Thermal analysis - ACS Publications - American Chemical Society

Thermal analysis. D. Dollimore. Anal. Chem. , 1990, 62 (12), pp 44–50. DOI: 10.1021/ac00211a004. Publication Date: June 1990. ACS Legacy Archive...
0 downloads 0 Views 3MB Size
Anal. Chem. 1990, 62, 140R-150R

Raman Spectroscopy D. L. Gerrard* and J. Birnie The British Petroleum Company plc, BP Research Centre, Chertsey Road, Sunbury-on- Thames, Middlesex, England

The period of this review is from late 1987 to late 1989. In this period, some 6000 papers have been published in the scientific literature, deahng with many aspects of the theory and application of Raman spectroscopy and extending its use to new areas of study. The rapid growth in the number of publications seen over the past decade now appears to be slowing down as some traditionally productive areas yield little new information. Raman spectroscopy is still trying to find its role in the spectrosco ic analytical armory and has not yet been widely a p p r e c i a d by industrial analysts. This article covers those papers that are relevant to the analytical chemist and hence the authors' approach has necessarily been highly selective. There are areas of study that have produced large numbers of papers, very few of which have been of s analytical interest. In these cases, the reader is re erred to ap ropriate review articles which are detailed in this section. 8ince the last review in thisseries (I),re rts have appeared on the eneral analytical applicability of €!&an spectroscopy (2) a n f of Raman microscopy (3, 4), two areas where the technique has a reat deal to offer but where it is currently underexploited. bther significant reviews have also ap ared on low-frequency vibrations (51, time-resolved s t u E s of short-lived species (61, applications in medical science (7), analysis and characterization of minerals ( 4 9 1 , Hadamard transform Raman spectroscopy (IO),studies of adsorbed molecules (II), electrochemistry (12),superconduction (131, and pharmaceuticals (14). Apart from the introduction, this report is divided into 12 categories. For the first time we have included a separate section on solids which covers those aspects not covered in the other sections and reflects the growing interest in this area. One area of study which has expanded considerably over the past 2 years is that of chemical vapor de ition (CVD)where the reported work relates both to gas-p ase studies (25)and to studies of the deposited film (I@, and this is discussed in more detail below. Pulsed, multichannel Raman spectroscopy has been used as a diwnostic technique for the quantification of molecular species in the gas cylinders of internal combustion engines (I7),kerosine5 have been quantitatively analyzed (181, and ordering of the carbon in the Allende meterorite has been determined (19). Organic compounds in the atmosphere have been analyzed (20), water in crystalline hydrates has been characterized (21), and the analytical otential of Raman spectrosco y in wool textile research hasteen described (22). Methodsr!f deconvolutin overlap ing Raman bands have been com ared (23) and%ourier fleconvolution has been s u c c e s d y used in this context (24). The maximum entropy method has been used to reduce fluorescence backgrounds in Raman spectra (25). The development of Fourier transform Raman s ectroscopy has been extremely rapid and this expansion shoJd continue in the next few years. It has been applied to the study of biologically active macromolecules (26),biological molecules in general (27), and polymers (28). Its simplicity and broad applicability have a considerable appeal to the industrial analyst and its industrial a plication has been the subject of spectroscopy two papers (29,301.The tecLque of FT-W will be considered in more detail in the instrumentation section.

R"

INSTRUMENTATION AND SAMPLING Raman instrumentation, relating to spectrometers, lasers, sample handling and light collection detection, is continually being develo d and improved anl4 this is reflected in the increasingly g g e number of publications in this field. The use of multichannel detectors continues to expand and this has led to significant advances in several areas of study, including Raman microscop (31), surface studies (32), and monolayers (33, 34); and t i e use of multichannel detectors 140 R

in general has been reviewed (35). In particular the use of charge-coupled devices is expanding rapidl . These detectors have a very low background and can be J w i t h low-intensity lasers (36, 37). The problem of calibrating multichannel Raman systems has been reviewed (38). The problem of sample fluorescence still limits the areas of application of Raman spectroscopy to some extent, although the past few years have shown considerable improvements in this direction. Most groups are now using excitation lines outside the normal range to reduce fluorescence, although some success has also been achieved by using nonlinear techniques or gated pulsed lasers. The use of far-red and ultraviolet excitation has been reported (39),but by far the most successful technique current1 being employed for fluorescence rejection is the use of Aurier transform (FT) Raman spectroscopy with near-infrared excitation. This provides a simple, inexpensive, and effective method of fluorescence re'ection for a wide range of materials, solid and liquid (40). d he technique and its application have been reviewed (41) and the importance of detector technology has been stressed (42,43). The basic simplicity of the technique has been demonstrated by usin a bench-top FT-IR specand a combined FT-kman/FT-IRsystem us' trometer (44) a high- rformance FT-IR instrument has also been d e s c r i a (45). &e development of FT-Raman instrumentation has progressed so rapidly that several commercial systems are already available and the technique can now be used on a more or less routine basis (46). As well as its use for fluorescence rejection it can also prove useful in the study of samples containing chromophores which absorb strongly in the visible region where absorption and resonance Raman effects can be eliminated by the use of near-infrared excitation (47). Most of the FT work described in the literature to date has used the 1.064-pm output from a CW NdYAG laser and has really been aimed at the advantages of near-infrared excitation rather than any other advantages which the FT capability may confer. However, given a suitable spectrometer, there is no reason why FT-Raman work should not be undertaken usin conventional visible excitation, and one paper has reporte results obtained by using the blue (488.0 nm) and green (514.5 nm) lines of an argon laser (48). A technique has also been described which will extend the spectral range of FT-Raman systems (49). There seems little doubt that the use of FT instrumentation represents a branch of Raman s ectroscopy which will have a ma'or impact in extending t i e range of application of the technique in the immediate future. At the other end of the spectral range, the use of ultraviolet excitation, particularly for resonance Raman studies, is also advancing rapidly and is closely associated with developments in laser technology. The generation of tunable coherent radiation in the ultraviolet and vacuum ultraviolet has been reviewed (50)and a technique is described for the generation of uasi-continuous tunable excitation in the 200-nm region (54. The techniques for far-ultraviolet resonance Raman spectrosco y using a Q-switched Nd:YAG laser of unstable resonator Sesign have been described (52). Another area that continues to show rapid development is the use of computers, where Raman spectroscopy has traditionally lag ed behind its infrared counterpart. A computer-controllei data-processin s tem has been described (53) as has a computer-controllei &an spectrometer based on a double monochromator with a pulsed laser and a multichannel analyzer (54). Systems have also been reported that use an IBM PC (55) and a DEC PDP computer (56). One interesting development has been a computer-controlled switching device for a Pockel cell, used to obtain accurate measurements of depolarization ratios (57). In general, however, the comput' capabfity sup lied by the instrument available to infrared manufacturers, a l t h o z stdl short of spectroscopists, is vastly superior to that available even 2 or

