1 The Role of Fillers and Reinforcements in Plastics Chemistry RAYMOND
B. S E Y M O U R
Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
University of Houston, Houston, Tex. 77004
As with natural composites such as wood, leaves, feathers, and bones, the resin-like component in modern synthetic composites transfers the stress to the reinforcing component. Thus a strong interfacial bond is essential, and crack propa gation must be deterred in high strength composites. The discontinuous phase may consist of silicas, silicates, calcium carbonate, carbon black, and comminuted polymers or more functional reinforcements such as fibrous glass, graphite, boron and single crystals. While the reinforcements have been used primarily with thermosetting resins in the past, they are now being used to reinforce thermoplastics, and these new composites have added a new dimension to the plastics industry.
T i J " o s t m o d e r n a n d t r a d i t i o n a l o r g a n i c coatings a n d plastics c o n t a i n a d d i t i v e s , a n d h e n c e are composites
i n a b r o a d sense.
Additives
i n c l u d e gases i n c e l l u l a r p l a s t i c s , p i g m e n t s i n coatings, p l a s t i c i z e r s i n flexibilized
poly ( v i n y l c h l o r i d e ) , antioxidants i n weather-resistant plas-
tics, l u b r i c a n t s , a n d gloss-control agents as w e l l as fillers a n d r e i n f o r c e ments.
T h i s d i s c u s s i o n is l i m i t e d to composites
c o n t a i n i n g fillers a n d
reinforcements o n l y . A l t h o u g h s u c h a d i s c u s s i o n c o u l d i n c l u d e m a t e r i a l s s u c h as w o o d , leaves, feathers, a n d bones, i t is c o n f i n e d to composites c o n s i s t i n g of a s y n t h e t i c resinous o r c o n t i n u o u s phase a n d a n a t u r a l o c c u r r i n g o r s y n t h e t i c d i s c o n t i n u o u s o r filler phase.
T h e s t r e n g t h o f these
composites
d e p e n d s o n t h e i n t e r f a c i a l b o n d b e t w e e n these c o m p o n e n t s , t h e a b i l i t y of t h e c o m p o s i t e to deter c r a c k p r o p a g a t i o n , t h e s t r e n g t h o f t h e d i s c o n t i n u o u s phase, a n d , t o a lesser extent, t h e s t r e n g t h o f t h e c o n t i n u o u s resinous phase. 1 In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2
FILLERS AND R E I N F O R C E M E N T S FOR PLASTICS
W h e n there is l i t t l e i n t e r f a c i a l a c t i o n , as is the case w i t h s p h e r e - r e s i n composites, the m o d u l u s of the c o m p o s i t e
(M)
glass
is r e l a t e d
to the m o d u l u s of the r e s i n ( M ), a n d the f r a c t i o n a l v o l u m e o c c u p i e d b y c
the
filler
(c)
as s h o w n b y the f o l l o w i n g E i n s t e i n - G u t h - G o l d
(EGG)
equation: M
+ 2.5c +
= M (l 0
14.1c ) 2
S i n c e there is some i n t e r f a c i a l b o n d i n g b e t w e e n the
filler
surface
a n d t h e r e s i n a n d the p a r t i c l e s t e n d to cluster, the E G G e q u a t i o n m u s t Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
be m o d i f i e d for c a r b o n b l a c k - r e s i n composites as f o l l o w s : M T h e shape f a c t o r (/)
= M (l 0
+ 0.67/c +
1.62/V)
is e q u a l to the r a t i o of the l e n g t h to the d i a m e t e r
of the filler p a r t i c l e s . T h e r a t i o of the diameter—i.e., t h i c k n e s s — i s c a l l e d t h e aspect r a t i o for l a m e l l a r
fillers.
W h e n c is greater t h a n 0.1, i t is essential to i n c l u d e a c r o w d i n g factor, β,
as suggested
by
Mooney.
