The Synthesis, Electrochemistry, and Reactivity of Binuclear Copper(I

Jun 1, 1982 - ROBERT R. GAGNÉ, ROBERT P. KREH1, and JOHN DODGE. California Institute of Technology, Division of Chemistry and Chemical ...
2 downloads 0 Views 2MB Size
6 The Synthesis, Electrochemistry, and Reactivity of Binuclear Copper(I) Complexes as Mimics of Protein Active Sites

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

R O B E R T R. G A G N É , R O B E R T P. K R E H ,

1

and J O H N D O D G E

California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, C A 91125

Several

binuclear

cuprous

complexes

were synthe-

sized as potential models for binuclear copper protein sites. Appropriate

modifications

of the

polydentate

ligand systems resulted in a wide range of reduction potentials. In this manner, utilizing only nitrogen and oxygen ligands, high reduction potentials comparable to those of the protein binuclear sites were achieved. The new binuclear copper(I) complexes appear to be only tricoordinated in solution but in some instances demonstrate significant copper(I)-copper(I) interactions in the solid state. The CO and O reactivities of these com2

pounds also were explored.

A n u n d e r s t a n d i n g o f the interactions b e t w e e n d i o x y g e n a n d transi­ t i o n m e t a l sites i n p r o t e i n s is v a l u a b l e f r o m a p e d a g o g i c a l s t a n d p o i n t as w e l l as f o r p o s s i b l e p r a c t i c a l a p p l i c a t i o n s t o e l e c t r o n transfer catalysis [e.g., t h e r e d u c t i o n o f d i o x y g e n to w a t e r i n f u e l c e l l s ( I ) ] . F o r c o p p e r p r o t e i n s , a b i n u c l e a r a c t i v e s i t e is u t i l i z e d for a d i r e c t interaction with molecular oxygen. These proteins include h e m o c y a n i n , w h i c h is r e s p o n s i b l e for r e v e r s i b l e o x y g e n a t i o n i n t h e b l u e b l o o d o f v a r i o u s m o l l u s k s a n d a r t h r o p o d s (2); t y r o s i n a s e , w h i c h c a t a l y z e s t h e o x i d a t i o n o f s u b s t r a t e s b y d i o x y g e n i n a v a r i e t y o f or­ g a n i s m s (3,4); a n d l a c c a s e , w h i c h c a t a l y z e s t h e r e d u c t i o n o f d i o x y g e n to w a t e r a n d i s f o u n d i n A s i a n l a c q u e r trees a n d w h i t e r o t f u n g i (5, 6 ) . 1

Current address: University of Georgia, Department of Chemistry, Athens, GA 30602 0065-2393/82/0201-0139$06.00/0 © 1982 A m e r i c a n C h e m i c a l Society Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

140

BIOLOGICAL R E D O X COMPONENTS

S e v e r a l i n t e r e s t i n g features i n these c o p p e r proteins w e r e

noted

and investigated: 1. A l t h o u g h t h e e x a c t n u m b e r a n d g e o m e t r y o f t h e l i g a n d s b o u n d to t h e copper centers is u n k n o w n , nitrogenous l i g a n d s ( h i s t i d i n e , i n p a r t i c u l a r ) w e r e i m p l i c a t e d (7). A p e r o x i d e m o i e t y b r i d g i n g t h e t w o c u p r i c ions i n o x y h e m o c y a n i n a n d o x y t y r o s i n a s e w a s p o p u l a r i z e d (8-

11).

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

2 . I n t h e o x i d i z e d f o r m s , a l l t h r e e b i n u c l e a r c u p r i c sites a r e s t r o n g l y a n t i f e r r o m a g n e t i c a l l y c o u p l e d (12, 13). 3 . T h e t y r o s i n a s e a n d l a c c a s e b i n u c l e a r sites e x h i b i t t w o e l e c t r o n r e d u c t i o n s at p o t e n t i a l s t h a t a r e r a t h e r h i g h ( ^ 0 . 3 6 V v s . N H E ) for t h e p r o p o s e d a l l n i t r o g e n - o x y g e n c o p p e r c o o r d i n a t i o n (13-16). T h e s e p r o p e r t i e s a n d t h e d i o x y g e n b i n d i n g o f t h e s e c o p p e r sites h av e b e e n addressed b y d i r e c t study o f the proteins a n d investigations of appropriate

model compounds.

Some

success

w a s attained i n

m i m i c k i n g t h e b i n u c l e a r c o p p e r a c t i v e sites i n t e r m s o f l i g a n d e n v i ­ ronments, redox properties, magnetic interactions, a n d d i o x y g e n b i n d ­ i n g ( J 7 - 2 8 ) . T o h e l p e l u c i d a t e the relationships b e t w e e n l i g a n d e n v i ­ ronments, redox potentials, a n d dioxygen reactivity w e investigated t h e c h e m i s t r y o f a series o f b i n u c l e a r c o p p e r ( I ) c o m p l e x e s . T o c l e a r l y define

a n d preserve

polydentate

the coordination sphere around

each

copper,

l i g a n d s w e r e e m p l o y e d (29-32). W e a p p r o x i m a t e d t h e

p r o p o s e d p r o t e i n l i g a n d e n v i r o n m e n t as c l o s e l y as p o s s i b l e , a n d t h u s , o n l y nitrogen a n d o x y g e n donors w e r e used. T h e first s e r i e s o f b i n u c l e a r c o p p e r c o m p o u n d s t o b e d i s c u s s e d were generated b y modifications on the m a c r o c y c l i c l i g a n d system i n C o m p o u n d 1.

1

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

6.

GAGNÉ ET AL.

The

second

Binuclear Copper(I) Complexes

system

employs

the

potentially

141

binucleating

Ν,Ν,Ν',Ν'-tetrakis(2-pyridylmethyl)ethylendiamine

ligand

(TPEN).

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

TPEN

T h r o u g h variation o f the polydentate l i g a n d s , u n u s u a l copper(I) coor­ dination environments

were found, a n d a w i d e range o f reduction

potentials were realized.