0003-2700/90/0362-14OR$09.50/00 1990 American Chemical Society

!

At

RAMAN SPECTROSCOPY

Don L. 0.nard is Me Ressarch Associate responsible lor vibrational S W C ~ ~ O S C O ~atY the BP Research Centre at Sunbury-onThames. He received his Ph.0. degree ham the C i Universny. London, and joined BP in 1970. He became involved in the industrial applications 01 Raman spectroscopy in 1972. and since that time the BP Raman group has expanded into many areas of 81)plication acd includes FT-Raman and tunable

4

A

Y \ ‘ d

-

’Iw

plication of Raman techniques to mechanistic and kinetic studies 01 reacting systems, especially in situ studies at elevated temperatures and pressures. using specialized cells and fiber optics.

Joanne Blmh is part of the Ramen spectroscopy group at Me BP Research Centre at Sunbury-cn-Tharnes. She recsiVBd her Applied Chemism degree from Newcastle Polytechnic in 1985. men as a research assistant she used Raman miCrosCopy for the measurement of stress distributions in corrosion scales, receiving her Ph.D. in 1989. She b i n d BP in 1988 specializing in Raman microscopy. Or. Birnie’s current interests include the use of Raman microspy to s t q advanced materials, polymers. catalysts. and corrosion. Raman mapping and imaging. and the industria applications of micmline focus SpeCtrOmetry (MiFS).

3 years ago, and so less effort in this direction is necessary

on the part of the user. The use of fiber optics for remote sampling is still an active area of study, hut it has not yet made the impact of which it is undoubtedly capable. However, the advances in FT systems using near-infrared lasers make developments in this area highly likely in the short term. An optical fiber system suitable for use on most commercial instruments has been described (58)and the use of optical fibers with a near-infrared FT-Raman system has been reported (59). In the area of sample handling, a simple anaerobic cell for low-temperature studies has been designed (60). Also for low-temperature work a cryogenic sample manipulator capable of cooling to 15 K has been reported (61). A novel magnetic sample holder allows spectra to he obtained with simplicity and flexibility from a wide range of nonroutine samples (62). New instruments reported include a readily assembled triple spectrometer for pulsed laser-excited Raman studies with multichannel detection (63) and a spectrometer having a Hadamard electrooptical mask and a diode detector (64).

LIQUIDS AND SOLUTIONS A large proportion of the Raman work reported in the literature relates to liquid-phase studies but this section is limited to those reports that do not fit into subsequent categories. The use of Raman differential spectroscopy for studies in solution chemistry has been reviewed (65) and Raman investigation of rapid chemical changes in liquids have been reported (66).Aqueous systems offer considerable scope for Raman studies, although many applications of this type are considered in the biological section. Disulfate ion has been identified as an intermediate to sulfuric acid in acid rain formation (67)and Raman studies or surfactants have shown configurational changes during micelle formation (68). Phase transitions have been followed in nonionic surfactant-water systems (691,and molecular aggregation of ionic surfactant in formamide has been studied (70). A technique has been developed for the simultaneous determination of sulfatebisulfate-peroxydisulfate ions in acidic solutions (71) and stability constants have been determined in aqueous solutions for malonic acid and its complexes (72). Raman spectroscopy has been used to study supersaturation effects in aqueous ammonium dihydro en phosphate solution (73),the intensities of the Raman banis of phosphate and diphosphate ions in aqueous solution have been used to determine electrooptical

parameters (74),and the structure of a ueous solutions of dihydrogen orthophosphates has been equcidated (75). It is worth noting that as the value of Raman spectroscopy becomes more widely appreciated it is being increasingly used in conjunction with other, more well-established techniques. In the case of liquids and solutions it is being used in conjunction with NMR studies to provide information that cannot be obtained from either technique separately. For example, RamanINMR studies have been used to study the concentration dependence of orientational relaxation times of the nitrate ion in dilute aqueous solution (76). Other studies have involved solvation and ion association in solutions containing oxyanions (77),complex formation by lead ethanmte and lead perchlorate (78),and formation of polyampholites based on allylamines and maleic acid (79). Raman spectroscopy has been used to quantitatively monitor solution species associated with electrochemical reactions on a submillisecond time scale, (80) to study the deposition and passivation of zinc in alkaline electrolytes (81), to determine the pH dependence of intermediates in sol-gel silicate formation (821, and to study solvation dynamics (83), liquid propellants (841,and single solution droplets electrodynamically suspended (85). The solution behavior of aluminum chloride in mixed solvents has been investigated (26) and a range of products identified in the hydrolysis of titanium chloride in acid solutions (87).A Raman study of mercury and antimony halides in solution has thrown new light on Lewis basicity scales for solvents (88). The versatility of the technique enables it to be used to study interactions in molten salt systems, and the tin dichloride-aluminum chloride mixture provides an example of this (89). Other molten salt systems on which Raman studies have been reported include cadmium chloride (90). lithium nitratelsodium nitrate (91,92),and gadolinium trichloride (93). One interesting development which may have some considerable future potential is the use of Raman spectroscopy in conjunction with supercritical fluids. This offers some promise for fluorescence reduction and also as a combined technique with supercritical fluid chromatography (94).

