The Seasonal Variation in Sources, Concentrations, and Impacts of

The Seasonal Variation in Sources, Concentrations, and. Impacts of Ammonium in the New York Bight Apex. HAROLD B. O'CONNORS and IVER W. DUEDALL...
1 downloads 0 Views 3MB Size
39 The Seasonal Variation in Sources, Concentrations, and

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Impacts of Ammonium in the New York Bight Apex HAROLD B. O'CONNORS and IVER W. D U E D A L L Marine Sciences Research Center, State University of New York, Stony Brook, N.Y.

11794

The f l u x a n d c o n c e n t r a t i o n o f p l a n t n u t r i e n t s a r e important f a c t o r s i n c o n t r o l l i n g the p r o d u c t i v i t y of m a r i n e w a t e r s (_1, 2^, 3 ) . E v i d e n c e f r o m bo t h l a b o r a t o r y a n d f i e I d meas u r e m e n t s h a v e i n d i c a t e d t h a t , w h i l e NH^ , u r e a , N(>3~, a n d N O 2 " n i t r o g e n may a l l be utili z e d b y phy t o p l a n k t o n f o r u p t a k e a n d g r o w t h , NH^"*" h a s g e n e r a l l y b e e n f o u n d t o be t h e p r e f e r r e d f o r m a n d may i n h i b i t phy t o p l a n k t o n up t a k e o f N O 3 " when p r è s en t i n c o n c e n t r a t i o n s a b o v e t r a c e a m o u n t s ( 1 , 2). Because o f t h e p o t e n t i a l i m p a c t o f a d d e d NH4"*" on phy t o p l a n k t o n p r o d u c t i o n , s t a n d i n g c r o p s p a t i a l d i s t r i b u t i o n , and s p e c i e s abundance, i t i s désirable t h a t i n f o r m a t i o n be ob t a i n e d on i t s r a t e s ο f i n p u t a n d c o n c e n t r a t i o n s i n coas t a l w a t e r s . +

I n t h i s p a p e r we f o c u s on t h e i n p u t o f NH4"*" i n t o t h e New Y o r k B i g h t a p e x ( F i g . 1 ) . Two s o u r c e s o f NH4"*" i n p u t have been i d e n t i f i e d : (1) sewage e f f l u e n t w h i c h i s cont i n u o u s l y d i s charged i n l a r g e volûmes i n t o the r e c e i v i n g w a t e r s w h i c h s u r r o u n d t h e New Y o r k m e t r o p o l i t a n r e g i o n and (2) sewage s l u d g e w h i c h i s t r a n s p o r t e d t o s e a i n b a r g e s a n d dumped a t a l o c a t i o n ab o u t 25 km f r o m t h e e n t r a n c e t o New Y o r k H a r b o r . These was t e s i n t r o d u c e N H ^ t o the apex a t a combined rate t h a t g r e a t l y exceeds the NH^ i n p u t from the Hudson River. +

+

C o n t r i b u t i o n 12 3 o f t h e M a r i n e S c i e n c e s R e s e a r c h C e n t e r (MSRC) o f t h e S t a t e U n i v e r s i t y o f New Y o r k a t S t o n y B r o o k .

636

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

39.

OCONNORS

NH4+ Input

AND

due

DUEDALL

Impacts of Ammonium

to A d v e c t i v e

637

Processes

Sewage E f f l u e n t . A l a r g e number of sewage t r e a t ment p l a n t s ( F i g . 2) are s i t u a t e d throughout the e n t i r e New York m e t r o p o l i t a n r e g i o n . Combined, they d i s c h a r g e about 50 m^ sec" - of primary and secondary t r e a t e d sewage e f f l u e n t (.A). In a d d i t i o n , about 13 m^ see"* of raw sewage, f o r which no treatment facilities are a v a i l a b l e , i s d i r e c t l y d i s c h a r g e d i n t o r e c e i v i n g waters (T. G l e n n , p e r s o n a l communication). Table I summarizes the mean c o n c e n t r a t i o n s and r a t e s of i n p u t s of sewage d e r i v e d n u t r i e n t s , i n c l u d i n g o r g a n i c n i t r o g e n These c o n c e n t r a t i o n s and i n p u t r a t e s may show s h o r t term v a r i a b i l i t y because the combined s a n i t a r y sewer and s t o r m - d r a i n system, which i s w i d e l y used throughout the m e t r o p o l i t a n r e g i o n , w i l l cause s i z a b l e amounts of u n t r e a t e d sewage to bypass t r e a t ment p l a n t s d u r i n g p e r i o d s of heavy r a i n f a l l . Under these c o n d i t i o n s , the raw sewage i s d i s c h a r g e d d i r e c t l y i n t o the l o c a l r e c e i v i n g waters C5). It i s l i k e l y , however, t h a t these r a i n - c a u s e d e p i s o d e s do not introduce much v a r i a t i o n i n the mean c o n c e n t r a t i o n of NH4 or the volume of flow from the sewage system f o r p e r i o d s l o n g e r than s e v e r a l months (see N u t r i e n t R e l a t i o n s , page 4 ) . A l a r g e but unknown f r a c t i o n of sewage d e r i v e d n u t r i e n t s may r e a c h the New York B i g h t apex ( F i g . 1) i n a matter of days. The e f f e c t s of the Hudson R i v e r discharge, t i d a l o s c i l l a t i o n s , v a r i a b l e coastal c i r c u l a t i o n p a t t e r n s , b i o l o g i c a l p r o c e s s e s , and the p o s s i b i l i t y of v a r i a t i o n s i n r a t e s of i n p u t , combine to cont r o l the r e l a t i v e c o m p o s i t i o n and r a t e of f l u x of n u t r i e n t s i n t o the B i g h t apex. To o b t a i n the n e c e s s a r y data needed to e s t i m a t e the a d v e c t i v e f l u x of NH4+ and o t h e r n u t r i e n t s i n t o the apex, we (6) investigated the s e a s o n a l and t i d a l v a r i a t i o n of n u t r i e n t s and o t h e r océanographie v a r i a b l e s at s e v e r a l s t a t i o n s on a t r a n s e c t (see F i g . 3) between Sandy Hook, New J e r s e y , and Rockaway P o i n t y New York. The c r u i s e s were conducted on November 5, 1973 J a n u a r y 22, March 11, A p r i l 20, and June 5, 1974. The f l u x e s of N H , N0 ", N0 ~, PO4 ", and Si(0H)4 were computed f o r the June c r u i s e u s i n g p r e v i o u s l y o b t a i n e d c u r r e n t data (J) . Reported here a r e o n l y those r e s u l t s t h a t are p e r t i n e n t to NH4"**, i t s i n p u t and f a t e i n the apex.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

3

+

+

4

2

3

T e m p e r a t u r e - S a l i n i t y R e l a t i o n s h i p s . The s t r o n g l y l i n e a r t e m p e r a t u r e - s a l i n i t y (T-S) * r e l a t i o n s h i p s (see F i g . 4a and b) demonstrate t h a t the water i n the t r a n s e c t ( F i g . 3) i s a m i x t u r e of p r i m a r i l y two water k

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

638

MARINE

CHEMISTRY

Figure 2. The New York Bight and its apex

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

O'CONNORS A N D DUEDALL

Impacts of

Ammonium

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

39.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

639

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

I

Η

I

1

1

- * — * .

f

ψα

1

«y

1

1

,

1

1

Η*—I

^

- * — * — £ — i n

H

Η

Η

4

s

- à — * — — i n SALINITY (%.)