The Mooney
e q u a t i o n for s i m p l e i n e r t
spheres i s :
T h e use of silicas, s u c h as f u m e d s i l i c a a n d q u a r t z a n d silicates, s u c h as c l a y a n d t a l c w h i c h are w i d e l y u s e d as
fillers,
is d i s c u s s e d i n
other chapters i n this v o l u m e . T h e s e fillers m a y be s p h e r o i d a l , l a m e l l a r , or a c i c u l a r . S u r f a c e t r e a t m e n t w h i c h increases the s t r e n g t h of the i n t e r f a c i a l b o n d is also d i s c u s s e d i n other chapters as are r e l e v a n t a p p l i c a t i o n s of composites o n c o r r o s i o n e n g i n e e r i n g a n d h o u s i n g . T h e r u b b e r i n d u s t r y a n d the plastics composite i n d u s t r y w e r e b u i l t primarily on empirical knowledge.
H o w e v e r , the f u t u r e g r o w t h of these
c o m p o s i t e i n d u s t r i e s w i l l d e p e n d l a r g e l y o n the i n t e l l i g e n t use of p e r f o r m a n c e d a t a a n d m o d e r n concepts of t h e i n t e r f a c i a l b o n d the c o n t i n u o u s a n d d i s c o n t i n u o u s phases of composites.
between
T h e latter is
sometimes c a l l e d m i c r o m e c h a n i c s . T h e h i s t o r y of t h e c o m p o s i t e i n d u s t r y i n c l u d e s n u m e r o u s successes as w e l l as some f a i l u r e s . F a i l u r e s for composites,
s u c h as r e i n f o r c e d
plastic pipe have usually resulted from an interfacial b o n d failure. T h i s t y p e of f a i l u r e is a g g r a v a t e d w h e n transitions o c c u r as a result of changes i n t e m p e r a t u r e d u r i n g service. T h u s , f a i l u r e s m a y o c c u r w h e n a m o r p h o u s p l a s t i c composites are h e a t e d a b o v e t h e i r glass t r a n s i t i o n t e m p e r a t u r e s , w h e n c r y s t a l l i n e p l a s t i c composites are h e a t e d a b o v e t h e i r m e l t i n g p o i n t s ,
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
3
Plastics Chemistry
SEYMOUR
a n d w h e n t h e r m o s e t t i n g r e s i n composites are h e a t e d a b o v e t h e i r u s e f u l temperatures. A s p r o o f of t h e i r n u m e r o u s successful a p p l i c a t i o n s , over 1.2 b i l l i o n pounds
of
fibrous
glass r e i n f o r c e d plastics w e r e
u s e d i n the
United
States i n 1972 ( 1 ). B e c a u s e of t h e i r o u t s t a n d i n g p e r f o r m a n c e i n m a r i n e , t r a n s p o r t a t i o n , c o n s t r u c t i o n , a n d corrosion-resistant a p p l i c a t i o n s , i t is exp e c t e d that the c o n s u m p t i o n of composites w i l l d o u b l e w i t h i n the next five years. A n n u a l past a n d p r e d i c t e d c o n s u m p t i o n d a t a for r e i n f o r c e d plastics are l i s t e d i n T a b l e I.
Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
Table I.
A n n u a l Consumption in Millions of Pounds of Reinforced Plastics in the United States
Application
1967
1972
1978
Marine Transportation Construction Consumer Electrical C o r r o s i o n resistant Aircraft Appliances Miscellaneous
127 80 73 57 45 40 24 18 90
321 252 185 99 79 110 28 61 93
550 700 450 115 85 390 40 180 180
Total
544
1,227
2,800
B e c a u s e of t h e i r h i g h s t r e n g t h - t o - w e i g h t r a t i o , d u r a b i l i t y , a n d freed o m of d e s i g n , the w o r l d w i d e g r o w t h of these composites
should
be
c o m p a r a b l e w i t h the g r o w t h d a t a s h o w n for the U n i t e d States i n T a b l e I. C e r t a i n l y , the use of c o m p o s i t e d o u b l e b y 1979 (2).
materials i n W e s t e r n E u r o p e should
T h e d a t a o n t h e c o n s u m p t i o n of nonfibrous
fillers
are not as r e a d i l y d e l i n e a t e d as those o n fibrous reinforcements. T h e use of
filled
plastics has b e e n r e v i e w e d a n n u a l l y for m a n y years (3, 4, 5 ) .