GASES AND MATRIX I S O L A T I O N This is one of the few areas where there has been a decrease in the work reported in the literature over the past 2 years. Nevertheless, enough interesting work is still appearing to merit a section of its own. The application of Raman spectroscopy to the study of gases has been reviewed (95)as has the use of nonlinear Raman techniques (96,97) and the analysis of gases adsorbed on metals and metal films (98). Other relevant reviews relate to changes in the gas-phase reactants during chemical vapor deposition (99) and the use of Raman spectroscopy in the analysis of inorganic gases (100). Most of the work relating to matrix isolation has involved the study of hydrogen (101-103) although other systems have included uranium tetrafluoride in neon and argon matrices at 4 K (104) and chromium fluorides in inert gas matrices (105). Conformational analysis of organic molecules hy gas-phase Raman spectroscopy has been reported for molecules containing monsuhstituted four-membered rings and for materials that contain CH, or CF, roups (106). Far-ultraviolet excitation has been used to ogbtain resonance-enhanced Raman spectra of torsional modes of ethylene (107). Reactions that have been studied in the gas phase have included reaction of boron trifluoride with sulfur dioxide (108),isotopic exchange between gaseous hydrogen and palladium hydride powder (log),and the catalytic oxidation of carbon monoxide in a tubular wall reactor (110). Remote sensina of gases continues to be a fruitful area of research, and combustion diagnostics in particular are considered in the nonlinear section. Other applications have been very imaginative and have included measurement of gaseous pollutants in air ( I l l ) , measurement of atmospheric carbon dioxide and water vapor (112),the use of optical fiber based sensing in underground coal mines (1131, potential use in astrophysics (1141, and humidity measurements in the free troposphere (115). A method and apparatus have been described for the multichannel multiple polyatomic gas analysis of respiratory and anesthetic gases (116),and the use of a combined RaANALYTICAL CHEMISTRY. VOL. 62. NO. 12, JUNE 15, 1990

* 141 R

RAMAN SPECTROSCOPY

man/mass spectrometer in the o erating room has been evaluated (117). Other analytica? applications of Raman spectroscopy relating to gas-phase studies have been the effects of scavenger gases on the dissociation rate and the separation factor of uranium hexafluoride (118)and the removal of nitric oxide from flue gas by the use of water-soluble iron(I1) dithiocarbonates (119).

SOLIDS As mentioned above, this section will consider the analysis of solids not mentioned in other sections. One area where Raman spectroscopy is increasingly providing information is that of catalysis. Structural information can be obtained either in situ or ex situ and, in the former case, the relative ease with which studies can be made at elevated temperatures and pressures is a major advantage. Raman techniques have been used to follow the formation of zeolites (120) and to obtain structural information (121). Molybdenum titania catalysts have been uantitavely characterized (122 , the adsorption of heptamoqybdate ions on a-alumina and titania has been followed (l23), and molybdate dispersions on supported catalysts have been conducted (124). Titania/alumina and cobalt/alumina-titania catalysts have been characterized (125),the effect of the method of preparation on the properties of titania-supported vanadia catalysts has been elucidated (1261, and evidence has been found for the presence of crystalline chromium trioxide on chromium/silicon dioxide impregnation catalysts (127). The structure and catalytic activity of antimony oxide dispersed on tin dioxide for propene oxidation have been determined (128) and the oxidation of propene over silica-supported mol bdena-cobalt oxide, molybdena-nickel oxide, and molyb ena-manganese oxide has been monitored (129). Sulfiding catalysts have been studied by in situ Raman spectroscopy (130). Raman techniques also prove useful in monitoring the appearance and the nature of catalyst cokes and these have been reported for platinum/alumina (131) and iron catalysts (132). Raman spectroscopy finds many a plications in the study of minerals and this is further consifered in the section relating to microscopy. The analysis of ceramics and clays has been reviewed (1331, and Raman spectroscopy has been applied to the structural analysis of fluorapatite (134),stishovite (135), perovskite (136), fosterite (137), clays (138), cassiterite-bearing quartz (139), and granulated slags (140). Carbon is a material which continues to attract interest in all of its forms, the largest area of interest being CVD of diamond and diamond-like films which is considered in the section relating to thin films. Methods have been described for map ing diamond c stal structure (141) and assessing diamonzquality (142) an for determining the carbon-carbon bonding length in carbon (143). Carbon electrodes have been evaluated (144) as have different graphite8 in le in the sam les. Raman spectroscop is also roving valua$3e010gica1 an&sis of carbon fibers a n i m e t h o i have been described for strain measurements (145)and the strain dependance of the Raman frequencies for different types of carbon fibers (146). Useful information can be obtained from the Raman spectra of lasses and several structural studies have been reported, incfuding rareearth phosphates (147), silica (148),heavy-metal fluorides (149), glass ceramics (150),phos hates (1511, glasses containing heavy-metal oxides (152), [orates (153), zinc bromide based glasses (154), and many others.