Binuclear Systems Derived from 2-Hydroxy-5-Methylisophthalaldehyde O u r i n i t i a l w o r k o n b i n u c l e a r s y s t e m s f o c u s e d o n C o m p o u n d 1, s y n t h e s i z e d p r e v i o u s l y (31-33). T h i s b i n u c l e a r c o m p l e x e x h i b i t s a t w o - s t e p r e d u c t i o n at - 0 . 5 2 a n d - 0 . 9 1 V v s . N H E . T h e s e v e r y n e g a ­ t i v e p o t e n t i a l s i n d i c a t e the d e s t a b i l i z a t i o n o f copper(I) r e l a t i v e to c o p per(II), w h i c h most l i k e l y results from the square-planar arrangement o f " h a r d " o x y g e n a n d n i t r o g e n l i g a n d s . [ S t r u c t u r a l a n d e l e c t r o n i c fac­ tors i n f l u e n c i n g c o p p e r r e d u c t i o n p o t e n t i a l s w e r e d o c u m e n t e d (34).] T o s t a b i l i z e copper(I) a n d t h e r e b y raise the r e d u c t i o n potentials t o w a r d t h e h i g h v a l u e s f o u n d for t y r o s i n a s e a n d l a c c a s e , b i n u c l e a t i n g l i g a n d s that c o n t a i n s o m e w h a t "softer" aromatic nitrogen l i g a n d s i n a m o r e flexible f r a m e w o r k (to a l l o w a t e t r a h e d r a l g e o m e t r y a r o u n d e a c h c o p p e r ) w e r e d e s i g n e d . T h i s a p p r o a c h l e d to t h e s y n t h e s i s o f C o m ­ p l e x e s 2-4, s h o w n i n S c h e m e I a l o n g w i t h v i s i b l e a b s o r p t i o n a n d m a g n e t i c d a t a (35). [ D u r i n g t h e c o u r s e o f t h i s w o r k , c o m p l e x e s s i m i l a r t o 3 a n d 4 w e r e r e p o r t e d b y o t h e r s (36)]. I n a l l t h r e e c o p p e r ( I I ) c o m ­ p l e x e s , b o t h c o p p e r a t o m s are p r e s u m a b l y b o u n d t o a n a r o m a t i c n i t r o ­ gen. T h i s b o n d i n g was d e m o n s t r a t e d b y a n x-ray structural d e t e r m i n a ­ t i o n o f C o m p o u n d 4 (37). (See T a b l e I for c o m p o u n d n u m b e r s a n d s t r u c t u r e s . ) E a c h c o p p e r ( I I ) is a c t u a l l y p e n t a c o o r d i n a t e d ; o n e c o p p e r a t o m is b o u n d to t h e o x y g e n o f a w a t e r m o l e c u l e a n d t h e o t h e r c o p p e r is b o u n d t o t h e o x y g e n o f t h e h y d r o x y b r i d g e o f a n a d j a c e n t m o l e c u l e . T h e e l e c t r o c h e m i s t r y o f t h e s e n o n m a c r o c y c l i c c o m p l e x e s , 2-4, is i r r e v e r s i b l e as s h o w n i n F i g u r e 1 for C o m p o u n d 2, i n d i m e t h y l f o r m a m i d e ( D M F ) . T h i s irreversibility m a y b e a result o f the relatively

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

142

BIOLOGICAL REDOX COMPONENTS

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

R

λ (€)

Meff

Scheme I. Preparation of binuclear copper(II) -copper(II) (34). Spectra were recorded in methanol solution at 25°C. susceptibilities are given in B.M., measured at 25°C, and for diamagnetism, but not for TIP.

/ C u

complexes Magnetic corrected

l a b i l e h y d r o x y b r i d g e , w h i c h is a p o o r l i g a n d for c o p p e r ( I ) . T h e i n t r o ­ duction of pyrazole d i d produce reversible electrochemical behavior, a l s o s h o w n i n F i g u r e 1. S i m i l a r r e s u l t s w e r e o b s e r v e d for C o m p o u n d 3, but C o m p o u n d 4 gave irreversible electrochemistry e v e n w i t h added pyrazole. C o n t r o l l e d p o t e n t i a l e l e c t r o l y s i s ( C P E ) at - 0 . 3 5 a n d - 0 . 7 0 V o f C o m p o u n d 2, p l u s an e q u i v a l e n t a m o u n t o f p y r a z o l e , i n d i c a t e d that e a c h w a v e c o r r e s p o n d s to a o n e - e l e c t r o n p r o c e s s . N o a t t e m p t w a s m a d e to i s o l a t e a m i x e d - v a l e n t s p e c i e s ; b u t t h e b i n u c l e a r c u p r o u s c o m p l e x , C o m p o u n d 5 , w a s s y n t h e s i z e d b y C P E at - 0 . 7 0 V (n = 2.0) of an acetonitrile solution containing C o m p o u n d 2 and an equivalent a m o u n t o f p y r a z o l e (35). C o m p o u n d 5 also was synthesized d i r e c t l y from cuprous starting materials. S i m i l a r reactions w i t h 2 - a m i n o m e t h y l p y r i d i n e or 2( 2 ' - a m i n o e t h y l ) p y r i d i n e as s i d e a r m s a n d w i t h p y r a z o l e a n d 3 , 5 d i m e t h y l p y r a z o l e as b r i d g i n g l i g a n d s g a v e C o m p l e x e s 6 - 8 . (see T a b l e

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2-(pyridyl)methyl 2-(2'-pyridyl)ethyl 2-(4'-imidazoyl)ethyl 2-(pyridyl)methyl 2-(pyridyl)methyl 2-(2'-pyridyl)ethyl 2-(2'-pyridyl)ethyl phenylmethyl phenylmethyl 2-phenylethyl 2-phenylethyl 1-propyl 2-propyl f-butyl f-butyl phenyl p-(dimethylamino)-phenyl p-acetylphenyl

Sidearm (R)

+ e~Q

+ 2

(X)

Bridge

Cu(I)Cu(I)L

+ e~ â C u ( I I ) C u ( I ) L

+3

hydroxide hydroxide hydroxide pyrazolate 3,5-dimethyl-pyrazolate pyrazolate 3,5-dimethyl-pyrazolate pyrazolate 3,5-dimethyl-pyrazolate pyrazolate 3,5-dimethyl-pyrazolate pyrazolate pyrazolate pyrazolate 3,5-dimethyl-pyrazolate pyrazolate pyrazolate pyrazolate

Cu(II)Cu(I)L

Cu(II)Cu(II)L

+

d d d -0.452 -0.374 -0.344 -0.267 -0.081 0.005 -0.078 0.009 -0.076 0.001 0.053 0.080 -0.032 -0.048 0.008

-0.211 -0.190 -0.110 -0.113 0.146 0.206 0.128 0.205 0.146 0.193 0.240 0.239 0.144 0.146 0.152

-0.91

E|°

d d d

-0.52

Binuclear Copper Complexes and Reduction Potentials

d

c

6

a

Note: These values were measured by differential pulse polarography in D M F using a platinum indicating electrode. Potentials are given in V vs. N H E . Potentials were measured vs. ferrocene as an internal redox couple,then corrected to vs. a value of 0.40 V for ferrocene vs. N H E (24, 38, 39). These values for η were determined by CPE at a potential 200 mV more positive than E{. This value was determined by C P E at -1.16 V (31, 32). Irreversible electrochemistry.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Compound Number

Table I.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

144

BIOLOGICAL REDOX COMPONENTS

V O L T S (nhe) Figure 1. Cyclic voltammograms of DMF solutions of and Compound 2 containing one equivalent of pyrazole mograms were observed with a platinum electrode, using electrolyte at a scan rate of 200 mV/s. (Reproduced from 1979, American Chemical Society.)

Compound 2 ( ), (—). Both voltam0.1 M TBAP as the Ref. 35. Copyright

I a n d S c h e m e II.) T h e c o o r d i n a t i o n e n v i r o n m e n t a r o u n d e a c h c o p p e r i l ) o f these c o m p l e x e s was e x p e c t e d to b e a t e t r a h e d r a l arrange­ ment o f one oxygen a n d three nitrogen ligands. A crystallographic analysis o f C o m p o u n d 7, d i d not y i e l d the e x p e c t e d structure, h o w ­ ever.