1

H

1

APRIL

1

1 Η

1

,

,

— 7fll; # —

- * — i s

I m; - f = 4 m ; *

-*——&—in

Η

Seasonal variation of temperature, NH \ NOf, and NO ~ with salinity. X = 10 m; • = bottom.

4

"4

1

- * — i s

Figure 4a.

s 3 «... i ....

Ε..4

NOVEMBER

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Figure 4b.

IT Έ I

"5Î

Q. (A

ui

I

1*

Seasonal variation of POf',

a

4\

NOVEMBER

SALINITY (%c)

H

Η

1

1

I* 1

1

-*—is——in

Η

Si(OE) suspended matter (SS)and chlorophyll a with salinity. 4m;* =7 m; # = 10 m; • = bottom. h

4

——is——*.

V

St

•-

X

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

642

MARINE

CHEMISTRY

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Τ a b 1 e I . A n n u a l mean c o n c e n t r a t i o n s (C) a n d a n n u a l mean i n p u t r a t e s ( F ) o f s e w a g e e f f l u e n t c o n t a i n e d n u t r i e n t s discharged through a h y p o t h e t i c a l o u t f a l l i n t o New Y o r k H a r b o r i ' . Computed f o r t h e p e r i o d J u l y 1973 t o J u l y 1 9 7 4 . C Concentrationk/ in Sewage E f f l u e n t (μΜ)

Sewage Component Organic-N NH

+ 4

(+

NH ) 3

646

63

726

71 0. 8

7.7

N0 ~ 2

F Input Ratek/ ( m o l e sec"^-)

N0 ~

27

2. 6

P0 3-

62

6. 1

3

4

1*7 Mos t o f t h e s e w a g e e f f l u e n t d i s c h a r g e d f r o m t h e New Jersey shore of the harbor has undergone only p r i ­ m a r y t r e a t m e n t f o r w h i c h o n l y d a t a on mean f l o w s a r e a v a i l a b l e (.4). T h e r e f o r e , t h e v a l u e s f o r c ^ s ( s e e f o o t n o t e b ) f o r New J e r s e y e f f l u e n t s w e r e c a l c u l a t e d by a s s u m i n g t h e i r c o n c e n t r a t i o n s w e r e s i m i l a r t o t h e P o r t Richmond p r i m a r y treatment p l a n t on S t a t e n I s l a n d . C a l c u l a t i o n s exclude e f f l u e n t s f r o m o u t f a l l s i n Long I s l a n d Sound and on t h e s o u t h shore of Long I s l a n d . k ^ T h e c o n c e n t r a t i o n s C a r e w e i g h t e d means c a l c u l a t e d f r o m t r e a t m e n t p l a n t a n n u a l mean d i s c h a r g e s ( 4 ) a n d t h e mean o f m o n t h l y c o n c e n t r a t i o n s c o v e r i n g t h e p e r i o d J u l y 1 9 7 3 t o J u l y 19 74. C was c a l c u l a t e d using the equation: C =

• Zf

±

w h e r e c ^ ~ a n n u a l mean c o n c e n t r a t i o n a n d f ^ « a n n u a l mean d i s c h a r g e f o r t h e i treatment p l a n t . The i n ­ p u t r a t e F was c a l c u l a t e d u s i n g t h e e q u a t i o n : F = Σ ( c ^ x f jf ) . The o r i g i n a l s e w a g e d a t a u s e d i n o u r c a l c u l a t i o n s w e r e t a k e n f r o m t h e r e c o r d s o f sewage a n a l y s e s c o n d u c t e d by t h e E n v i r o n m e n t a l P r o t e c t i o n A d m i n i s t r a t i o n o f t h e C i t y o f New Y o r k . These r e c o r d s were k i n d l y p r o v i d e d t o us b y D r . Seymour K i r s chner, D i r e c t o r o f the Water P o l l u t i o n C o n t r o l L a b o r a t o r i e s o f t h e C i t y o f New Y o r k . t

n

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

39.

OCONNORS

AND

DUEDALL

Impacts of

Ammonium

643

types whose temperatures and s a l i n i t i e s show pronounc­ ed s e a s o n a l changes. D u r i n g the November c r u i s e , the water mass i n the t r a n s e c t was a m i x t u r e of two water types: (1) r e l a t i v e l y f r e s h e r and c o l d e r r i v e r water and (2) r e l a t i v e l y more s a l i n e , warmer B i g h t water. Temperature and s a l i n i t y ranges were 12-14°C and 24-32°/oo, r e s p e c t i v e l y . D u r i n g the January c r u i s e , a s i m i l a r two-component T-S r e l a t i o n was observed e x c e p t t h a t the water was much c o l d e r (3-7°C) and had a w i d e r range of s a l i n i t i e s (22-32°/oo). In March the water temperature was n e a r l y u n i f o r m at about 5°C and the s a l i n i t y v a l u e s (21-32°/oo) had i n c r e a s e d s l i g h t l y from those o b s e r v e d i n J a n u a r y . In A p r i l the f r e s h e r e s t u a r i n e water was warmer than the more s a l i n e B i g h t water o c c u r r i n g at depth, as shown by the n e g a t i v e s l o p e of the T-S diagram. The s a l i n i t i e s (19-32°/oo) e x h i b i t e d the w i d e s t range d u r i n g the e n t i r e s t u d y . In June, water temperatures and s a l i n i t y were b o t h changed s u b s t a n t i a l l y from t h e i r p r e c e d i n g w i n t e r and s p r i n g v a l u e s ; temperatures ranged between 13 and 18°C and s a l i n i t i e s ranged between 23 and 32°/oo. The wide range of s a l i n i t i e s observed i n March and i n A p r i l demonstrates the s t r o n g i n f l u e n c e of the s p r i n g f r e s h w a t e r d i s c h a r g e . S a l i n i t i e s were more v a r i a b l e near Sandy Hook where the f r e s h w a t e r d i s ­ charge had the g r e a t e s t e f f e c t on water p r o p e r t i e s . The most s a l i n e water i n the t r a n s e c t was always s i t u a t e d near Rockaway P o i n t , due to a s t r o n g nont i d a l t r a n s p o r t of B i g h t water i n t o the h a r b o r . N u t r i e n t R e l a t i o n s . The a p p r o x i m a t e l y l i n e a r n u t r i e n t - s a l i n i t y (Nutr-S) r e l a t i o n s h i p s (see F i g s . 4a and b) a l s o demonstrate t h a t the water i n the t r a n s e c t i s a two-component system comprised of n u t r i e n t i m p o v e r i s h e d B i g h t water and n u t r i e n t r i c h e s t u a r i n e water. The n u t r i e n t c o m p o s i t i o n i s v a r i a b l e depending on the season and on whether the p a r t i c u l a r n u t r i e n t s p e c i e s o r i g i n a t e d (1) from sewage e f f l u e n t or (2) was d e r i v e d mainly from the f r e s h w a t e r d i s c h a r g e of the Hudson R i v e r or a l e s s e r e x t e n t , (3) was d e r i v e d from the d i s c h a r g e of the R a r i t a n and P a s s a i c Rivers . Most of the NO3" measured i n the t r a n s e c t comes from Hudson R i v e r d i s c h a r g e and not from sewage effluent. E x t r a p o l a t i o n of the N03~-S r e s u l t s i n F i g . 4a to zero s a l i n i t y g i v e s Ν Ο β " c o n c e n t r a t i o n s t h a t range between 45 and 90 pM. These v a l u e s a r e i n good agreement w i t h the annual range of 50 to 140 μΜ r e p o r t e d (8) f o r N O 3 " i n water samples c o l l e c t e d from the Hudson and R a r i t a n R i v e r s upstream from the