f

B

7

POLYMERS Raman s ectroscopy continues to provide valuable information to t i e olymer chemist and materials scientist and this is reflectexin the diverse nature of the papers published in this area. As in previous ears, electroactive polymers continue to attract considerabg attention although the number of papers published is now on the decline as those materials lose their commercial interest. Reviews have appeared on the in situ analysis of conducting polymers (155)and the elucidation of their properties and structure from Raman data (156). Pol acetylene continues to occupy a great deal of attention and t e interpretation of its Raman spectra still gives rise to controversy. Data have been reported for the doped and undoped polymer (157,158),the influence of molecular weight

K

142R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(159), the density of vibrational states (160), and the effect of conjugation length on the conductivity (161). Other aspects of polyacetylene work that have been reported include in situ experiments on pol acetylene in electrochemicalcells (162), formation of the p o k e r on zeolite (163) iodine doping (164), doping with heavy alkali metals (1651, and synthesis of the polymer from poly(viny1chloride) (156). Other electroactive polymers that have been studied by Raman spectrosco y include polyaniline (167-170), polypyrrole (171, 172) og(1,4-phenylenevinylene) and poly(2,5-thienylenevinyfene) (173),polythiophenes (1741, and poly(p-phenylene) (175-177). Durin the period covered by this article, reviews have ap eared on new developments in Raman spectroscopy of p o k e r s (178), polymer surface characterization (1791, Raman spectroscopy in high polymer research and production (180), Raman spectroscopyas applied to polymers (181),the characterization of crystalline polymers (182), and rheooptical properties of polymers (183). Of the large tonnage commercial polymers, most of the reported work has related to polyethylene. Morphological studies of extruded linear polyethylene have been discussed (184) and other work has related to the formation of polyenes after treatin the olymer with iodine or bromine (185),the effects of etcLng &86), determination of crystallite thickness distributions (187), observations of taut-tie molecules in high-strength fibers (18% and the measurement of the degree of crystallinity of polyethylene wear debris (189). Poly(vmy1 chloride) still continues to attract the interest of the Raman spectroscopist, particularly with res ect to its degradation. Studies have included a review of t\e use of Raman spectrosco y to study the dehydrochlorinationprocess (190),the degratfation of the plasticized polymer under natural weathering conditions (191),and the effect of stabilizers on the degradation process (192). The use of Raman spectroscopy to study the physical structure of PVC has also been reported (192). Other polymeric studies of interest have included crystallinity measurements of ethylene/l-alkene copolymers (I%), chain folding in poly(ethy1eneoxide) (195),stress/strain effects in poly(ethy1ene terephthalate) (196),molecular flexibility in polymethylene (197), and the radiation chemistry of poly(methyl methacrylate) (198).

THIN FILMS AND SURFACES As in previous years, Raman s ectroscopy is still being widely used to study surfaces anithin films and there are many papers published annually on this subject. A comprehensive review of the current applications of photon-based analytical techniques includin Raman to the analysis of organic thin films has been puslished (199), and a second review relates specifically to the application of vibrational spectroscopy (200). The use of Raman techniques to study Langmuir-Blodgett films has also been reviewed (201). One of the most rapidly growing applications in this general area is the study of diamond and diamond-like films, an area of both scientific and commercial interest. Raman spectroscopy has been used to explain anomalous thermal conductivities of diamond films in terms of disorder (202). The rowth of diamond thin film in a d.c. discharge plasma has L e n monitored by Raman techniques (203),and Raman data have been correlated with friction and wear properties of hard carbon film formed on cemented carbides by d.c. plasma deposition. Diamond films produced by chemical va or depasition (CVD) have been examined and have spectral k t u r e s which suggest that the are composites of diamond and graphitelike bonding (2047. Synthesis of films and particles by CVD using a range of organic compounds has been evaluated (205) and the effect of heavy ion irradiation on diamond-like films determined (206). The quality of fibers formed by electron-assisted CVD has been assessed (207),and the composition and morphology of diamond films deposited from methane/hydrogen mixtures have been studied (208). Films synthesized by microwave plasma CVD of methane, ethanol, methanol, and acetone have been compared and the rate of growth from alcohols has been shown to be more rapid with a lower gas pressure, thus facilitating the preparation of more uniform films (209). Resonance Raman studies have been made of diamond-like amor hous carbon films and the presence of x bonded (sp2)w t o n clusters ostulated (210), and diamond-like film prepared by pulsed-tser evaporation

RAMAN SPECTROSCOPY

have been characterized (211).Polycrystalline diamond films have been analyzed and diamond films distinguished from those with some element of nondiamond bonding (212),and Raman spectroscopy has also been used to characterize diamond thin films having semiconductive properties (213). Another fruitful area of research is the study of Langmuir-Blodgett (LB) films. The elastic and structural properties of such films have been related to their Raman spectra (214).Optical properties of LB polydiacetylene thin films have been reported (215)and orientations of porph in film have been determined by using resonance-enhance Raman spectroscopy (216). The use of Raman techni ues to determine the structure of LB films has been descrzed (217). Waveguide Raman scattering has been used to obtain depth profiles of poly(styrene-d8)dispersed in polystyrene (2181,to analyze single-layer refractory oxide thin-film coatings on fused silica (2191,and to perform structural and chemical analysis in thin film and interfacial systems (200).Structural studies have been reported on microcr stalline silicon films (221)and the nitridation of silica thin f&s has been followed (222).Raman spectroscopy has been used to probe the microstructures of thin films and submicron thin-film coatin s (223),to measure film thickness in thin, growing film (224 to study thin corrosion films (225),to study ion porphyrid adsorbed on to an electrode (226)and to probe structural ro rties of amor hous films (227). Other applications have k c c d e d the stu& of fatigue and space-charge effects on submicron potassium nitrate films (2281,structure and composition in thin films formed by corrosion processes of copper and co per alloys in water (229),and in situ modified organic thin f i h s with optical guided waves (230).

