, Shi. (1964) 7 (3), 164. 12. Mizushina, F., Tanaka, T., Aigami, Y., Kakinoki, H., Suzuki, H., Sekiyu, Gakkai, Shi. (1964) 7 (11), 30. 13. Suzuki, H., Kakinoki, H., Mizushina, F., Kamata, I., Sekiyu, Gakkai, Shi. (1964) 7 (1), 15. 14. Mars, P., Van Krevelen, D. W., Chem. Eng. Sci. (Spec. Suppl.) (1954) 3, 41-59. 15. Wainwright, M. S., Hoffman, T. W., unpublished data. 16. Shelstad, Κ. Α., Downie,J.,Graydon, W. F., Can. J. Chem. Eng. (1960) 38, 102. 17. Froment, G. F., personal communication (1971). 18. Wainwright, M. S., Hoffman, T. W., unpublished data. 19. Wainwright, M. S., Ph.D. Thesis, McMaster University, Hamilton, Canada (1974). 20. Hughes, M. F., Adams, R. T., J. Phys. Chem. (1960) 64, 781-784. 21. Zenz, F. Α., Othmer, D. F., "Fluidization and Fluid-Particle Systems," Reinhold, New York, 1960. RECEIVED January 2, 1974.
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
REACTION
ENGINEERING
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1974-0133.ch051
CHEMICAL
Hulburt; Chemical Reaction Engineering—II Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
II