Crystallographic Analysis of Compound 7 T h e a c t u a l s t r u c t u r e o f 7 is d e p i c t e d i n F i g u r e 2 a l o n g w i t h p e r t i ­ n e n t b o n d d i s t a n c e s (35). T h e p y r i d i n e n i t r o g e n a t o m s a r e n o t c o o r d i ­ n a t e d a n d e a c h c o p p e r is b o u n d to t h r e e l i g a n d a t o m s i n w h a t is a l m o s t a T - g e o m e t r y , w i t h the largest angles b e i n g b e t w e e n the i m i n e a n d p y r a z o l a t e n i t r o g e n s . T h e c o p p e r - n i t r o g e n b o n d s are shorter t h a n m o s t d i s t a n c e s t h a t w e r e r e p o r t e d for c o p p e r ( I ) c o m p l e x e s w i t h n i t r o ­ g e n l i g a n d s ( 2 2 , 23, 40-43). T h e a v e r a g e l e n g t h s are 1.88 À for t h e c o p p e r - p y r a z o l e n i t r o g e n b o n d s a n d 1.90 Â for t h e c o p p e r - i m i n e n i ­ t r o g e n b o n d s . T h e c o p p e r - o x y g e n d i s t a n c e s are s u b s t a n t i a l l y l o n g e r , averaging 2.09 A . These b o n d lengths, a l o n g w i t h the v e r y large

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

6.

GAGNÉ E T A L .

Binuclear

Copper(I)

Complexes

145

Figure 2. Molecular structure of Compound 7, including labels for noncarbon atoms and selected bond lengths (35). Bond angles: NlCul-N3,167.6°; Ol-Cul-Nl, 91.7°; 01-Cul-N3, 97.Γ ; N2-Cu2-N4, 170.7°; 01-Cu2-N2, 91.5°; and 01-Cu2-N4, 96.8°.

N - C u - N b o n d a n g l e s (ca. 1 7 0 ° ) m a y s u g g e s t s o m e d e g r e e o f d i c o o r d i n a t e d c h a r a c t e r , w h i c h m a y b e e s p e c i a l l y f a v o r a b l e for c o p p e r ( I ) i n ­ teractions w i t h these nitrogenous l i g a n d s . T h e i n t r a m o l e c u l a r c o p p e r - c o p p e r d i s t a n c e , 3 . 3 0 4 A , is l o n g e n o u g h to m a k e a n y d i r e c t i n t e r a c t i o n u n l i k e l y . H o w e v e r , a n i n t e r m o l e c u l a r interaction apparently does occur b e t w e e n copper atoms. T h e m o l e c u l e s l i n e u p i n an infinite array s u c h that r e l a t i v e l y close contact (2.968 À) exists b e t w e e n c o p p e r atoms o f adjacent m o l e c u l e s ( F i g u r e 3). T h e o v e r l a p p i n g l i g a n d atoms o f n e i g h b o r i n g m o l e c u l e s a l s o c o m e c l o s e to o n e a n o t h e r . T h e m e a n p l a n e c o n t a i n i n g t h e p h e n o x i d e o x y g e n , the i m i n e n i t r o g e n , a n d the three carbons c o n -

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

146

BIOLOGICAL REDOX COMPONENTS

Figure 3. Crystal packing of Compound 7, showing a section of an infinite stack of molecules that forms in the solid state. The three molecules are corresponding ones from three different unit cells, translated along the b axis (which lies in the vertical direction in the orientation of this figure). All copper atoms lie in the same plane, parallel to the page. The pyrazolate groups are directed out of the page, toward the reader. The shortest copper-copper distance, 2.97 Â, occurs between atoms in neighboring molecules, connected by dashed lines in the figure. The closest intermolecular Cu-H contacts also are shown ( 35).

n e c t i n g t h e s e a t o m s is s i t u a t e d at a n a v e r a g e d i s t a n c e o f 3 . 2 0 Â a w a y from the c o r r e s p o n d i n g p l a n e d i r e c t l y b e l o w i n the n e i g h b o r i n g m o l e ­ c u l e . T h i s d i s t a n c e is s o m e w h a t s h o r t e r t h a n t h e s e p a r a t i o n u s u a l l y o b s e r v e d b e t w e e n s t a c k e d 7 r - d e l o c a l i z e d m o l e c u l e s (44-46). T h u s , an i n t e r m o l e c u l a r c o p p e r - c o p p e r b o n d and/or an interac­ t i o n b e t w e e n t h e d e l o c a l i z e d 7r-systems o f a d j a c e n t m o l e c u l e s a p p e a r s

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

6.

GAGNÉ ET AL.

147

Binuclear Copper(I) Complexes

to b e f a v o r e d i n t h e s o l i d state. C o p p e r ( I ) - c o p p e r ( I ) i n t e r a c t i o n s w i t h m e t a l s e p a r a t i o n s as s h o r t as 2 . 4 5 A are k n o w n , b u t a l l p r e v i o u s l y characterized species w i t h proposed copper(I)-copper(I)

interactions

h a v e at l e a s t o n e b r i d g i n g l i g a n d b e t w e e n t h e t w o i n t e r a c t i n g c o p p e r a t o m s (47-49). T h e s t r u c t u r e s o f t h e a n a l o g o u s s p e c i e s , 5 - 8 , are p r o b ­ a b l y s i m i l a r to t h i s s t r u c t u r e f o u n d for C o m p o u n d 7 .