Another major area of study, again relating to the value of resonance enhancement, is that of rhodopsins. The use of Raman spectroscopy and NMR spectroscopy to elucidate the structure and function of rhodopsins has been reviewed (257) as has the nature of the primary hotochemical events in rhodopsin and bacteriorhodopsin b58). Picosecond intermediates in the bacteriorhodopsin photocycle have been reorted (259)and a similar study has been undertaken for galorhodopsin (260,261). Kinetic Raman studies have revealed different conformational states of bacteriorhodopsin (262)and chromophore structure determinations of the intermediates have implications for the proton- um ing mechanism (263). Other bacteriorhodopsin stu ies ave concerned ita conformational analysis (264)and a time-resolved study of the initial trans to cis isomerization in the photocycle (265). In the wealth of publications in the biological field, other papers which have struck the eye have included a kinetic study of the retrogradation of starch-water systems (266),quantitative determination of impurities in polyene antibiotics (267), in vivo studies of pigmental cells (268),the use of fiber optic probes to monitor alcoholic fermentation (269),anal sis of gallstones (2701,studies on interstitial water in biorogical systems (2711,detection of calcific deposita in atherosclerotic lesions (2721,and a study of hemoglobin in intact cells as a probe of oxygen uptake by erythrocytes in rheumatoid arthritis (273). In view of the considerable amount of literature on biol 'cal systems, the publication of a series of books relating t x i o logical applications of Raman spectroscopy is very timely (274-276).

BIOLOGICAL MOLECULES

SEMICONDUCTORS AND SUPERCONDUCTORS

c r

The a lication of all aspects of Raman spectroscopy to the study of\iological systems continues to expand and still represents, in terms of the number of publications, the major application of the technique. In an article of this size and scope, it is only ossible to review in a cursory manner the major areas that Rave been studied by Raman spectrosco y. Review articles have concerned structural and dynamic stu8es of enzymes (231),enzyme-substrate reaction intermediates (2321,drug-membrane interactions (2331,peptides (234), proteins (2351,viruses (2361,polypeptides (237),and nucleic acids (238). The general application of Raman spectroscopy to biomolecules has also been reviewed (239). Proteins continue to provide considerable scope for study by Raman techniques, and the use of ultraviolet resonance Raman spectroscopy as applied to proteins has been reviewed (240)and UV resonance studies have also provided information on protein secondary structure (241-243). Fourier deconvolution techniques have been used on the amide I bands of proteins and conformational information has been obtained from the resolved components (244). Protein structure in viruses has been probed by Raman techniques (245)and equilibrium and nonequilibrium dynamics have been determined (246). Structure changes caused by dissociation of aspartic acid in retinal-containing proteins have been reviewed (247),ultrafast Raman studies of the reactivity of hemeproteins have been reported (248),and primar ,secondary, tertiary, and quaternary structures with specidreference to bovine growth hormone have been discussed (249). Nucleic acids provide another fruitful area of study. As with most other areas of biological stud , the use of resonance Raman techniques proves invaluabre and developments in tunable laser systems have been used to eat advanta e by the biologists. Ultraviolet resonance tecfniques have%een used to study the kinetics of exchan eable protons in &DNA (250)and resonance-enhanced a n d surface-enhanced resonance methods have led to valuable information on the complexes of antitumor compounds with DNA (251). The sequence-dependent conformations of oligomeric DNAs have been determined in aqueous solutions and in crystals (252), and the use of Raman techniques to study sequence-dependent DNA conformations has been reviewed (253). A study has been made of the interaction between DNA and a carcinogenic molecule (254),and information has been obtained on DNA hydration shells. Raman studies continue to be reported on the constituents of nucleic acids (255)and the solvent conditions leading to the formation of left-handed Z-RNA have been determined (256).

B R

Raman spectroscopy is able to provide unique information relating to semiconductorsand superconductors and to defecta in semiconductors. The Raman spectrosco y of semiconductors has been reviewed (277)as has the CRaracterization of heavily doped silicon (278). Other reviews relating to semiconductors have concerned interfacial studies (279),orsemiconductor superlattices (281), ganic semiconductors (BO), semiconductor films (2821,silicon-germanium superlattices, (W), characterisation of II-V Semiconductor heterostructures (284),and local structural order in amorphous Semiconductors (285). The majority of the pa ers relating to semiconductors concern gallium arsenide a n i related materials, and the 1 est single application of Raman spectroscopy in this area ingves the measurement of strain. Quantitative measurements of Raman sFattering from acce tors in gallium arsenide have been reported (286-288)and &aman scattering from confined longitudinal optical phonons in gallium arsenide/aluminium arsenide superlatticeshas been observed (289).Subpicosecond timeresolved studies of electron-phonon and phonon-phonon interactions in gallium arsenide-aluminum gallium arsenide multiple quantum well structures have revealed the generation and decay of these excitations (290). Raman spectrosco y has been used to measure strains in zinc selenide epitaxi8films on allium arsenide (291)and in indium gallium arsenide a l h m arsenide strained-layer superlattices (292,293{ ktress/str ain effects have also been observed for indium gallium arsenide on indium phosphide (2941,indium gallium arsenide alone, and (295)indium arsenide on allium arsenide grown by molecular beam epitaxy (296),a n t t h e depth profiling of elastic strains in lattice-mismatched semiconductor heterostructures and strained-layer su erlattices has been observed (297). Other work which has {een reported which relates to gallium arsenide includes arsenic growth on the oxidation (2981, the study of point defeds (2991, surface free carrier ensity determination (3001,damage caused by reactive ion etching (301), and studies on the heavily doped material (302). Other semiconductor studies worth noting have included resonance Raman studies (303),resonance Raman scatterin induced by interface roughness in superlattices (304), owt! of semiconductin diamond films by plasma-assiste vapor deposition (305),&e characterizationof buried semicondudor layers (306),phase transitions in two-dimensional systems (307),rare-earth barium copper oxide semiconductors,carrier concentration profiles across gallium phosphide grain