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

644

MARINE

CHEMISTRY

i n f l u e n c e o f t h e New Y o r k m e t r o p o l i t a n r e g i o n . Sewage e f f l u e n t ( T a b l e I ) i s a p r i n c i p a l source o f N H , N02~, and Ρ Ο ^ ' . For November, e x t r a p o l a t i o n o f t h e NH4+-S, d i a g r a m ( s e e F i g . 4a) t o 15°/oo s a l ­ i n i t y g i v e s a c o n c e n t r a t i o n o f NH4"*", t h a t c o m p a r e t o some E a s t R i v e r v a l u e s (9) and i s a b o u t an o r d e r o f magnitude g r e a t e r than what i s found i n Hudson R i v e r waters upstream from the m e t r o p o l i t a n r e g i o n . During the s p r i n g f r e s h e t , which occurs i n A p r i l , NH4"*", NC>2~ and PO4 c o n c e n t r a t i o n s due t o s e w a g e d i s c h a r g e w o u l d be e x p e c t e d t o u n d e r g o a g r e a t e r d i l u t i o n , w i t h the i n c r e a s e d volume of r i v e r w a t e r i n the e s t u a r y , than i n the e a r l i e r w i n t e r months. This assumes a r e l a t i v e l y c o n s t a n t sewage i n p u t o f t h e s e nutrients. I n f a c t , r e c o r d s of the Environmental P r o t e c t i o n A d m i n i s t r a t i o n o f t h e C i t y o f New York ( S . K i r s c h n e r , p e r s o n a l c o m m u n i c a t i o n ) show t h a t t h e v a r i a b i l i t y o f t h e f l o w o f s e w a g e e f f l u e n t and i t s n u t r i e n t c o n c e n t r a t i o n i s r e l a t i v e l y s m a l l compared t o t h e amount o f d i l u t i o n . For example, the average c o e f f i c i e n t s of v a r i a t i o n [V% « ( s x l O O ) / X ] f o r the mean e f f l u e n t N H ^ c o n c e n t r a t i o n and f l o w v o l u m e f o r t w e l v e New Y o r k C i t y t r e a t m e n t p l a n t s f o r t h e p e r i o d N o v e m b e r 1973 t o J u n e 1974 w e r e 1 9 . 5 % and 1 0 . 7 % , respectively. The A p r i l f r e s h w a t e r i n p u t f r o m t h e Hudson R i v e r measures a b o u t t h r e e - f o l d o v e r t h a t of November ( 1 0 ) . The c o n c e n t r a t i o n s o f NO3" i n t h e t r a n s e c t i s p r i m a r i l y a f u n c t i o n of the c o n c e n t r a t i o n of r i v e r w a t e r i t s e l f a n d , t h e r e f o r e , may i n c r e a s e o r decrease, depending upon w h e t h e r augmented r u n o f f i n c r e a s e s its c o n c e n t r a t i o n i n the r i v e r water or not. The i n c r e a s e d d i l u t i o n o f NH4" *, N 0 " , and P O 4 " t a k e s p l a c e a t a b o u t t h e same t i m e as t h e s p r i n g p h y t o p l a n k t o n b l o o m , as e v i d e n c e d by t h e r e m a r k a b l e i n c r e a s e s i n t h e c o n c e n t r a t i o n o f c h l o r o p h y l l a_ i n t h e t r a n s e c t , e s p e c i a l l y n e a r S a n d y Hook ( F i g . 4 b ) . T h e r e f o r e , the s e a s o n a l v a r i a t i o n i n the s l o p e s of t h e NH4+-S, N 0 " - S and P Û 4 " - S d i a g r a m s ( F i g . 4a and b) w i l l n o t be s o l e l y a f u n c t i o n o f c h a n g e s i n f r e s h w a t e r d i s c h a r g e , but a l s o i n c l u d e the e f f e c t of the b i o l o g i c a l u t i l i z a t i o n of these c h e m i c a l s p e c i e s . F o r e x a m p l e , a s s u m i n g t h a t no o t h e r processes i n f l u e n c e t h e NH4"*" c o n c e n t r a t i o n , t h e r e l a t i v e e f f e c t s of (1) p h y t o p l a n k t o n u p t a k e d u r i n g the s p r i n g b l o o m and ( 2 ) d i l u t i o n by r i v e r w a t e r on t h e ammonium c o n c e n t r a t i o n i n t h e t r a n s e c t c a n be e s t i m a t e d . This c a n be a c c o m p l i s h e d by c o m p a r i n g ( 1 ) t h e m e a s u r e d NH^ " c o n c e n t r a t i o n v a l u e s w i t h (2) the e x p e c t e d N H 4 c o n c e n t r a t i o n v a l u e s b a s e d s o l e l y on d i l u t i o n . In +

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

4

+

1

J

2

3

2

4

+

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

39.