W o o d flour, w h i c h is m a d e b y a t t r i t i o n g r i n d i n g of w o o d , is s u p e r i o r as a filler to the less fibrous g r o u n d shell flour. W o o d flour was u s e d b y B a e k e l a n d at the b e g i n n i n g of the 2 0 t h c e n t u r y a n d is s t i l l u s e d to r e i n force p h e n o l i c resins.
Composites
w i t h h i g h e r i m p a c t resistance
are
o b t a i n e d b y r e p l a c i n g the w o o d flour b y c e l l u l o s i c , asbestos, glass, a n d n y l o n fibers. T h e art w h i c h w a s d e v e l o p e d for p h e n o l i c r e s i n composites has b e e n e x t e n d e d to the r e i n f o r c e m e n t of polyester a n d e p o x y t h e r m o setting resins. F i b r o u s glass r e i n f o r c e d polyester composites n o w account for o v e r 80%
of the v o l u m e of p l a s t i c composites.
T h i s phase of the i n d u s t r y
s t a r t e d w i t h composites m a d e b y t h e h a n d l a y i n g u p of r e s i n i m p r e g n a t e d glass m a t . H o w e v e r , m u c h of the recent g r o w t h has b e e n associated w i t h b u l k m o l d i n g c o m p o u n d s ( B M C ) a n d sheet m o l d i n g c o m p o u n d s ( S M C ).
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4
FILLERS AND R E I N F O R C E M E N T S FOR PLASTICS
I n j e c t i o n m o l d e d r e i n f o r c e d polyester r e s i n composites
h a v e also
con
t r i b u t e d to the g r o w t h of t h e r e i n f o r c e d segment of the plastics i n d u s t r y (θ). D e s p i t e l i m i t e d p r o d u c t i o n , the r o l e of r e i n f o r c e m e n t s i n h i g h p e r f o r m a n c e composites, (7).
s u c h as r e i n f o r c e d p o l y i m i d e s , is also i m p r e s s i v e
T h e s u p e r i o r i t y of the latter as s t r u c t u r a l m a t e r i a l s has justified t h e
use of m o r e s o p h i s t i c a t e d r e i n f o r c e m e n t s , s u c h as s a p p h i r e single crystals and graphite and boron
filaments.
T h e h i g h cost of s a p p h i r e r e i n f o r c e
ments has b e e n r e d u c e d b y s p i n n i n g these p r o d u c t s f r o m m o l t e n a l p h a alumina. Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
R e i n f o r c e m e n t was c o n s i d e r e d to b e l i m i t e d to t h e r m o s e t t i n g c o m posites p r i o r to 1950. T h i s art has n o w b e e n e x t e n d e d to t h e r m o p l a s t i c s , a n d one of the e a r l y a p p l i c a t i o n s w a s the p r o d u c t i o n of
fibrous
glass-
r e i n f o r c e d p o l y s t y r e n e m i n e s w e e p e r s i n 1955. H o w e v e r , c r y s t a l l i n e t h e r moplastics like nylon, rather than amorphous thermoplastics like poly styrene, are p r e f e r r e d .
A process for m a k i n g
n y l o n m o l d i n g p o w d e r s w a s p a t e n t e d i n 1958
fibrous
glass-reinforced
(8).
Table II. A n n u a l Consumption in Millions of Pounds of Reinforced Thermoplastics in 1971 and 1972 1971
1972
Polypropylene Styrene polymers Nylon Polyethylene Acetal Miscellaneous
Type of Plastic
22 19 12 6 3 5
28 20 16 7 4 7
Total
67
82
Reinforced
thermoplastics
(RTP)
are e n g i n e e r i n g plastics w h i c h
perform satisfactorily under conditions where unfilled thermoplastics fail. A s s h o w n i n T a b l e I I , the a n n u a l p r o d u c t i o n of R T P i n the U n i t e d States, w a s less t h a n one m i l l i o n p o u n d s i n 1964, g r e w to m o r e t h a n 80 m i l l i o n p o u n d s or almost 40,000 m e t r i c tons i n 1972 ( 9 ) .
T h e current annual
c o n s u m p t i o n of R T P i n W e s t e r n E u r o p e is 20,000 m e t r i c tons. accounts for m o r e t h a n h a l f of this v o l u m e .