dY

C r

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

143R

RAMAN SPECTROSCOPY

boundaries (308),surface passivation (309),and the use of Raman spectroscopy to examine the effects of growth stops on the interfaces of superlattices (310). The use of Raman techniques to study superconductors continues to expand. This a highlyspecia!ized area of study and this article will mere1 grve some mdication of the s tems that have been studied. &e major compounds on whic work has been reported have been bismuth strontium calcium copper oxide (311),yttrium barium copper oxide (312),niobiumTermanium and niobium-aluminium germanium (313), strontium titanate (314),lanthanum barium calcium co er oxide (315),yttrium barium copper tin oxide (316),and?ismuth-lead-strontium-calcium-copper oxide (317 ) . The overwhelming majorit of the published work relates to yttrium barium copper oxi e and has covered such as cts as variable-temperature studies (318),stoichiometry eterminations (319),the effect of oxygen (320),and stability studies (321).

r

B

8"

HIGH-TEMPERATURE AND -PRESSURE STUDIES Raman spectroscopy can analyze noninvasively system that are not amenable to study by other techniques, and specialized cells can be constructed to analyze systems under conditions where other s ectroscopic techniques cannot operate. In particular, celE can be obtained which enable a wide range of materials to be studied at high temperatures and/or pressures. The use of the diamond anvil cell for Raman studies at ultrahigh pressures has been reviewed (322,323) as has its use for the specific study of semiconductors (324). The application of high-pressure techniques for studies at low temperatures has also been reviewed (325). A techni ue has been described for the kinetic anal sis of pressure-in uced rapid phase transitions by means of &unan scattering (326) and pressure-induced transitions of polyisoprene have been reported (327) as have high-pressure transitions in lead telluride (328). The kinetics of the highpressure h drolysis of tetramethylorthosilicate have been determineJby Raman spectroscopy and changes of rate with pressure have been attributed to changes in volume of activation (329). An investigation has been made of finite-size effects in firsborder phase transitions of cadmium sulfide (330) and the pressure dependence of the vibrational properties of beryllium oxide has been studied (331). Other systems in which phase transitions have been studied at elevated ressues have included @-9,lO-dichloroanthracene(332),thakum perrhenate (333),anthracene/tetracyanobenzene(334),zinc manganese selenide (335), zirconia (336), alkaline-earth fluorides ( 3 3 3 ,carbon dioxide (338),hydrogen sulfide (3391, and hydrogen (340). High-pressure studies have also been made of graphite-bromine intercalation compounds (341). High-temperature studies continue to produce a large number of papers, and again phase changes are well represented in the work reported. Higher order phases have been observed in the barium titanate/titanium dioxide system (342),quartz (343) calcium bromide (344),silver tantalate (345),potassium dihydrogen phosphate (346),barium metaborate (347),and cubane (348). By contrast, Raman studies at elevated temperatures have been used to show the nonexistence of a previously assumed a' high-temperaturephase of mercury diiodide (349). Other ap lications of high-temperature Raman studies have included Aoride-containin chloroaluminate melts (350), conformational e uilibria cianges of a series of dimethylcyclohexanes (358,structure and dynamics in a LangmuirB1 ett f i b (3521,mechanical deformation of highly oriented O? oxymethylene) and the relationship of Raman data to poly Young's modulus (353),structure and properties of molten salt h d r a m (354, conformational studies of iron(II1) chloro comprexes (355), complex formation in aqueous cadmium bromide solutions (356),and phonon scattering in a-Fe203 (357).

!

RAMAN MICROSCOPY The enormous potential of Raman microscopy is at last being appreciated as analysts in many different are= of application are finding the value of spatially resolved vibrational information. Areas of application that have been reviewed during the period covered by this article have been the the quantitative characterization of semiconductors (358,359), 144R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