OCONNORS

AND

DUEDALL

Impacts of

Ammonium

645

November, f r e s h w a t e r d i s c h a r g e i n the Hudson e s t u a r y i s g e n e r a l l y about t h r e e times l e s s than i n A p r i l ( 1 0 ) . T h e r e f o r e , i t c o u l d be expected t h a t d i l u t i o n would reduce the ammonium c o n c e n t r a t i o n s i n the t r a n s e c t i n A p r i l to about o n e - t h i r d of the November v a l u e s . In F i g u r e 4a, i t can be seen t h a t at s a l i n i t y of 26°/oo, f o r example, i n November the c o n c e n t r a t i o n of N H was about 40 μΜ. In A p r i l , however, the measured NH c o n c e n t r a t i o n at the same s a l i n i t y ranged from about 5 yM to c o n c e n t r a t i o n s below d e t e c t i o n , which i s about 8 to 13 μΜ l e s s than the c o n c e n t r a t i o n which might be expected from d i l u t i o n a l o n e . I t would appear, t h e r e f o r e , t h a t i n A p r i l , N H was b e i n g r a p i d l y u t i l i z e d by the p h y t o p l a n k t o n i n comparison to November and thus decreased the ammonium c o n c e n t r a ­ t i o n s i n the t r a n s e c t by about the same amount as t h a t caused by d i l u t i o n due to the i n c r e a s e d f r e s h w a t e r d i s charge. +

4

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

+

4

+

4

C r o s s - S e c t i o n s i n the T r a n s e c t . Contoured s e c t i o n s of v a r i a b l e s showing the d i s t r i b u t i o n of water p r o p e r t i e s i n the t r a n s e c t were p r e p a r e d u s i n g tidally averaged c o n c e n t r a t i o n s (JS) . P r e s e n t e d h e r e ( F i g s . 5-7) are s e c t i o n s f o r s a l i n i t y , N H , and c h l o r o p h y l l a_. Two f e a t u r e s shown i n these s e c t i o n s are the p r e s e n c e of (1) h i g h s a l i n i t y - l o w N H water near Rockaway P o i n t and (2) low s a l i n i t y - N H r i c h water near Sandy Hook. A s s o c i a t e d w i t h the low s a l i n i t y water d u r i n g A p r i l were h i g h c o n c e n t r a t i o n s of c h l o r o p h y l l a (see F i g . 7a through d ) . Most of the low s a l i n i t y - N H r i c h water p r o b a b l y o r i g i n a t e s i n R a r i t a n Bay where l a r g e s t a n d i n g s t o c k s of phytop l a n k t o n have been r e p o r t e d (11., 12,)· The p r e s e n c e of a l a r g e but slow moving c o u n t e r c l o c k w i s e gy ^ i n R a r i t a n Bay may act to delay some of the n u t r i e n t r i c h Upper Bay water ( F i g . 2) t h a t was advected towards the apex but through R a r i t a n Bay by r i v e r flow and t i d a l action. T h i s delay may p r o v i d e a s u f f i c i e n t amount of time f o r the development of h i g h c h l o r o p h y l l a_ s t a n d i n g crops i n R a r i t a n Bay. T i d a l current charts (13) show t h a t d u r i n g ebb t i d e R a r i t a n Bay waters flow around Sandy Hook i n t o the apex. These low s a l i n i t y R a r i t a n Bay waters c o u l d , d u r i n g p e r i o d s of decreased p h y t o p l a n k t o n p r o d u c t i o n i n the w i n t e r , c o n t a i n e l e v a t e d c o n c e n t r a t i o n s of N H and o t h e r nutrients. However, d u r i n g the s p r i n g when p h y t o p l a n k t o n growth i s at i t s maximum i n R a r i t a n Bay, the low s a l i n i t y water f l o w i n g from R a r i t a n Bay would +

4

+

4

+

4

+

4

r

+

4

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

646

MARINE

STATION G

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

DEPTH

F

M

SALINITY SANDY 11

PPT

HOOK

-

NOVEMBER

ROCKAWAY

POINT

TRANSECT

1973

OISTANCE

FROM

SANOY

HOOK/KM

c

OEPTH

CHEMISTRY

β

M

SALINITY SANDY 22

PPT

HOOK

-

JANUARY

ROCKAWAY

DISTANCE STATION Μ

POINT

TRANSECT

1974

FROM

0

SANDY E

HOOK/KM C

Β

y DEPTH

M

SALINITY SANDY

PPT

HOOK

1 1 MARCH

-

ROCKAWAY

POINT

TRANSECT

1974

DISTANCE

FROM

SANDY

HOOK/KM

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ο

CONNORS

Impacts of

A N D DUEDALL

Ammonium

0

STATION Η

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

DEPTH M

SALINITY PPT SANDY 20

HOOK

APRIL

-

ROCKAWAY

DISTANCE STATION H

POINT

TRANSECT

1974

C

FROM

F

SANDY E

HOOK/KM C

Β

ι ΟΕΡΤΗ Μ

SALINITY PPT SANDY 5

HOOK

-

ROCKAWAY

3

DISTANCE

Figure Sa-e.

POINT

TRANSECT

JUNE 1974

4

FROM

5

SANDY

6

HOOK/KM

Tidally-averaged salinity distribution in the transect

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

MARINE

AMMONIUM SANDY 11

μΜ

HOOK

MARCH

CHEMISTRY

-

ROCKAWAY

POINT

TRANSECT

1974

S «ΝΟΥ HOOK DISTANCE

FROM

SANDY

HOOK/KM

Figure 6a-d.

Tidally-averaged

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

39.

O'CONNORS

AND

STATION H

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Impacts of Ammonium

DUEDALL

649

Ψ

O

À DEPTH M

AMMONIUM μΜ SANOY HOOK - ROCKAWAY P O I N T 20 A P R I L 1974

TRANSECT ROCKMMV POINT

2

STATION Η

DISTANCE

0

FROM SRNDY

HOOK/KM

F

J DEPTH M

AMMONIUM uM SANDY HOOK 5

ROCKAWAY P O I N T

TRANSECT

JUNE 1974 2

3

DISTANCE

4

5

FROM SANDY

6

7

HOOK/KM

ammonium distribution in the transect

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

650

MARINE

STATION 0

F

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

DEPTH H

9

CHLOROPHYLL A (MGM) SANDY HOOK - ROCKAWAY POINT 11 NOVEMBER 1973

3

4

TRANSECT

6

t

DISTANCE FROM SANOY E

C

HOOK/KM Β

DEPTH M

CHLOROPHYLL A (MGwft SANDY HOOK - ROCKAWAY POINT 11 MARCH 1974

TRANSECT

DISTANCE FROM SANOY

HOOK/KM

DEPTH M

/CHLOROPHYLL A {MG*ft SANDY HOOK - ROCKAWAY POINT 20 A P R I L " ! 9 7 4

TRANSECT

DISTANCE FROM SANDY

HOOK/KM

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

CHEMISTRY

OCONNORS

Impacts of

A N D DUEDALL

STATION H

Ammonium E

G

C

Β

-

^••0

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

DEPTH M

CHLOROPHYLL SANDY 5

JUNE

-

STATION · !

(MGW) ROCKAWAY

POINT

TRRNSECT

1974

*

Figure la-à,

A

HOOK

DISTANCE

FROM SANDY

HOOK/KM

Tidally-averaged chlorophyll a distribution in the transect

·2

DEPTH/M

NON-Τ I D A L SANDY 2-7

VELOCITIES

HOOK

JUNE

-

CM P E R S E C

ROCKAWAY

POINT

TRANSECT

1952

3

4

DISTANCE

FROM

5

SANDY

6

HOOK/KM

Current Structure in Sandy Hook Rockaway Point Transect

Figure 8.