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

Synthesis and Solution Structures of Compounds 9-19 T h e s t r u c t u r e o f C o m p o u n d 7 s u g g e s t e d t h e s y n t h e s i s o f a series o f c o m p o u n d s that h a d n o d o n o r atoms o n the s i d e a r m s (R), that is, C o m ­ p l e x e s 9 - 1 9 , T a b l e I. T h e s e c o m p o u n d s w e r e s y n t h e s i z e d a n a l o g o u s l y to t h e s y n t h e s i s o f C o m p o u n d s 5 - 8 ( S c h e m e I I ) . A l l c u p r o u s c o m ­ pounds were fully characterized b y elemental analysis, I R a n d N M R s p e c t r o s c o p y , a n d m a s s s p e c t r o s c o p y o n s e l e c t e d c o m p o u n d s (35). T h e s e c o m p o u n d s also p r o v e d to b e c r y s t a l l i n e solids, stable i n the absence o f d i o x y g e n . B e c a u s e the polydentate l i g a n d systems e m ­ p l o y e d p r o v i d e o n l y t r i c o o r d i n a t i o n for e a c h c o p p e r , t h e s e c o m p o u n d s are p r e s u m e d to b e t r i c o o r d i n a t e d i n s o l u t i o n . A l l c o m p o u n d s that h a v e n o n b u l k y sidearms are b r o w n i n the s o l i d state, t h i s c o l o r b e i n g d u e , i n p a r t , to a 6 0 0 - n m b a n d o b s e r v e d i n t h e s o l i d state n u j o l m u l l s p e c t r u m ( C u r v e A i n F i g u r e 4 ) . T h i s b a n d is n o t p r e s e n t i n t h e s p e c t r u m o f t h e c o m p l e x w i t h t-butyl sidearms, C o m p o u n d 1 5 , w h i c h is r e d i n t h e s o l i d state as w e l l as i n s o l u t i o n ( C u r v e C , i n F i g u r e 4 ) . T h i s 6 0 0 - n m a b s o r p t i o n a l s o is a b s e n t i n t h e s p e c t r a o f C o m p o u n d s 14 a n d 1 6 . T h e 6 0 0 - n m b a n d m a y b e a t t r i b u t e d to a n i n t e r m o l e c u l a r i n t e r a c t i o n t h a t m a y b e i n h i b i t e d b y t h e p r e s e n c e o f l a r g e £ - b u t y l s i d e a r m s . T h i s i n t e r a c t i o n a p p e a r s to b e o n l y a s o l i d state p h e n o m e n o n , b e c a u s e t h e 6 0 0 - n m b a n d w a s n o t f o u n d i n s o l u t i o n s p e c t r a (e.g., C u r v e B , F i g u r e 4 ) , e v e n i n v e r y c o n c e n t r a t e d s o l u t i o n s . T h e s o l u t i o n s t r u c t u r e o f C o m p o u n d 7 a p p e a r s to b e s i m i l a r to t h a t f o u n d i n t h e s o l i d state w i t h t h e a b s e n c e o f t h e i n t e r m o l e c u l a r c o p p e r - c o p p e r i n t e r a c t i o n . T h e p y r i d i n e nitrogens d o not a p p e a r to b e b o u n d i n b e n z e n e s o l u t i o n , b e c a u s e t h e N M R s i g n a l for t h e p r o t o n o n t h e c a r b o n a d j a c e n t to t h e p y r i d i n e n i t r o g e n o f C o m p o u n d 7 o c c u r s at t h e s a m e p o s i t i o n , w i t h i n e x p e r i m e n t a l e r r o r , as t h e c o r r e s p o n d i n g p r o t o n f r o m 2 - ( 2 ' - a m i n o e t h y l ) p y r i d i n e ( i . e . , 8.44 ± 0 . 0 2 p p m δ f r o m T M S ) . I n fact, a l l c o m p o u n d s t h a t c o n t a i n p y r i d i n e o n t h e s i d e a r m s e x h i b i t t h i s r e s o n a n c e at t h e s a m e p o s i t i o n , w i t h i n e x p e r i m e n t a l e r r o r ( i . e . , 8.42 ± 0.04 p p m δ f r o m T M S ) . T h e r e s o n a n c e o f t h i s p r o t o n w o u l d b e e x p e c t e d to s h i f t d o w n f i e l d o n b i n d i n g to a c o p p e r ( I ) i o n . ( W e o b ­ s e r v e d t h i s effect for t h e l i g a n d i V , ] V , i V ' , ] V ' - t e t r a k i s ( 2 - p y r i d y l m e t h y l ) e t h y l e n e d i a m i n e ( T P E N ) , w h e r e b i n d i n g o f c o p p e r ( I ) to t h e p y r i d i n e n i t r o g e n s c a u s e s a d o w n f i e l d s h i f t o f 0 . 1 3 p p m for t h e r i n g p r o t o n

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

148

BIOLOGICAL REDOX COMPONENTS

I

ι 400

ι 500

I

ι

600

700

I

WAVELENGTH ( n m ) Figure 4. Electronic absorption spectra. Key: A, Compound 11 in the solid state; B , Compound 11 in a hexane solution; and C , Compound 15 in the solid state. (Reproduced from Ref. 35. Copyright 1979 American Chemical Society.) n e a r e s t n i t r o g e n ( 5 0 ) . D o w n f i e l d shifts o f 0 . 4 - 0 . 7 p p m w e r e o b s e r v e d for t h e p r o t o n i n t h e 2 - p o s i t i o n o f a n i m i d a z o l e r i n g o n b i n d i n g c o p p e r ( I ) ( 5 1 ) . F u r t h e r m o r e , s h a r p r e s o n a n c e s w e r e o b s e r v e d for t h e p y r a z o l e p r o t o n s o f t h e s e c o m p o u n d s (e.g., a d o u b l e t at 7 . 8 7 p p m a n d a t r i p l e t at 6 . 4 3 p p m f o r C o m p o u n d 14). T h i s o b s e r v a t i o n i n d i c a t e s t h a t t h e r e is n o e q u i l i b r i u m b e t w e e n b o u n d a n d u n b o u n d p y r a z o l e ; hence, the p y r a z o l a t e b r i d g e m u s t b e totally b o u n d to the copper(I) i o n s o r t o t a l l y d i s s o c i a t e d i n b e n z e n e s o l u t i o n s ( u n l i k e l y , at b e s t ) .

Electrochemical Analysis for the Series 5-19 A l l b i n u c l e a r copper(I) c o m p o u n d s presented i n T a b l e I e x h i b i t e d c y c l i c v o l t a m m e t r y s i m i l a r t o t h e s o l i d l i n e i n F i g u r e 1, b u t a w i d e r a n g e o f r e d u c t i o n p o t e n t i a l s w e r e o b s e r v e d (35). S e v e r a l t r e n d s c a n be o b s e r v e d from T a b l e I. I n the f o l l o w i n g discussion, the formal p o ­ t e n t i a l s for t h e s e c o n d r e d u c t i o n , ( £ £ ) , E q u a t i o n 1, w i l l b e u s e d s i n c e these processes w e r e m o r e r e v e r s i b l e a n d s l i g h t l y m o r e s y s t e m a t i c

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

6.

Binuclear Copper(I) Complexes

GAGNÉ E T AL.

Cu(II)Cu(I)L

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

t h a n t h e E{potentials. b o t h processes.

+

+ e~ â

Cu(I)Cu(I)L

149

(1)

