Theoretical investigation for the enhanced absorption of

D ttf Ch it U i it f C tl Fl id O ld Fl 32816 Department of Chemistry, University of Central Florida, Orlando, Fl, 32816 Shengli Zou ... A B C D E...
1 downloads 15 Views 723KB Size
Theoretical investigation for the enhanced absorption of nanostructured semi-conductor materials 0.8

A B

0.6

D

0.4

E

0.2 0

20

0.4 40 80 nm 60 400 500 Wavelength/nm

0.8 0.7 0.6 300

80 nm 60

10

400 500 Wavelength/nm

400

800 600 Wavelength/nm

1000

20

0

10

-1000 0 0 nm

100

200

-2000 -200 -100

80 nm

60

0.8

40

0.6 0.4

d2

20 10

0.2

600

nm

nm

0

-2000 -200 -100

d 35 30 25 20 15 10 5 0 -200

40 20

0

1000

-1000

0 300

10

0.2

100 0

Electric field Ele

0.9

0.4

100 0

600

c 1

0.6

0 20 (d) 200

Absorption efficiency

Scattering efficiency

10

0.6

0.2

800 600 Wavelength/nm

b 1

0.8

0 300

Extinc inction efficiency

2. Electric field confinement and enhancement between two silver layers: We demonstrated enhanced h d electric l t i fields fi ld |E|2 100 nm from the metal surface, which can be utilized to improve the emission intensity off quantum t d t dot.

400

A B C D E

0.8

0 (c) 200

1. Extremely low scattering efficiency of a perforated silver il fil Using film: U i the h discrete di di l approximation dipole i i method, we found that extremely low scattering cross section can be achieved at tunable wavelengths and widths using a perforated 100 nm thick silver film. a 1

C

(b) 1

Absor sorption efficiency

Scatte ttering efficiency

Department D t t off Chemistry, Ch i t University U i it off Central C t l Florida, Fl id Orlando, O l d Fl, Fl 32816 (a) 1 Shengli Zou

400 500 Wavelength/nm

600

L

80 nm 60

d1

40 20

X

10

0 200 Distance/nm

400

Z

0 0 nm

100

200