Nontidal current velocities in the transect (7). Negative-sign veloci­ ties are into the harbor.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

652

MARINE

CHEMISTRY

c o n t a i n h i g h c o n c e n t r a t i o n s o f c h l o r o p h y l l a_ but low concentrations of n u t r i e n t s . This i s c o n s i s t e n t with the f e a t u r e s o b s e r v e d i n a l l the n u t r i e n t and c h l o r o ­ p h y l l c r o s s - s e c t i o n s [see F i g s . 5, 6, and 7 and a l s o (6)]. The p e r s i s t e n c e o f h i g h e r s a l i n i t y water near Rockaway P o i n t i s m a i n l y due to s t r o n g n o n - t i d a l c u r r e n t s t h a t t r a n s p o r t seawater from t h e apex t o t h e harbor. F i g u r e 8 i s a c r o s s - s e c t i o n showing the d i s t r i b u t i o n of n o n - t i d a l c u r r e n t v e l o c i t i e s normal to the t r a n s e c t d u r i n g June, 1952 (6_) . Negative-sign v e l o c i t i e s i n d i c a t e c u r r e n t s moving towards the h a r b o r . C l e a r l y , Rockaway P o i n t i s a r e g i o n where b o t h s u r f a c e and deep waters a r e t r a n s p o r t e d i n t o the h a r b o r from the apex. E a r l i e r i n v e s t i g a t o r s (14, 15) working i n the New York B i g h t apex p o s t u l a t e d , based on s a l i n i t y , the e x i s t e n c e of a n o n - t i d a l d r i f t near Rockaway P o i n t which moves towards the h a r b o r . The v e l o c i t y c o n t o u r s i n F i g u r e 8 g i v e the f i r s t p u b l i s h e d q u a n t i t a t i v e e v i d e n c e f o r the p r e s e n c e of t h i s f e a t u r e . The r e ­ s u l t s of a r e c e n t completed seabed d r i f t e r study i n the apex shows near bottom n o n - t i d a l v e l o c i t i e s v e r y s i m i l a r to those i n F i g u r e 8 ( 1 6 ) . At o t h e r l o c a t i o n s , a l o n g the t r a n s e c t , n o n - t i d a l s u r f a c e c u r r e n t s move towards the apex, which i s con­ s i s t e n t w i t h the p r e s e n c e of low s a l i n i t y - n u t r i e n t r i c h water south of Ambrose c h a n n e l (see F i g s . 5 and 6). A d v e c t i v e N u t r i e n t F l u x e s i n the T r a n s e c t . To o b t a i n e s t i m a t e s of n u t r i e n t i n p u t to t h e apex, the a d v e c t i v e f l u x e s of NH4 , NO2", NO3", P O 4 " , and S i ( O H ) 4 were c a l c u l a t e d u s i n g t h e June 5, 1974 n u t r i e n t c o n t o u r s [see (6)] and the June 2-8, 1952 v e l o c i t y p r o f i l e ( F i g . 8 ) . In the c a l c u l a t i o n s , i t was assumed t h a t the n o n - t i d a l v e l o c i t y s t r u c t u r e i n the t r a n s e c t was s i m i l a r f o r the two p e r i o d s , June 2-8, 1952 and June 5, 1974. Storms t h a t might a l t e r n o n - t i d a l c i r c u l a t i o n i n the apex a r e i n f r e q u e n t i n June. The n o n - t i d a l c u r r e n t s t r u c t u r e s f o r May 21-25, 1958, and August 12-16, 1959 a r e very s i m i l a r to the n o n - t i d a l c u r r e n t s t r u c t u r e f o r June 2-8, 1952 (R. W i l s o n , p e r s o n a l communication). Advective n u t r i e n t f l u x e s were c a l c u l a t e d from t h e e x p r e s s i o n Σ ( ο ± ν ± σ ± ) . The C £ and v^ a r e the t i d a l l y averaged n u t r i e n t c o n c e n t r a t i o n s and n o n - t i d a l c u r r e n t v e l o c i t i e s i n t e r ­ p o l a t e d to a g r i d and c o n t o u r e d i n F i g u r e s 6 and 8, respectively. o^ a r e the areas of d i f f e r e n t g r i d elements. T a b l e I I summarizes our e s t i m a t e s of n u t r i e n t f l u x e s through the t r a n s e c t . +

3

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

OCONNORS AND

39.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Nutrient

+

(a) I n t o the Harbor

FLUX (moles s e c " ^ ) (b) Out o f the Harbor

14

4

51

1.6

N0 ~ 2

NO3-

4. 6 37

11

2.5

3

PO4 "

Si(OH)

Ammonium

653

C a l c u l a t e d N u t r i e n t F l u x e s i n the T r a n s e c t .

Table I I .

NH

Impacts ? of

DUEDALL

6.2

31

10

4

1

NH^"" Inputs

due to Sludge

C(b)-(a)] Bight-ward

37 3 26 3. 7 21

Dumping

Sewage s l u d g e , which i s dumped i n l a r g e volumes a t sea about 25 km from the e n t r a n c e to New York Harbor, i s a l s o a s o u r c e of NH^ i n the apex. F o r the p e r i o d 1965 to 1970, i t has been e s t i m a t e d t h a t t h e average annual volume o f sludge to the apex i s about 3.2xl0 m (17). The c o n t i n u e d c o n s t r u c t i o n of l a r g e sewage treatment p l a n t s i n the m e t r o p o l i t a n a r e a , i n c l u d i n g the south shore o f Long I s l a n d w i l l ensure an i n c r e a s i n g i n p u t of s l u d g e to the B i g h t i n the f u t u r e i f a l t e r n a t e d i s p o s a l or r e c y c l i n g schemes a r e not developed and implemented. To determine the e f f e c t o f s l u d g e dumping on the d i s t r i b u t i o n of Ν Η ^ i n apex w a t e r s , we conducted a c r u i s e w i t h i n the s l u d g e dumping grounds d u r i n g the p e r i o d J u l y 30-31, 1973 (.18). T a b l e I I I shows t h a t n i n e dumps of s l u d g e o c c u r r e d d u r i n g t h e p e r i o d of s tudy. A r a p i d sampling g r i d ( F i g . 9) was used i n and near the dump s i t e to a s s e s s the s p a t i a l e x t e n t o f NH from s l u d g e dumping. The g r i d c o n s i s t e d of s t a ­ t i o n s spaced around the p e r i m e t e r o f a 9.4 km r a d i u s c i r c l e , c e n t e r e d near the d e s i g n a t e d dump a r e a ( s e e F i g . 9 ) . S u r f a c e , ~10m, and bottom water samples were o b t a i n e d by u s i n g a s u b m e r s i b l e pump and then a n a l y s e d f o r NH^"" onboard the r e s e a r c h v e s s e l . I n a d d i t i o n , an attempt was made to t r a c e the d i s p e r s i o n o f r e c e n t l y dumped sludge by f o l l o w i n g , w i t h a d d i t i o n a l water s a m p l i n g , two parachute drogues s e t a t 4 and 8 m ( F i g . 9). D e t a i l s of the methods used a r e r e p o r t e d +

6

3

+

+

4

1

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

654

MARINE

CHEMISTRY

Ocean Dumping in the N.Y. Bight

Figure 9. Stations occupied and times of drogue release and location (18). Dashed circle near center of perimeter represents the area (3.3 km ) and location (40° 20' N, 73° 45' W) of the interim sludge dump area established by the U.S. Environmental Protection Agency. 2

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

39.