analysis of fluid inclusions (360), the tracking of chemical transformation of articles (361),developments in instrumentation and app[cations (362),anal is of particles in the Mie size range (3631, techniques (364rand the analysis of polymer surfaces (365). One of the most important and rapidly growing areas of application of Raman microscopy is the qualitative and quantitative analysis of inclusions in minerals, which can give much valuable information to the geochemist. A computer rogram for molecular identification of such inclusions has een described (366) and the analysis of hydrocarbon fluid inclusions has been re orted (367). Carbon dioxide rich inclusions have been i&ntified in granulites (3681, Raman microsco y has been used to trace geological reactions (369), and fluif inclusions have been characterized in scheelitebearing quartz (370) and wolframite-bearing quartz (371). Other fluid inclusion studies have related to gaseous inclusions in quartz (372),methane and nitrogen in ranulites (373), fluids associated with tungsten and silver-gofd deposits (374), and inclusions in olivine (375). Another application in the study of minerals is the analysis and identification of minerals in thin section (376). Raman microscopy has been used to determine residual strains at the interfaces of silicon on quartz (377, 378) and to study the phase transformation and stress at ceramic fracture surfaces (379,380). The technique has been used to study superconducting thin films (381) and an automated microprobe has been described for the study of micro samples of semiconductors and integrated semiconductor devices (382). The area of biological studies naturally provides many applications for Raman microsco y. The techni ue has been used to study human eye le883,384) and ga%tones (385). Other reported applications of Raman microsco y are the investigation of cation distribution in amphiboles p386,387), the detection of phase transitions in orientationally disordered solids (388),measurement of deformation of high-modulus fibers and composites (389,390),nondestructive analysis of organic pigments and dyes (391),and conformational studies of a s in-oriented and drawn poly(ethy1ene terephthalate) fiber p39.2). Polarization problems in Raman microscopy have been addressed (393-395),a user friendly beam delivery system for a Raman microscope attachment has been described (396), an analytical microscope suitable as a Raman and electronic robe has been constructed (397), a Hadamard transform an microscope has been reported (398),and preliminary results have been obtained for an FT-Raman microscope system (399). One area where the Raman microprobe holds great promise for the future is in the study of corrosion mechanisms, the identification of corrosion products, and the mode of action of corrosion inhibition. A report has appeared on the analysis of a range of scales on different stainlesssteels (4001, and oxide and sulfide corrosion products have been identified for titanium, zirconium, hafnium, tantalum, and molybdenum in high-sulfur low-oxygen environments (401).

K,

RESONANCE-ENHANCEDAND SURFACE-ENHANCEDRAMAN SPECTROSCOPY Although the Raman effect is normally very weak, a fact that makes the technique relatively insensitive, the use of resonance and or surface-enhancedRaman spectroscopy can greatly increase both sensitivity and specificity. Many of the ap lications relate to biological studies and have been consigred in that section. The most important development in resonance Raman (RR) studies has been the expansion of activity in the area of ultraviolet resonance work, to a large extent due to better tunable W laser systems. Again,workers in the biologicalfield have been setting the pace, and review articles have ap ared on UV resonance Raman spectroscopy of nucleic acid 6 2 ) and proteins (403). Other W resonance reviews relate to the vacuum UV re ion (404) and its ap lications in hysical and biophysical cEemistry (405). AnotKer ma'or appkxtion of RR spectroscopy is to the study of metaltoporphyrins, which has been comprehensively reviewed (406). RR effects have been observed in zinc telluridezinc eelenide strained-layer superlattices (407) and in ultrathin superlattice structures (408). Spectrometer/detector combinations have

RAMAN SPECTROSCOPY

been compared for use in transient electrochemistry (409) and chanqes have been monitored in olyaniline during electrochemcal oxidation and reduction 810). RR studies have been reported on substituent effects in phenoxy1 radicals (411), excited electronic states of pyrene (412),methyl radicals (413), and the triplet state of 8-carotene (414). Polyene systems normally ‘ve very intense RR spectra and much work on conductin pc$mers has been reported in the polymer section. The effect of electron donor and acceptor substituents on the RR spectra of polyenes has been reported (4151,UVRR spectra have been used to characterize polycyclic aromatic hydrocarbons in coal liquid distillates (416), and excitation profiles have been determined for 1-cystine (417). Structural studies by RR have included proflavine(I1) (418), guanosine, and adenosine residues (419), guanine (420), and tyrosine (421). Evidence for ?r-bonded carbon clusters has been observed by RR spectroscopy in hydrogenated amorphous carbon (422) and Raman scattering cross sections determined for stage-1 graphite acceptor intercalated compounds (423). Other RR studies reported have related to Langmuir-Blodpett films (424),chlorophylls dissolved in liquid crystal matrices (423, halogen molecules adsorbed on metal substrates (426), and detection of the FeOOFe intermediate in the oxidation of ferrous porphyrins (427). In the area of technique development, RR s ectroscopy has been used for detection purposes with HPLC &%), correction methods have been developed for Sam le absor tion (429, 4301, and multichannel detection has gee, usei to detect resonance si nals using single UV pulse excitation (431). Surface-eLced m a n spectroscopy (SERS) has still not realized its full potential as an analytical technique, mainly because of the very limited range of substrates that can be usefully used and the difficulty often experienced in interpreting the spectra. Nonetheless the application of the technique continues to be widely reported and review articles have concerned application to biochemical systems (4321, recent advances in its ap lication for chemical analysis (433), the theory and ractice o!SERS (#), application to biological molecules (4357, and the selection rules for surface enhancement (436). A fiber optic apparatus has been described for detecting molecular species by SERS (437), and SERS at a silver electrode has been used as a detector in flow-injection analysis (438). The technique has been used to monitor the electrochemical reduction of nitrobenzene (439) and trace analysis has been achieved by using silver hydrosols and silver-coated filter papers (440) and silver colloids (441). The use of Fourier-transform instrumentation and development in laser technology has extended the use of SERS into the near-infrared re ion (442-445). SERS h s also been used to study pyrrole polymerization (446),Langmuil-Blodgett monolayers (443, surface chemical kinetics (4481, and surface oxidation of phosphonates (449) and to characterize metal substrates (450)and polyacrylamide gel formation (451). SERS has been used in direct combination with high-performance thin-layer chromatography (452) and as a probe of macromolecules (453).