T h e general trends, h o w e v e r , are the same w i t h

T h e first p o i n t o f i n t e r e s t is t h e effect o f p o s s i b l e b i n d i n g sites ( i . e . , p y r i d i n e ) i n t h e s i d e a r m s . T h e f o l l o w i n g series o f p o t e n t i a l s (E{) w a s observed: C o m p o u n d 11, ( - 0 . 0 7 8 V ) « C o m p o u n d 9, ( - 0 . 0 8 1 V ) > C o m p o u n d 7, ( - 0 . 3 4 4 V ) > C o m p o u n d 5, ( - 0 . 4 5 2 V ) . T h i s finding indicates that the c o m p l e x e s c o n t a i n i n g the p y r i d i n e rings p r o v i d e a m o r e f a v o r a b l e e n v i r o n m e n t for c o p p e r ( I I ) r e l a t i v e t o c o p p e r ( I ) w h e n c o m p a r e d to t h e i r b e n z e n e r i n g a n a l o g u e s . B e c a u s e t h e p y r i d i n e n i t ­ r o g e n s d o n o t a p p e a r to b e b o u n d to t h e c o p p e r ( I ) i o n s ( i n s o l u t i o n or i n t h e s o l i d state), t h e effect o f t h e s e p y r i d i n e r i n g s m u s t b e l a r g e l y o n t h e o x i d i z e d c o p p e r ( I I ) sites. H e n c e , t h e p y r i d i n e s a p p a r e n t l y b i n d to t h e c o p p e r ions o n o x i d a t i o n , C o m p o u n d 2 0 , a n d dissociate f r o m copper(I) on reduction, C o m p o u n d 7, ( S c h e m e III). I n the s i m i l a r c u p r i c c o m ­ p l e x , 4 , t h e i m i d a z o l e n i t r o g e n s w e r e s h o w n to b e c o o r d i n a t e d i n t h e s o l i d state x - r a y s t r u c t u r e ( 3 7 ) . M o s t l i k e l y , s i d e a r m p y r i d i n e n i t r o g e n s w o u l d a l s o c o o r d i n a t e to c o p p e r ( I I ) . T h e d e p e n d e n c e o f t h e c y c l i c v o l t a m m o g r a m o n s c a n rate (as a r e s u l t o f t h e p r o c e s s i n S c h e m e I I I ) was not investigated. C o m p o u n d s 5 - 1 9 also i n d i c a t e that the m e t h y l p y r i d i n e s i d e a r m p r o v i d e s a b e t t e r e n v i r o n m e n t for c o p p e r ( I I ) t h a n does the e t h y l p y r i d i n e sidearm. T h i s c o n d i t i o n m a y b e a result o f the g e o m e t r y o f t h e s i d e a r m s a n d t h e i r r e l a t i v e a b i l i t y t o b i n d to t h e c o p per(II) centers. T h e i n t r o d u c t i o n o f m e t h y l substituents on the pyrazolate bridges c a u s e s a n i n c r e a s e i n t h e r e d u c t i o n p o t e n t i a l (Ε{) as f o l l o w s : C o m ­ p o u n d 6, ( - 0 . 3 7 4 V ) > C o m p o u n d 5, ( - 0 . 4 5 2 V ) a n d C o m p o u n d 10, ( + 0 . 0 0 5 V ) > C o m p o u n d 9 , ( - 0 . 0 8 1 V ) . A n i n d u c t i v e effect o f t h e m e t h y l g r o u p s w o u l d s t a b i l i z e c o p p e r ( I I ) r e l a t i v e to c o p p e r ( I ) , b u t t h e r e v e r s e t r e n d is a c t u a l l y o b s e r v e d . T h e s t e r i c b u l k o f t h e m e t h y l g r o u p s

Scheme III.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

150

BIOLOGICAL REDOX COMPONENTS

m a y b e r e s p o n s i b l e for t h e r e l a t i v e d e s t a b i l i z a t i o n o f c o p p e r ( I I ) . T h e s e m e t h y l groups m a y i n h i b i t the b i n d i n g o f b o t h p y r i d i n e (from the s i d e a r m s ) a n d d i m e t h y l f o r m a m i d e ( s o l v e n t ) to t h e o x i d i z e d c o p p e r ( I I ) i o n s b y p a r t i a l l y b l o c k i n g t h e f o u r t h , s q u a r e - p l a n a r b i n d i n g site a r o u n d each copper(II). Furthermore, s h i e l d i n g the copper centers f r o m t h e s o l v e n t m o l e c u l e s w i t h h y d r o p h o b i c g r o u p s ( s u c h as t h e s e m e t h y l s ) m a y n o t a l l o w t h e p o l a r D M F m o l e c u l e s to e f f i c i e n t l y s o l v a t e the c h a r g e d copper(II) species. R e l a t i v e stabilization o f copper(I) also r e s u l t s f r o m m o r e b u l k y s i d e a r m s , as r e f l e c t e d i n t h e f o l l o w i n g series (E ): C o m p o u n d 1 5 , ( + 0 . 0 5 3 V ) > C o m p o u n d 1 4 , ( + 0 . 0 0 1 V ) > C o m ­ p o u n d 13, ( - 0 . 0 7 6 V ) . f

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

2

F i n a l l y , a n e l e c t r o n i c effect o n E{ is o b s e r v e d i n t h e series o f c o m p o u n d s t h a t h a v e p h e n y l r i n g s b o n d e d d i r e c t l y to t h e i m i n e n i t r o ­ gens: C o m p o u n d 19, (+0.008 V ) > C o m p o u n d 17, ( - 0 . 0 3 2 V ) > C o m ­ p o u n d 18, ( - 0 . 0 4 8 V ) . H e r e , the e l e c t r o n - w i t h d r a w i n g c a r b o n y l sub­ stituent results i n relative copper(I) stabilization, w h i l e the electrond o n a t i n g d i m e t h y l a m i n e substituent results i n relative C u ( I I ) stabiliza­ t i o n . S i m i l a r effects o f r e m o t e s u b s t i t u e n t s w e r e r e p o r t e d r e c e n t l y for a series o f m o n o n u c l e a r copper(II) c o m p l e x e s (24). T h e o x i d a t i o n / r e d u c t i o n o f these c o m p o u n d s i n t w o one-electron s t e p s w a s t h e e x p e c t e d b e h a v i o r for t w o i n t e r a c t i n g m e t a l c e n t e r s (31, 3 2 ) . T h i s s e q u e n t i a l b e h a v i o r w a s o b s e r v e d for t h e s e r i e s o f b i n u c l e a r c o m p l e x e s , 2 1 , recently investigated (52). S t e p w i s e oxidation/re­ d u c t i o n w a s a l s o f o u n d for m a n y r u t h e n i u m ( I I ) d i m e r s , i n w h i c h closer p r o x i m i t y a n d greater interactions b e t w e e n the r u t h e n i u m c e n ­ ters c o r r e l a t e s w i t h a g r e a t e r s e p a r a t i o n o f t h e t w o r e d o x p r o c e s s e s ( a n d larger c o m p r o p o r t i o n a t i o n constants) ( 5 3 - 5 6 ) . [ A r e v e r s i b l e t w o e l e c t r o n r e d u c t i o n w a s o b s e r v e d for w e l l - s e p a r a t e d c u p r i c i o n s ( 2 7 ) ,

21

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

6.

GAGNÉ ET AL.

Binuclear Copper(I) Complexes

151

a n d a curious exception to the stepwise electrochemistry e x h i b i t e d b y s t r o n g l y i n t e r a c t i n g m e t a l s is r e p o r t e d f o r a series o f b i n u c l e a r t r i k e t o n a t o c o p p e r ( I I ) c o m p l e x e s (25).]