OCONNORS

Impacts of

A N D DUEDALL

Ammonium

655

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Τ ab1e I I I . Volumes of sewage s l u d g e (wet) dumped i n the New York B i g h t apex d u r i n g the p e r i o d J u l y 30-31, 1973. Data o b t a i n e d from 1973 Ocean Dumping Logs, Marine E n v i r o n m e n t a l Branch, U. S. Coast Guard, Governors I s l a n d , New York. [ T h i s t a b u l a t i o n taken from (18.).]

Date

Estimated Time of Arrival (EDT)

30 J u l y

1055

"Newtown Creek" (New York C i t y )

2,860

1126

"Bowery Bay" (New York C i t y )

1,820

0550

"Judson K. Stiékle" (South Amboy, N.J.)

1105

"Newtown Creek" (New York C i t y )

2,860

1111

"Bowery Bay" (New York C i t y )

1,8 70

1700

"Ocean D i s p o s a l " (Passaic Valley Sewage A u t h o r i t y , New J e r s e y )

1729

"Newtown Creek" (New York C i t y )

2,860

1740

"Coney I s l a n d " (New York C i t y )

1,200

1900

"Bowery Bay" (New York C i t y )

1,890

31 J u l y

Sludge V e s s e l & Source of Sludge

Volume—' > Jl' of Sludge m3

1521/

155^/

— ^ O r i g i n a l l o g s r e p o r t volume of wet s l u d g e i n u n i t s of c u b i c f e e t . ^

The d e n s i t y of wet s l u d g e i s about 1 g cm" (this may be low s i n c e some components of s l u d g e s i n k ) ; at t h i s density 1 m equals 1 metric ton. 3

3

— ^ O r i g i n a l data given i n short tons.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

656

MARINE

CHEMISTRY

elsewhere (18). The h i g h s u r f a c e and m i d - d e p t h NH4"*" c o n c e n t r a t i o n s ( F i g , 10) a t s t a t i o n 112 c o n f i r m e d an e a r l i e r v i s u a l i n d i c a t i o n of a s l u d g e patch at t h a t s t a t i o n , but the c o n c e n t r a t i o n s o b t a i n e d from the sampling sequence a l o n g the t r a j e c t o r i e s of the drogues are c o n f u s e d . F o r e x a m p l e , s t a t i o n s 114, 1 1 6 , a n d 1 1 7 , w h i c h w e r e s a m p l e d s u b s e q u e n t t o s t a t i o n 112, showed s u r f a c e NH4+ v a l u e s s i m i l a r t o t h o s e m e a s u r e d a t s t a t i o n s away f r o m t h e i m m e d i a t e dump a r e a . I t was n o t u n t i l s t a t i o n 119 was s a m p l e d t h a t s u r f a c e and 10 m NH4"*" c o n c e n t r a t i o n s s i m i l a r to those measured at s t a t i o n 112 w e r e f o u n d . E x t r e m e l y h i g h ammonium c o n c e n t r a ­ t i o n s (^200 t o 500 μΜ) w e r e o b s e r v e d a t s t a t i o n 128 a t 1930 e a s t e r n d a y l i g h t t i m e ( E D T ) , J u l y 3 1 . We j u d g e d t h i s o b s e r v a t i o n t o be a t t r i b u t a b l e t o a r e c e n t s l u d g e dump, as e v i d e n c e d by t h e 1800 EDT s i g h t i n g of a s l u d g e t r a n s p o r t v e s s e l i n the v i c i n i t y t h a t was r e t u r n i n g t o New Y o r k H a r b o r (Ιδ.). I t w o u l d s e e m , t h e r e f o r e , t h a t t h e s l u d g e dump s i t e i s c h a r a c ­ t e r i z e d by p e r s i s t i n g s i g n a t u r e s f r o m p r e v i o u s d u m p i n g a c t i v i t y w h i c h l e a d s t o a v e r y non-homogeneous s p a t i a l d i s t r i b u t i o n o f NH4+ ( F i g . 1 0 ) . The p r e s e n c e o f a pycnocline ( F i g . 11) w o u l d i n h i b i t v e r t i c a l m i x i n g o f t h e s u r f a c e and b o t t o m w a t e r s . However, the data o b t a i n e d a t s t a t i o n 128 d i d show t h a t t h e e f f e c t s o f d u m p i n g c a n , i n some i n s t a n c e s , m a n i f e s t t h e m s e l v e s t h r o u g h o u t the w a t e r column w i t h i n a very s h o r t t i m e . The c o n c e n t r a t i o n o f NH4 * i n s e w a g e s l u d g e i s variable. Some u n p u b l i s h e d a n a l y s e s p e r f o r m e d by t h e New Y o r k C i t y E n v i r o n m e n t a l P r o t e c t i o n A d m i n i s t r a t i o n (S. K i r s c h n e r , p e r s o n a l c o m m u n i c a t i o n ) i n November and D e c e m b e r , 1 9 7 3 , show t h a t the NH4 concentration i n New Y o r k C i t y s l u d g e s r a n g e s f r o m 17 t o 160 m i l l i M , w i t h a mean v a l u e o f 70 m i l l i M . U s i n g t h i s mean c o n ­ c e n t r a t i o n a n d t h e i n p u t s i n T a b l e I I I , we c a l c u l a t e t h e d a i l y i n p u t o f N H 4 t o t h e a p e x f r o m s l u d g e dumped d u r i n g o u r c r u i s e t o be 0 . 3 - 0 . 7 x 1 0 ^ m o l e s , w h i c h i s about o n e - f i f t h to o n e - t e n t h of the i n p u t from the a d v e c t i v e p r o c e s s e s i n the t r a n s e c t . However, u n l i k e the Hudson R i v e r ' s low s a l i n i t y plume, s l u d g e dumping a t sea can p r o d u c e l o c a l l y h i g h c o n c e n t r a t i o n s of NH4**" t h a t may be r a p i d l y d i s p e r s e d b y m i x i n g . Further r e s e a r c h i s needed to determine the s p a t i a l d i s t r i b u ­ t i o n , p e r s i s t e n c e and l o c a l b i o l o g i c a l e f f e c t s o f t h e s e e l e v a t e d NH c o n c e n t r a t i o n s caused by dumped sludge. 4