Nylon
C o n s u m p t i o n of R T P i n
E u r o p e is e x p e c t e d to t r i p l e w i t h i n the next five years
(10).
P o t a s s i u m titanate m i c r o f i b e r s are b e i n g u s e d to p r o d u c e
composites
of n y l o n , acetal, p o l y p r o p y l e n e , a n d A B S . B e c a u s e t h e y a r e s m a l l , these single c r y s t a l m i n e r a l reinforcements are m o r e r a n d o m l y o r i e n t e d t h a n the l a r g e r
fibrous
glass p a r t i c l e s .
T h u s , m o l d i n g s of these
composites
are essentially i s o t r o p i c w h e r e a s fibrous glass—nylon composites are aniso tropic.
This sophisticated
filler
has also b e e n
composites that c a n b e e l e c t r o p l a t e d
u s e d to p r o d u c e
(11).
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
ABS
1.
SEYMOUR
Plastics
5
Chemistry
A s s h o w n i n F i g u r e 1, n y l o n composites
are n o w b e i n g u s e d suc-
cessfully as p u m p a n d compressor parts. T h e s e parts operate at h i g h t e m p e r a t u r e s a n d pressures a n d o u t p e r f o r m p r e v i o u s l y u s e d m e t a l parts. T h e m o l d e d parts s h o w n c o n t a i n fibrous glass w h i c h increases the r i g i d i t y , tensile s t r e n g t h , c r e e p resistance, a n d t e m p e r a t u r e resistance a n d reduces the t h e r m a l coefficient of e x p a n s i o n a n d m o i s t u r e a b s o r p t i o n of n y l o n 6,6. T h i s c o m p o s i t e also contains a p o l y t e t r a f l u o r o e t h y l e n e ( P T F E ) filler
w h i c h l u b r i c a t e s the m o v i n g parts. T h u s , the p e r f o r m a n c e of these
composites
demonstrates the r o l e of b o t h
fillers
a n d reinforcements i n
technology.
Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
plastics
Figure 1.
Molded fibrous glass parts
M o s t of the 24 b i l l i o n p o u n d s of plastics p r o d u c e d i n t h e U n i t e d States i n 1972 w a s u s e d for g e n e r a l p u r p o s e a p p l i c a t i o n s . W h i l e the m o r e difficult p r o b l e m s w e r e s o l v e d b y s o p h i s t i c a t e d p l a s t i c composites,
the
m o r e e c o n o m i c a l fibrous glass r e i n f o r c e d polyesters c o n t i n u e d to a c c o u n t
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
f o r the b u l k o f the c o n s u m p t i o n o f r e i n f o r c e d plastics. O n e o f t h e m a j o r factors i n this g r o w t h w a s S M C . T h e rate o f f u t u r e g r o w t h o f R T P w i l l b e e q u a l l y d r a m a t i c . P o t a s s i u m titanate m i c r o c r y s t a l s a n d other e c o n o m i c a l w h i s k e r - l i k e fillers w i l l c o n t r i b u t e t o this g r o w t h .
L e a d e r s i n a l l segments o f the plastics i n d u s t r y
are confident that p l a s t i c composites w i l l c o n t i n u e t o solve p r o b l e m s t h a t c a n n o t b e s o l v e d w i t h t r a d i t i o n a l materials o f c o n s t r u c t i o n .
Downloaded by UNIV OF CHICAGO on March 10, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch001
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
Chem. Week (1973) 112 (8), 27. Wildman, D., Plast. Aust. (1972) 23 (7), 15. Seymour, R. B., Mod. Plast. (1973) 50 (10A) 210, 216. Schoengood, Α. Α., SPE J. (1972) 28 (6), 22. Seymour, R. B., Ann. Rev. Ind. Eng. Chem., 1970 (1972) 305. Austin, C., Plast. Aust. (1972) 23 (3), 13. Witzel, J. M., Jablonski, R. J., Kruh, D., Chem. Tech. (1972) 2, 440. Bradt, R., U. S. Patent 2,877,501 (1959). Gross, S., Mod. Plast. (1973) 50 (1), 59. Wellman, J. F., Plast. Aust. (1972) 23 (6), 13. Weston, Ν. E., SPE J. (1972) 28, 37.
RECEIVED October 11, 1973.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.