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

Binuclear Systems Derived from Ν, Ν,Ν',Ν '-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) T h e a p p a r e n t p r e f e r e n c e o f c u p r o u s i o n s for l o w e r c o o r d i n a t i o n n u m b e r s ( i . e . , t w o , t h r e e , a n d four) ( 3 5 , 4 7 - 4 9 , 5 7 ) s u g g e s t e d t h e p o s s i ­ b i l i t y o f t h e h e x a d e n t a t e l i g a n d , T P E N , p e r f o r m i n g as a b r i d g i n g l i g a n d b e t w e e n t w o c o p p e r ( I ) i o n s . I n d e e d , a b i n u c l e a r c u p r o u s c o m p l e x , 22, e m p l o y i n g t h e T P E N l i g a n d w a s s y n t h e s i z e d as s h o w n i n S c h e m e I V (50). T h e s t r u c t u r e o f C o m p o u n d 22, w a s s o m e w h a t s u r p r i s i n g a n d i s s h o w n i n F i g u r e 5 along w i t h pertinent b o n d lengths a n d angles. Rather than the expected tricoordination or tetracoordination (in­ c l u d i n g B F as a l i g a n d ) , e a c h c o p p e r a p p e a r s t o b i n d o n l y t w o n i t r o ­ g e n l i g a n d s at c l o s e d i s t a n c e s ( ~ 1 . 9 Â ) , w i t h a t h i r d , w e a k C u - N i n ­ t e r a c t i o n (2.30 Â ) . F u r t h e r m o r e , t h e t w o s t r o n g l y b o u n d n i t r o g e n ligands, on a given copper, originate from p y r i d i n e rings o n opposite e n d s o f the e t h y l e n e d i a m i n e b r i d g e . A p p a r e n t l y , the m o l e c u l e adopts t h i s c o n f o r m a t i o n t o m a x i m i z e t h e c o p p e r - c o p p e r i n t e r a c t i o n (2.78 A ) . T h e s t r u c t u r e s p r e s e n t e d h e r e i n for C o m p o u n d s 7 ( F i g u r e 2 ) a n d 22 ( F i g u r e 5) i n d i c a t e a p r e f e r e n c e o f c o p p e r ( I ) for a s o m e w h a t l i n e a r arrangement o f t w o nitrogen ligands. [ C o o r d i n a t i o n o f this type was o b s e r v e d i n other b i n u c l e a r a n d m o n o n u c l e a r copper(I) c o m p l e x e s ( 5 8 - 6 0 ) . ] H o w e v e r , i n b o t h o f t h e p r e s e n t cases t h e t h i r d l i g a n d ( i . e . , p h e n o l a t e o x y g e n or t e r t i a r y n i t r o g e n ) i s r a t h e r " h a r d " a n d h e n c e u n ­ f a v o r a b l e for c o p p e r ( I ) . T h e r e f o r e , t h e o b s e r v e d c o o r d i n a t i o n o f t h e s e c o m p o u n d s m a y l a r g e l y r e f l e c t p r e f e r e n c e for r e l a t i v e l y " s o f t " l i g a n d s . B o t h s y s t e m s (7 a n d 22) a p p a r e n t l y foster a d i r e c t c o p p e r - c o p p e r i n ­ t e r a c t i o n . [ T h e r e i s a t h e o r e t i c a l b a s i s for a n a t t r a c t i o n b e t w e e n c o p p e r ( I ) i o n s (49)]. 4

C o m p o u n d 22, u n d e r g o e s a n e x t e n s i v e l i g a n d r e a r r a n g e m e n t i n t h e p r e s e n c e o f c a r b o n m o n o x i d e t o f o r m t h e d i c a r b o n y l , 23 ( S c h e m e I V ) (50). T h e c r y s t a l s t r u c t u r e o f t h i s c o m p l e x r e v e a l e d a p s e u d o t e t r a h e d r a l g e o m e t r y as s h o w n i n F i g u r e 6 . E a c h c o p p e r is b o u n d to t h r e e n i t r o g e n l i g a n d s , w i t h t w o short C u - N distances o f ca. 2.04 A ( b e t w e e n c o p p e r a n d the p y r i d i n e nitrogens) a n d o n e l o n g C u - N distance o f ca. 2.17 A (between copper a n d the tertiary a m i n e nitrogen). A l t h o u g h the s h o r t e r C u - N b o n d l e n g t h s a r e w i t h i n t h e r a n g e e x p e c t e d for C u ( I ) - N b o n d s (29, 30, 47-49, 61-63), t h e C u ( I ) - N ( t e r t i a r y a m i n e ) d i s t a n c e is l o n g , p o s s i b l y i n d i c a t i n g a l o w e r affinity b e t w e e n t h e c u p r o u s i o n a n d t h e " h a r d " t e r t i a r y a m i n e l i g a n d . T h e C u - C b o n d l e n g t h s a v e r a g e 1.80

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

152

BIOLOGICAL R E D O X COMPONENTS

1) C u ( C H C N ) B F , CH CN 3

4

4

3

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

2)

Cu (TPEN)(C0) (BF ) 2

2

4

2

(23)

CH3OH

Cu^CTPENKBF^

(22)

Scheme IV.

A , a n d t h e C - O b o n d l e n g t h s a v e r a g e 1.11 A w i t h a C u - C - O a n g l e o f 176°. T h e s e v a l u e s are i n a g r e e m e n t w i t h other p r e v i o u s l y r e p o r t e d tetracoordinated a n d pentacoordinated copper(I) carbonyls (30,

61-63).

Carbon Monoxide and Dioxygen Reactivity I n t h e T P E N s y s t e m ( i . e . , 22 a n d 23) t h e c o o r d i n a t i o n e n v i r o n ­ m e n t about c o p p e r d e p e n d s o n the presence or absence o f a p o t e n t i a l f o u r t h l i g a n d ( C O ) . I n c o n t r a s t , t h e series o f C o m p l e x e s 5-19 s h o w e d n o t e n d e n c y t o b i n d C O o r p y r i d i n e as a f o u r t h l i g a n d . T h e r e a s o n for t h i s d i f f e r e n c e is n o t c l e a r b e c a u s e m o l e c u l a r m o d e l s i n d i c a t e t h a t C o m p l e x e s 5-19 c o u l d f o r m a p s e u d o t e t r a h e d r a l g e o m e t r y w i t h t h e addition of a fourth ligand. T h u s , a special stabilization apparently o c c u r s for c u p r o u s i o n s i n C o m p l e x e s 5-19 s u c h t h a t s i g n i f i c a n t e n e r g y w o u l d b e l o s t o n t h e b i n d i n g o f a f o u r t h l i g a n d (60). T o further c o m p l i c a t e the issue o f c a r b o n m o n o x i d e b i n d i n g to copper(I), a n u m b e r o f square-planar, tetracoordinated cuprous c o m ­ p l e x e s ( i n c l u d i n g 1, η = 1) b i n d C O as a fifth l i g a n d (29-32, 40, 41). O b v i o u s l y , t h e g e o m e t r y a n d t y p e o f l i g a n d s a r o u n d c o p p e r ( I ) affect its C O b i n d i n g a b i l i t y . T h e n a t u r e o f t h e s e effects, h o w e v e r , r e m a i n s obscure. [ H e m o c y a n i n w i l l b i n d only one m o l e c u l e o f carbon m o n o x i d e p e r b i n u c l e a r c o p p e r ( I ) s i t e (64).]

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

6.

GAGNÉ ET AL.

Binuclear

Copper(I)

Complexes

153

A l l copper(I) c o m p o u n d s reported herein react i r r e v e r s i b l y w i t h o x y g e n i n s o l u t i o n . C o m p o u n d s 5 - 1 9 f o r m g r e e n or b r o w n p r o d u c t s from orange d i m e t h y l f o r m a m i d e solutions a n d C o m p o u n d s 21 a n d 22 form b l u e products from colorless acetonitrile solutions. These autoxidation p r o d u c t s w e r e not c h a r a c t e r i z e d .