+

+

+

4

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ocoNNORS

Impacts

A N D DUEDALL

DATA NEAR

OR

PROM WITHIN

of

Ammonium

STATIONS THE

DUMP

BACKGROUND SITE

STATIONS

NH4* ( μ Μ ) 12

3 4

5 6 7 8 9

STATION (isoo)

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

July 3 0

III

NH4* ( μ Μ )

2 3 4 5 6 7 8 9

STATION 122 (OMt) July 31

"STATION 123

(0930)

July 31

2

3 4 5 6

7 8 9 0

STATION 113

(!·!·) July30

STATION 115 (2040) July 3 0

STATION 118 (OU5) July 31

STATION 121 (OZOl) July 31

STATION 124 (lOSO) July 31

STATION 126 (I520) July 31

Ocean Dumping in the N.Y. Bight

Figure 10. Observed ammonium concentrations near or within the dump site and at background stations on the indicated perim­ eter (18). The number in brackets represents the time (EDT) of arrival on station.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

658 MARINE

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

CHEMISTRY

39.

OCONNORS

AND

DUEDALL

D i s c u s s i o n and

Impacts of

659

Ammonium

Conclusion

The r e s u l t s of our i n v e s t i g a t i o n s suggest t h a t (1) i n June the net a d v e c t i v e f l u x of N H 4 * from New York Harbor to the New York B i g h t apex p r o b a b l y exceeds the r a t e of i n p u t of N H from s l u d g e dumping i n the B i g h t apex and (2) the e f f e c t s of p h y t o p l a n k t o n uptake and f r e s h w a t e r d i l u t i o n are about the same on NH4+ c o n c e n t r a t i o n s i n the t r a n s e c t d u r i n g the s p r i n g phytop l a n k t o n bloom. T a b l e IV l i s t s (1) the combined mean d a i l y i n p u t s of n u t r i e n t s from sewage d i s c h a r g e and r i v e r d i s c h a r g e and (2) the f l u x of n u t r i e n t s through the t r a n s e c t f o r June 5, 1974. The r e l a t i v e l y l a r g e d i f f e r e n c e s between the r i v e r p l u s sewage i n p u t and the output through the t r a n s e c t ( T a b l e IV, Column C) f o r NH4 , P O 4 " and Si(0H>4 suggest that these n u t r i e n t s p e c i e s are b e i n g u t i l i z e d by the p h y t o p l a n k t o n at r a t e s about o n e - h a l f the n u t r i e n t i n p u t r a t e . The s m a l l e r d i f f e r e n c e s f o r ΝΟβ" and Νθ£~ suggest t h a t these s p e c i e s may behave as q a u s i - c o n s e r v a t i v e c o n s t i t u e n t s i n these e u t r o p h i c waters. I t has been s u g g e s t e d t h a t N O 3 " i s u t i l i z e d by p h y t o p l a n k t o n only i n the v i r t u a l absence of NH4 ( l , 2). the N H , P O 4 - , and Si(0H>4 u t i l i z a t i o n p r o b a b l y takes p l a c e i n R a r i t a n Bay where l a r g e s t a n d i n g s t o c k s of p h y t o p l a n k t o n have been r e ­ corded (.11, 12) . We emphasize, however, t h a t the r e s u l t s i n T a b l e IV are only a p p r o x i m a t i o n s and, t h e r e f o r e , have very l i m i t e d use i n any n u t r i e n t m a t e r i a l - b a l a n c e c a l c u l a ­ t i o n because (1) June, 1952 c u r r e n t v e l o c i t i e s were used to c a l c u l a t e June 1974 n u t r i e n t f l u x e s i n the t r a n s e c t , (2) n u t r i e n t s may be consumed and r e c y c l e d b e f o r e they reach the t r a n s e c t , p r o c e s s e s about which we have no d i r e c t knowledge. A l s o , i t has been c a l c u ­ l a t e d t h a t about 70 per cent of the sewage d i s c h a r g e d from the f o u r l a r g e s t sewage treatment p l a n t s on the E a s t R i v e r ( F i g . 1) i s t r a n s p o r t e d to Long I s l a n d Sound (20). Furthermore, v i r t u a l l y n o t h i n g i s known about the f a t e of the l a r g e amount of o r g a n i c n i t r o g e n ( T a b l e I) which i n some cases may s e r v e as n i t r o g e n sources f o r growth of phy t o p l a n k t o n (.21, 2)· +

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

4

+

3

+

M

o

s

t

o f

+

3

4

The Hudson R i v e r Plume and C h l o r o p h y l l 3 . Input to the Apex. The t r a n s e c t study has demonstrated the Hudson R i v e r plume's s p a t i a l d i s t r i b u t i o n and tem­ p o r a l permanence a c r o s s the apex. The plume was most w e l l - d e v e l o p e d i n the t r a n s e c t between Sandy Hook and Ambrose Channel. Of p a r t i c u l a r i n t e r e s t are the h i g h c o n c e n t r a t i o n s of c h l o r o p h y l l & i n the plume and t h e i r

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

660

MARINE

CHEMISTRY

T a b l e IV. C a l c u l a t e d d a i l y r i v e r and sewage n u t r i e n t i n p u t and Bight-ward n u t r i e n t f l u x through the t r a n s e c t , June 5, 1974.

(xlO

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

Nutrient

NH

+

(a) Sewage*' and R i v e r l / Input

6

moles) (b) Bight-ward Flux

6.5

4

N0 "

3.2

.08

2

[(b)-( )] a

-3.3

.24

.16

N0 ~

1.9

2.2

P0 3-

0.6

0.3

-0.3

4.9

1.8

-3.1

3

4

Si(0H)

4

C a l c u l a t e d from T a b l e I. Si(OH) inputs have been n e g l e c t e d f o r l a c k of d a t a . 4

.3

i n sewage

— ^ C a l c u l a t e d from May, June and J u l y c o n c e n t r a t i o n s from 1972 Water Year data at C h e l s e a s t a t i o n (J3) on the Hudson R i v e r . V a l u e s adj usted upward by 10% to a p p r o x i m a t e l y account f o r R a r i t a n R i v e r . P a s s a i c R i v e r input not included.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

39.

