The Solubility of Gases in Water from 350 - 600 K - American

Η. LAWRENCE CLEVER and CHUL H. HAN. Department of .... 27. 8. -. 31. 8. 3/1. 3. 0.6. 9. -. K r. 27. 3. -. 35. 3. 3/3. 0. 0.3. 2. 375.8. X e. 27. 3. -...
1 downloads 0 Views 1MB Size
26 The Solubility of Gases in Water from 350 600 Κ Η. LAWRENCE C L E V E R and C H U L H. H A N

Downloaded by UNIV OF ROCHESTER on May 28, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch026

Department of Chemistry, Emory University, Atlanta, GA 30322

Two recent events allow a more detailed picture of the solubility of hydrogen, nitrogen, oxygen, and the noble gases in water to be given, than could have been given even a year ago. First, a careful compila­ tion and evaluation of the gas solubility values in water at a gas partial pressure of one atm between the temperatures of 273.15 and about 350 Κ was car­ ried out by Battino [1-5]. Second, an experimental study of the solubility "of the noble gases in water at moderate pressures and at temperatures up to 561 Κ by a new method was reported by Potter and Clynne [6]. Battino's selected values between 273 and about 350 K, Potter and Clynne's new values, and selected older literature data on the solubility of gases in water at temperatures up to 600 Κ have been combined, and fitted to an equation to give the inverse of the limiting low pressure value of Henry's constant over t h e t e m p e r a t u r e i n t e r v a l o f 273 t o 600 K . Battino's equations [^-5] a r e r e c o m m e n d e d f o r u s e o v e r t h e 273 t o 350 Κ r a n g e a n d t h e e q u a t i o n s o f t h e p r e s e n t w o r k a r e t e n t a t i v e e q u a t i o n s f o r the 350-600 Κ range o f temperature. Henry's constant is defined, H

2,l =

X

2 ^

( P

2/ 2 X

)

" V ? 2 = 02 2 2 2 Ρ

/ Ύ

Χ

(

1

)

w h e r e H2 η i s t h e H e n r y c o n s t a n t , P2 t h e g a s p r e s s u r e , t h e m o l e f r a c t i o n g a s s o l u b i l i t y , ±2 t h e g a s f u g a ­ c i t y , a 2 t h e d i s s o l v e d g a s a c t i v i t y , 02 t h e fugacity coefficient, a n d y2 t h e d i s s o l v e d g a s a c t i v i t y c o e f ­ ficient. In the H e n r y ' s law r e g i o n the d i s s o l v e d gas activity coefficient, 72 = 1/ b y d e f i n i t i o n . For the gases d i s c u s s e d i n t h i s paper the f u g a c i t y c o e f ­ f i c i e n t , 0 , d i f f e r s l i t t l e from u n i t y at the moder­ ate pressures at which s o l u b i l i t i e s are normally reported. A t u n i t gas p r e s s u r e (atm), t h e mole f r a c 2

0-8412-0569-8/80/47-133-513$06.00/0 © 1980 American Chemical Society

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

514

THERMODYNAMICS

OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

t i o n s o l u b i l i t y i s equal to the i n v e r s e of Henry's constant, X = I/H2 assuming u n i t values of 0 and Ύ · A l i n e a r r e g r e s s i o n on a l l o f t h e s e l e c t e d d a t a f o r a g i v e n g a s was r u n t o o b t a i n t h e c o n s t a n t s o f a n equation o f the form 2

2

2

ln A

X +

l

2

= In

1/H

2

A /(T/100) 2

=

±

+ A

3

ln

(T/100)

+ A (T/100)

(2)

4

The u s e o f ( T / 1 0 0 ) a s a v a r i a b l e h a s t h e a d v a n t a g e o f m a k i n g t h e p a r a m e t e r s A - , , A , A 3 , a n d A4 o f s i m i l a r magnitude. The a p p l i c a t i o n o f s t a n d a r d thermodynamic d e f i n i t i o n s to the equation allows the equation p a r a ­ m e t e r s t o be u s e d t o c a l c u l a t e t h e t h e r m o d y n a m i c c h a r a c t e r i s t i c s o f the d i s s o l u t i o n p r o c e s s summarized in Table I. When a l l f o u r p a r a m e t e r s o f t h e e q u a t i o n

Downloaded by UNIV OF ROCHESTER on May 28, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch026

2

Table

I.

In

= A

AG

Χ

λ

C

S o l u b i l i t y equation definitions.

= -RT

1

+ A /(T/100)

= -RA-j^T AS°

= - R T in

λ

100RA

= -OAG°/3T)

2

-

= RA

d / H

RA T 3

1

2

£n

thermodynamic

(T/100) +

+ A3 in

2

In Χ

and

χ

A (T/100) 4

)

(T/100) -• R A T / 1 0 0

+ RA3 £ n

2

4

(T/100) + RA3 +

ΔΗ

c

= -100RA

AC; =

2RA4T/IOO

4- RA3T + R D T / 1 0 0 = AG° + ΤΔ§*° 2

2

(3ΔΗ°/3Τ)

= RA

3

+ 2RA T/100 4

= a + bT

a r e e v a l u a t e d , a h e a t c a p a c i t y change f o r the disso­ l u t i o n process that i s l i n e a r i n temperature is ob­ tained. When o n l y t h e f i r s t t h r e e c o n s t a n t s o f t h e e q u a t i o n a r e e v a l u a t e d , a heat c a p a c i t y change i n d e ­ pendent of temperature i s o b t a i n e d . Although a t e m p e r a t u r e d e p e n d e n t h e a t c a p a c i t y change i s more r e a l i s t i c , the s o l u b i l i t y d a t a are o f t e n not a c c u ­ r a t e enough t o j u s t i f y the e v a l u a t i o n o f the f o u r constants. The 273

solubility a n d 350 Κ .

of

gases

between

the

temperature

of

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF ROCHESTER on May 28, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch026

26.