Conclusions Stable

binuclear

copper(I)

complexes

were

prepared

using

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

p o l y d e n t a t e l i g a n d s . T h e s t r u c t u r e s r e p o r t e d i n t h i s c h a p t e r , as w e l l as

+

Figure 5. ORTEP diagrams of Cu (TPENf , including selected bond lengths and angles ( 50). The dication lies on a twofold rotation axis, perpendicular to the page in the upper drawing and parallel to the page in the lower one. 2

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL R E D O X COMPONENTS

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

154

2

Figure 6. ORTEP drawing of Cu (TPENXCO) \ including selected bond lengths (50). This molecule, unlike Cu (TPENf , does not have exact twofold symmetry. 2

2

+

2

t h e s t r u c t u r e s f o u n d for o t h e r c u p r o u s s y s t e m s , d e m o n s t r a t e t h a t a w i d e variety o f coordination environments can be assumed by copper(I) ions. T h e n u m b e r a n d g e o m e t r y o f l i g a n d s p r e f e r r e d b y c o p p e r ( I ) a r e e x t r e m e l y s e n s i t i v e t o m i n o r l i g a n d a l t e r a t i o n s . T h e s e effects are n o t w e l l - d e f i n e d , a n d , as a r e s u l t , o n e m u s t e x e r c i s e c a u t i o n i n t h e p r e d i c t i o n o f s t r u c t u r e s for c u p r o u s c o m p o u n d s . W i t h the exception o f C o m p o u n d s 2 - 4 , 2 1 , a n d 22, w h i c h e x h i b ­ i t e d i r r e v e r s i b l e e l e c t r o c h e m i s t r y , a l l b i n u c l e a r c o p p e r c o m p l e x e s ex­ h i b i t t w o o n e - e l e c t r o n r e d o x p r o c e s s e s at w e l l - d e f i n e d p o t e n t i a l s . B y s y s t e m a t i c v a r i a t i o n s i n t h e b r i d g i n g ( X ) a n d s i d e a r m ( R ) g r o u p s (see S c h e m e II a n d T a b l e I), a w i d e range o f r e d u c t i o n potentials was r e a l i z e d . T h e h i g h e s t r e d u c t i o n p o t e n t i a l s w e r e o b s e r v e d for C o m p l e x 16 i n w h i c h t h e c o p p e r ( I ) c e n t e r s a r e s o m e w h a t b u r i e d w i t h i n t h e h y d r o p h o b i c s u b s t i t u e n t s . W i t h r e d u c t i o n p o t e n t i a l s o f E{ = 0 . 2 3 9 V a n d Ε 2 = 0 . 0 8 0 V , t h e l i g a n d e n v i r o n m e n t i n 16 r e p r e s e n t s a s u b s t a n ­ tial i m p r o v e m e n t o v e r the o r i g i n a l square-planar, tetracoordinated l i g a n d e n v i r o n m e n t p r o v i d e d b y t h e s t a r t i n g m o d e l , 1. T h e s e h i g h r e d u c t i o n potentials are c o m p a r a b l e to those o f the p r o t e i n b i n u c l e a r sites (13-16); h e n c e , i t is n o t u n r e a s o n a b l e to b e l i e v e t h a t t h e s e p r o ­ teins u t i l i z e o n l y n i t r o g e n and/or o x y g e n l i g a n d s a r o u n d e a c h copper. I n d e e d , d i c o o r d i n a t i o n a n d / o r t r i c o o r d i n a t i o n c a n b e c o n s i d e r e d for t h e r e d u c e d f o r m o f t h e b i n u c l e a r sites.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

6.

GAGNÉ ET AL.

Binuclear Copper(I) Complexes

155

The oxidation/reduction of these compounds in well-separated, one-electron steps contrasts with the available electrochemical infor­ mation on the binuclear protein sites. Although no electrochemical data are available on hemocyanin, for both laccase and tyrosinase a single potential was associated with the overall two-electron reduction of the binuclear copper site (13-16, 65). Correlations between the electrochemical behavior of the new compounds, 5-19, and of the proteins are difficult because of solvation effects, the different tech­ niques employed, possible nonequilibria in the proteins, and other reasons (65, 66). Nonetheless, the electrochemical behavior reported for the new compounds suggests that the two-electron reduction of laccase and of tyrosinase is not a simple reduction of two equivalent copper ions that strongly interact through bridging ligands.

Acknowledgments We greatly appreciate assistance given by Richard E . Marsh and Michael McCool, and financial support from the National Institutes of Health.

Literature

Cited

1. Bockris, J.; Srinivasan, S. "Fuel Cells: Their Electrochemistry"; McGraw-Hill: New York, 1969. 2. Contie, R. In "Inorganic Biochemistry"; Eichhorn, G. I., Ed.; Am. Elsevier: New York, 1973; p. 344. 3. Mason, H. S. Annu. Rev. Biochem. 1965, 35, 595-634. 4. Vanneste, W. H.; Zuberbühler, A. In "Molecular Mechanisms of Oxygen Activation"; Hayaishi, O., Ed.; Academic: New York, 1974; p. 371. 5. Fee, J. A. Struct. Bonding 1975, 23, 1-60. 6. Vänngård, T. I. In "Biological Applications of Electron Spin Resonance"; Swartz, H. M.; Bolton, J. R.; Borg, D. C., Eds.; Wiley: New York, 1972; p. 411. 7. Wurzbach, J. Α.; Grunthaner, P. J.; Dooley, D. M.; Gray, Η. B., Grun­ thaner, F. J.; Gay, R. R.; Solomon, Ε. I. J. Am. Chem. Soc. 1977, 99, 1257-1258. 8. Freedman, T. B.; Loehr, J. S.; Loehr, T. M.J.Am. Chem. Soc. 1976, 98, 2809-2815. 9. Eickman, N. C.; Himmelwright, R. S.; Solomon, Ε. I. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 2094-2098. 10. Brown, J. M.; Powers, L.; Kincaid, B.; Larrabee,J.Α.; Spiro, T. G.J.Am. Chem. Soc. 1980, 102, 4210-4216. 11. Larrabee,J.Α.; Spiro, T. G.J.Am. Chem. Soc. 1979, 102, 4217-4223. 12. Solomon, Ε. I.; Dooley, D. M.; Wang, R.; Gray, H. B.; Cerdonia, M.; Mogno, T.; Romani, G. L. J. Am. Chem. Soc. 1976, 98, 1029-1031. 13. Makino, N.; McMahill, P.; Mason, H. S.; Moss, T. H. J. Biol. Chem. 1974, 249, 6062-6066. 14. Reinhammar, B. R. M.; Vänngård, T. I. Eur. J. Biochem. 1971, 18, 463468. 15. Reinhammar, B. R. M. Biochim. Biophys. Acta 1972, 275, 245-259.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