OCONNORS

A N D DUEDALL

Impacts of Ammonium

661

a f f e c t i n the apex. U s i n g the June 1952 c u r r e n t v e l o c i t i e s ( F i g . 8) and June 1974, c h l o r o p h y l l a c o n c e n t r a t i o n s , we c a l c u l a t e t h a t about 1.9 m e t r i c tons per day of c h l o r o p h y l l a i s t r a n s p o r t e d to the B i g h t apex through the t r a n s e c t . During spring l a r g e r d a i l y t r a n s p o r t s would e x i s t due to development of a more i n t e n s e p h y t o p l a n k t o n bloom (see F i g . 7b, c and d ) . T h i s s e a s o n a l i n p u t of l a r g e abundances of p h y t o p l a n k t o n would be c o n f i n e d to the Hudson plume. The plume, a c c o r d i n g to p r e v i o u s i n v e s t i g a t o r s , remains near to the New J e r s e y c o a s t (14, 15). These h i g h p h y t o p l a n k t o n c o n c e n t r a t i o n s undoubtedly r e p r e s e n t an i m p o r t a n t and r e l a t i v e l y c o n t i n u o u s but s e a s o n a l l y v a r i a b l e s u p p l y of p a r t i c u l a t e food f o r z o o p l a n k t o n h e r b i v o r e s a s s o c i a t e d w i t h the r i v e r plume. Much remains to be l e a r n e d about the b i o l o g i c a l and h y d r o g r a p h i c c h a r a c t e r i s t i c s of the plume. Research s h o u l d be d i r e c t e d toward d e v e l o p i n g an adequate u n d e r s t a n d i n g of the b i o l o g i c a l , c h e m i c a l and p h y s i c a l p r o c e s s e s i n the plume and to determine what impact the plume has on the r e g i o n encompassed by the New York B i g h t . Acknowledgement We g r a t e f u l l y acknowledge the generous and c h e e r f u l a s s i s t a n c e of M r . C h r i s Stuebe, C a p t a i n of the R/V Mic Mac, M r . J e f f P a r k e r , p a r t y c h i e f , Mr. W i l l i a m M i l o s k i , seawater a n a l y s t , M r . G l e n H u l s e , i n s t r u m e n t a t i o n s p e c i a l i s t , and Ms.Sue Oakley and Mr. A l a n Robbins f o r d a t a r e d u c t i o n and computer p l o t t i n g . We thank M r s . J a c q u e l i n e R e s t i v o f o r h e r generous a s s i s t a n c e d u r i n g the m a n u s c r i p t p r e p a r a t i o n . The c r u i s e work would not have been p o s s i b l e w i t h out the l a b o r s of many graduate s t u d e n t s at MSRC, i n c l u d i n g M r . Mike W h i t e , Ms. C y n t h i a M a r k s , and M r . Robert O l s o n . Much of the r e p o r t e d work was s u p p o r t e d by a g r a n t (No. 04-4-158-19) from the NOAA/MESA New York B i g h t P r o j e c t . We thank M r . H . S t a n f o r d f o r h i s assis t a n c e · Abstract +

Two sources of NH4 input to the New York Bight have been identified: (1) Hudson River-Raritan Bay discharge into the apex of the Bight through the Rockaway Point, New York-Sandy Hook, New Jersey, transect and (2) barge-dumped sewage sludge from the greater New York metropolitan region. The Bight-ward flux of ammonium through the transect has been calculated for one 24-hour period in

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

MARINE

662

CHEMISTRY

June and was found to be 5 to 10 times greater than the ammonium input from barge-dumped sludge from a typical two-day period in July. During the April bloom, the rate of phytoplankton uptake and the effect of fresh­ water dilution were found to decrease the NH4 concen­ tration a similar amount in the transect. The Hudson River plume was observed to be a persis­ tent year-round feature near the New Jersey shore and was responsible for the advection of large amounts of chlorophyll a into the Bight.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

+

Literature

Cited

(1) Pomeroy, L. R., Annual Review of Ecology and Systematics, (1970) 1 171-190. (2) Stewart, W. D. P., ed., "Algal Physiology and Biochemistry," University of California Press, Berkeley, California, 1974. (3) Ryther, J. H., Dunstan, W. Μ., Science, (1971) 171 1008-1013. (4) Interstate Sanitation Commission, "1974 Annual Report," 10 Columbus Circle, New York, New York, 1975. (5) Interstate Sanitation Commission, "Combined Sewer Overflow Study for the Hudson River," 10 Columbus Circle, New York, New York, 1972. (6) Duedall, I. W., O'Connors, Η. Β., Parker, J. Η., Wilson, R., Robbins, Α., "The Seasonal and Tidal Distribution of Nutrients and their Fluxes in the New York Bight Apex," Manuscript in Preparation. (7) Kao, A., "A Study of the Current Structure in the Sandy Hook-Rockaway Point Transect," M. S. Research Paper, Marine Sciences Research Center, State University of New York, Stony Brook, New York, In Preparation. (8) Water Resources Data for New York, "Part 2. Water Quality Records," U. S. Geological Survey, Albany, New York, 1972. (9) Duedall, I. W., Unpublished data. (10) Giese, G. L., Barr, J. W., "The Hudson River Estuary," Bulletin 61, Conservation Department, Water Resources Commission, Albany, New York, 1967. (11) Jeffries, H. P., Limnology and Oceanography, (1962) 7 21-31. (12) Patten, B. C., "The Diversity of Species in Net Phytoplankton of the Raritan Estuary," Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey, 1959.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0018.ch039

39.

OCONNORS

AND

DUEDALL

Impacts of Ammonium

663

(13) U. S. Coast and Geodetic Survey, "Tidal Current Charts, New York Harbor," 7th Edition, ESSA, Rockville, Maryland, 1956. (14) Ketchum, B. H., Redfield, A. C., Ayers, J. C., "The Oceanography of the New York Bight," Papers in Physical Oceanography and Meteorology, Mass­ achusetts Institute of Technology and the Woods Hole Oceanographic Institution, Cambridge and Woods Hole, Massachusetts, 1951. (15) Redfield, A. C., Walford, L. Α., "A Study of the Disposal of Chemical Waste at Sea," National Academy of Sciences-National Research Council, Washington, D. C., 1951. (16) Baylor, E. R., Hardy, C. D., Moskowitz, P., "Bottom Drift over the Continental Shelf of the New York Bight," Manuscript in Preparation. (17) Pararas-Carayannis, G., "Ocean Dumping in the New York Bight: An Assessment of Environmental Studies," Technical Memorandum No. 39, Coastal Engineering Research Center, U. S. Army Corps of Engineers, Fort Belvoir, Virginia, 1973. (18) Duedall, I. W., Bowman, M. J., O'Connors, H. B., Estuarine and Coastal Marine Science, In Press. (19) Ocean Dumping Criteria, Federal Register No. 94, (1973), 38 12872-12877. (20) Bowman, M. J., "Pollution Prediction Model of Long Island Sound," Ocean Engineering III, American Society of Civil Engineers Specialty Conference, Newark, Delaware, June 9-12, 1975. In press. (21) Goering, J. J., "The Role of Nitrogen in Eutrophic Processes," In: Water Pollution Microbiology, ed., R. Mitchel, John Wiley and Sons, Inc., New York, New York, 1972.

Church; Marine Chemistry in the Coastal Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1975.