CLEVER AND HAN

515

Solubility of Gases in Water

B a t t i n o has used the above e q u a t i o n i n h i s e v a l ­ u a t i o n o f the s o l u b i l i t y o f gases i n water a t one atmosphere gas p r e s s u r e a t temperatures between 2 7 3 and about 3 5 0 K. T a b l e s I I and I I I and F i g u r e 1 summarize h i s e v a l u a t i o n o f the s o l u b i l i t y d a t a . T a b l e I I g i v e s the temperature i n t e r v a l , the number o f l a b o r a t o r i e s t h a t B a t t i n o judges have p u b l i s h e d r e l i a b l e s o l u b i l i t y d a t a , the number o f e x p e r i m e n t a l v a l u e s used i n the l i n e a r r e g r e s s i o n , the l i n e a r r e g r e s s i o n s t a n d a r d d e v i a t i o n a t the m i d p o i n t tempera­ t u r e , and the temperature o f minimum mole f r a c t i o n s o l u b i l i t y (maximum v a l u e o f Henry's c o n s t a n t ) a t one atmosphere p a r t i a l p r e s s u r e o f the gas. For a l l o f the gases except oxygen o n l y a t h r e e c o n s t a n t e q u a t i o n was used. The temperature o f minimum mole f r a c t i o n solubi­ l i t y a t one atmosphere gas p a r t i a l p r e s s u r e was c a l ­ c u l a t e d from the t h r e e c o n s t a n t e q u a t i o n . The d i f ­ f e r e n t i a t i o n o f e q u a t i o n ( 2 ) w i t h r e s p e c t t o tempera­ t u r e g i v e s T ^ = 1 0 0 A2/A3. The v a l u e s t h a t f a l l o u t s i d e the temperature range o f the e x p e r i m e n t a l d a t a used i n the r e g r e s s i o n must be l o o k e d on as o n l y t e n ­ t a t i v e v a l u e s o f the temperature o f minimum s o l u b i ­ lity. T a b l e I I I g i v e s v a l u e s o f the changes i n Gibbs energy, e n t h a l p y , e n t r o p y , and heat c a p a c i t y o f the s o l u t i o n p r o c e s s as c a l c u l a t e d from the e q u a t i o n s o f T a b l e I . F i g u r e 1 shows the recommended n o b l e gas mole f r a c t i o n s o l u b i l i t i e s a t u n i t gas p a r t i a l p r e s ­ sure (atm) as a f u n c t i o n o f temperature. The tempera­ t u r e o f minimum s o l u b i l i t y i s marked. The o r d e r o f i n c r e a s e i n the s o l u b i l i t y o f the gases a t any g i v e n temperature i n the 2 7 3 - 3 5 0 Κ range p a r a l l e l s , t o a f i r s t a p p r o x i m a t i o n , the p o l a r i z a b i l i t y o f the gas. T a b l e IV summarizes the p o l a r i z a b i l i t i e s and the molar volumes a t 2 7 3 . 1 5 Κ and 1 atm o f the gases. The gases are l i s t e d i n the o r d e r o f de­ c r e a s i n g molar volume which g i v e s some i n d i c a t i o n o f t h e i r n o n - i d e a l c h a r a c t e r . The p o l a r i z a b i l i t y i n d i ­ c a t e s the magnitude o f the London d i s p e r s i o n energy between the gas and a g i v e n s o l v e n t . m

n

The

s o l u b i l i t y o f the gases i n water from

600

K.

350 to

The l i t e r a t u r e was s e a r c h e d , and the d a t a on the s o l u b i l i t y o f gases i n water between the temperatures of 3 5 0 and 6 0 0 Κ were c o m p i l e d . The measurements i n the 3 5 0 t o 6 0 0 Κ temperature range were u s u a l l y made at moderate gas p a r t i a l p r e s s u r e s . The s o l u b i l i t y a t

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

273 278

273

273

273

273

Ar

Kr

Xe

Rn

2

2

H

N

four

348

348

-

5/73

9/74

9/69

3/40

5/20

3/30

11/42 3/13

9/59

9/59

Labs/Exp. Values

equation

348

348

348

373

348

353

318

_ 348

constant

273

273

273

Ne

-

Temperature Range/K

273

°2*

II

0.34

0.72

0.52

1.02

0.35

0.32

0.26 0.69

0.47

0.54

Standard Deviation a t M i d T/%

365.2

348.1

327.6

371.5

383.0

375.8

-

371.2

322.7

304.1

Temperature o f Minimum S o l y / K

t h e E v a l u a t i o n o f Gas S o l u b i l i t y i n Water a t 101.325 kPa (1 Atm) a n d Low T e m p e r a t u r e s ( B a t t i n o , [1-5])

He

Gas

Summary o f

Table

Downloaded by UNIV OF ROCHESTER on May 28, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch026

26.

CLEVER

AND HAN

517

Solubility of Gases in Water

rH I

1

0 rH g rH 1

vo

h)

rH rH

\

o Çh U

LO rH

vo rH

rH

O

CN

00 CN CN

vo

ro

rH CT> CN

00 ro rH

vo o

o

CN rH

CN rH

o

vo o

o

rH 1

CN rH 1

CN

O

o

CN



00

σ\

CN 0 •Η +J

rH 0 W Of

Downloaded by UNIV OF ROCHESTER on May 28, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch026



rH 1

rH 1

σ»

ro ro

σ\

rH CN 1

1

CN

vo in

σ\ vo

CN rH

00

rH CN

CN

00 CN

vo

l

l