156

BIOLOGICAL REDOX COMPONENTS

16. Farver, O.; Goldberg, M.; Lancet, Α.; Pecht, I. Biochem. Biophys. Res. Commun. 1976, 73, 494-500. 17. Amundsen, A. R.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6730-6739. 18. Simmons, M. G.; Wilson, L. J. Chem. Commun. 1978, 634-636. 19. Bulkowski, J. E.; Burk, P. L.; Ludmann, M. F.; Osborn, J. A. Chem. Com­ mun. 1977, 498-499. 20. Lehn, J. M.; Pine, S. H.; Watanabe, E.; Willark, A. K. J. Am. Chem. Soc. 1977, 99, 6766-6768. 21. Alberts, A. H.; Annunziata, R.; Lehn, J. M. J. Am. Chem. Soc. 1977, 99, 8502-8504. 22. Arcus, C. S.; Wilkinson, J. L.; Mealli, C.; Marks, T. J.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 7464-7565. 23. Mealli, C.; Arcus, C. S.; Wilkinson, J. L.; Marks, T. J.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 711-718. 24. Yokoi, H.; Addison, A. W. Inorg. Chem. 1977, 16, 1341-1349. 25. Fenton, D. E.; Lintvedt, R. L. J. Am. Chem. Soc. 1978, 100, 6367-6375. 26. Gagné, R. R.; Gall, R. S.; Lisensky, G. C.; Marsh, R. E.; Speltz, L. M. Inorg. Chem. 1979, 18, 771-781. 27. Louis, R.; Agnus, Y.; Weiss, R.; Gisselbrecht, J. P.; Gross, M. Nouveau J. de Chemie 1981, 5(2), 71-73. 28. Gisselbrecht, J. P.; Gross, M.; Alberts, A. H.; Lehn, J. M. Inorg. Chem. 1980, 19, 1386. 29. Gagné, R. R. J. Am. Chem. Soc. 1976, 98, 6709-6710. 30. Gagné, R. R.; Allison, J. L.; Gall, R. S.; Koval, C. A. J. Am. Chem. Soc. 1977, 99, 7170-7178. 31. Gagné, R. R.; Koval, C. Α.; Smith, T. J. J. Am. Chem. Soc. 1977, 99, 83678368. 32. Gagné, R. R.; Koval, C. Α.; Smith, T. J.; Cimolino, M. C. J. Am. Chem. Soc. 1979, 101, 4571-4580. 33. Pilkington, N. H.; Robson, R. Aust. J. Chem. 1970, 23, 225-236. 34. Patterson, G. S.; Holm, R. H. Bioinorg. Chem. 1975, 4, 257-275. 35. Gagné, R. R.; Kreh, R. P.; Dodge, J. A. J. Am. Chem. Soc. 1979, 101, 6917-6927. 36. Gryzbowski, J. J.; Merrell, P. H.; Urbach, F. L. Inorg. Chem. 1978, 17, 3078-3082. 37. Gagné, R. R.; McCool, M. W.; Marsh, R. E . Acta Crystallogr., Sect. Β 1980, b36, 2420. 38. Bauer, D.; Breant, M. In "Electroanalytical Chemistry"; Bard, A. J.; Ed.; Dekker: New York, 1975; Vol. 8, pp. 282-344. 39. Gagné, R. R.; Koval, C. Α.; Lisensky, G. C. Inorg. Chem. 1980, 19, 28542855. 40. Gagné, R. R.; Allison, J. L.; Lisensky, G. C. Inorg. Chem. 1978, 17, 3563-3571. 41. Gagné, R. R.; Allison, J. L.; Ingle, D. M. Inorg. Chem. 1979, 18, 27672774. 42. Lewin, A. H.; Michl, R. J.; Gani, P.; Lepore, U. Chem. Commun. 1972, 661-662. 43. Brown, I. D.; Dunitz, J. D. Acta Crystallogr. 1961, 14, 480-485. 44. Cotton, F. Α.; Wilkinson, G. "Advanced Inorganic Chemistry"; Wiley: New York, 1972; p. 288. 45. Moustakali-Mavirdis, I.; Hadjoudis, E . ; Mavridis, A. Acta Crystallogr., Sect. Β 1978, b34, 3709-3715. 46. Herbstein, F. H. In "Perspectives in Structural Chemistry"; Dunitz, J. D.; Ibers, J. Α., Eds.; Wiley: New York, 1972; Vol. 4, p. 166. 47. Camus, Α.; Marsich, N.; Nardin, G.; Randaccio, L. Inorg. Chim. Acta 1977, 23, 131-144. 48. Jardine, F. Adv. Inorg. Chem. Radiochem. 1975, 17, 115-163.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV LAVAL on May 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch006

6. GAGNÉ ET AL.

Binuclear Copper(I) Complexes

157

49. Mehrotra, P. K.; Hoffmann, R. Inorg. Chem. 1978, 17, 2187-2189. 50. Gagné, R. R.; Kreh, R. P.; Dodge,J.Α.; Marsh, R. E.; McCool, M. Inorg. Chem. 1982, 21, 254-261. 51. Suguira, Y. Inorg. Chem. 1978, 17, 2177-2182. 52. Spiro, C. L., Ph.D. Dissertation, California Institute of Technology, Pasadena CA, 1981. 53. Creutz, C.; Taube, H.J.Am. Chem. Soc. 1969, 91, 3988-3989. 54. Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086-1094. 55. Weaver, T. R.; Meyer, T.J.;Adeyemi, S. Α.; Brown, G. M.; Eckberg, R. P.; Hatfield, W. E.; Johnson, E. C.; Murray, R. W.; Untereker,D.J.Am. Chem. Soc. 1975, 97, 3039-3048. 56. Callahan, R. W.; Keene, T. R.; Meyer, T. J.; Salmon, D.J.J.Am. Chem. Soc. 1977, 99, 1064-1073. 57. Ellen, P.; Bradley, D.; Hursthouse, M.; Meek, D. Coord. Chem. Rev. 1977, 24, 1-95. 58. O'Connor,J.E.; Janusonis, G. Α.; Corey, Ε.R.J.Chem. Soc. Chem. Com­ mun. 1968, 445-446. 59. Brown, I. D.; Dunitz, J. D. Acta Crystallogr. 1961, 14, 480-485. 60. James, B. R.; Williams, R.J.P.J.Chem. Soc. 1961, 2007-2019. 61. Bruce, M. I.; Ostazewski, A. P. J. Chem. Soc., Dalton Trans. 1973, 24332436. 62. Churchill, M. R; DeBoer, B. G.; Rotella, F.J.;Abu Salah, Ο. M.; Bruce, M. I. Inorg. Chem. 1975, 14, 2051-2056. 63. Pasquali, M.; Floriani, C.; Gaetani-Manfredotti, A. Inorg. Chem. 1980, 19, 1191-1197. 64. Fager, L. Y.; Alben,J.O. Biochemistry 1972,11,4786-4792. 65. Farver, O.; Goldberg, M.; Wherland, S.; Pecht, I. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 5245-5249. 66. Hill, C. L.; Renaud,J.;Holm, R. H.; Mortenson, L. ΕJ.Am. Chem. Soc. 1977, 99, 2549-2557. RECEIVED for review June 2, 1981. ACCEPTED March 15, 1982.

Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.