NONLINEAR RAMAN SPECTROSCOPY The techniques of coherent anti8tokes Raman s (CARS) and stimulated Raman spectroscopy (SR ) continue to be applied to systems of analytical interest. Raman-induced Kerr effect spectroscopy (RIKES) is also finding some application, particularly in the area of fluorescence rejection. The use of CARS for nonintrusive temperature and species measurement in hostile environments, such as combustion and plasma processes, has been reviewed (4541,as has its specific application to combustion diagnostics (455,456). A review has also been published relating to the application of CARS to the study of reacting mixtures (457). CARS has been used to detect low concentrationsof sulfur dioxide (458)to determine the concentration of ammonia in the laboratory and on the commercial scale in an ammonia oxidation plant (459). The most important application of CARS concerns thermal and combustion diagnostics and this is reflected in the number of apers published that relate to this area. Temperature stu8es have been made of the gas phase in a graphite tube furnace (460), simultaneous temperature and concentration measurements have been made

of nitrogen, carbon monoxide, and hydrogen in combustion environments (461),and temperature measurements have been performed in a plasma-heated coal combustor (462). Other related studies have included fast temperature determination (4631, rapid determination of temperature and oxygen concentration (464),unburned gas temperature determination in an internal combustion engine (465),studies of the hydroxyl and combustion diagnosis radical in flows and discharges (4661, of coal-derived li uid motor fuels (467). CARS has also proved useful in the stujy of jets and work has been reported relating to the spectroscopy of molecules and clusters in supersonic jets (468), thermometry of a hydrogen jet (469), pro ellant combustion studies (470),and the study of silane and $silane in supersonic free jets (471). Another expanding area where CARS can make a useful contribution relates to chemical vapor deposition (CVD) studies (472). Work has been reported on the plasma-CVD of hydrogenated, amorphous silicon and its related alloys (473) and CVD deposition from silane and germane (474). Other CARS studies of interest have included the investigation of absorption transitions of large organic molecules (475), rotational dynamics in liquids (476), and time-resolved studies of hotochromic reaction mechanisms (477). 8RS is still largely the preserve of academia, although, as with other nonlinear techniques, it is gradually making an impression on industrial analysis. Most of the studies of analytical interest relate to the examination of single droplets of either single components or multicomponents, including water, carbon tetrachloride (478),benzene and ethanol (479), and fuel droplets (480),and a theory explaining the main spectral and spatial features observed in the SRS of micrometer sized droplets has been developed (481). SRS has also been proposed as a powerful tool for the stud of collisional phenomena and for combustion studies (4823: Although the technique of RIKES has been known for many years, it is only very recently that it has been considered as having any potential value for anal ical purposes. Unlike most other Raman techniques, it re ies on the sample being analyzed transmitting the laser beam, which limits its usefulness. For some specific applications, however, it does appear to have some value and it will be interesting to see if these develop in the next few years. The application of RIKES, using picosecond lasers, to transparent media, fluorescing samples, and in situ measurements of electrode surfaces has been discussed (483) and its potential value for detecting very low concentrations of samples in solution has been reported

?

(484).

ACKNOWLEDGMENT Permission to publish this paper has been given by the British Petroleum Company plc. LITERATURE CITED (1) Genard, D. L.; Bowley, H. J. Anal. Chem. 1988. BO, 368R-377R. (2) Hlgulchl, S. Buns&/ 1988. (5). 340-348; Chem. Absir. 1988, 109: 13757%. (3) Ishtda. H. Bunseki 1987, (6). 374-382; Chem. Abstr. 1987. 107: 167770r. (4) Dhamelincourt. P.; Delhaye. M. Microbeam Anal. 1987, 22&, 119-120. (5) Knoerlnger, E.; Schrems, 0. Vlb. Spectre S m t . 1087, 78, 141-225. (6) HemagUChi. H. Vlb. smh8 Sbyct. 1987, 76. 227-309. (7) Ozaki, Y.; Iriyama, K. Stud. phys. Theor. Chem. 1987. 45, 559-582. (8) Grlfftth. W. P. A&. Spechosc. (Chichster. UK) 1987. 14, 119-186. (9) McMlllan, P. F.; Hofmeister, A. M. Rev. M / n m i 1988, 18, 99-159. (10) Fateley, W. 0.;Tllotta, D. C.; Grlffiths, J. E. Roc. SfIE-lnt. Soc. Opt. Eng.1987, 822, 157-60. (11) Campion. A. Sprlngerser. Surf. Sci. 1988, 5, 261-283. (12) Ravl, R.; Raj, A. S. Bull. Electrochem. 1988, 4 (4), 395-398. (13) Sugai, S. Bussei Kenkyu 1989, 57 (5), 552-565; Chem. Absf. 1989, 1 7 7 : 47276~. (14) Tensmeyar, L. 0.; Heathman, M. A. rr AC, Trends Anal. Chem. (Pers. Ed.) 1989; 8 (l), 19-24. (15) Richter, W.; Huenerman. L. Chemtrmics 1987, 2 (4), 175-182. (16) Heta, N.; Matsude, A.; Tanaka, K. Proc. Electrochem. Soc. 1987, 87-8. 922-931. (17) Desinne, D.; Burtinn, 0.;CrunelleCros, M.; Brldoux. M.; Sawerynyn, J. P.; Sochet, L. R. Entrople 1987, 23 (134). 56-66. (18) Kalasinsky, K. S.; Minyard, J. P.; Kalasinsky, V. F.; Durig. J. R. Energy Fuels 1989, 3 (3), 304-307. (19) Heymann, D.; Read, N. Meleodtics 1987, 22 (3). 229-235. (20) Pellenberg, P. E.; Tevautt, D. E. US Pat Appl US 200, 324, 15 Feb. 1989, Appl 31 May 1988, Avail N T I S Order No PAT-APPL-6-200324. (21) Buanam-OmDanvirutal, C.; Luck, W. A. P. Spectrosc. Lett. 1987, 20 (4), 331-341.

Fpy

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

145 R

RAMAN SPECTROSCOPY (22) Leaver, I. H.; Hester, R. E.; Wing, R. B. Text. Res. J . 1988, 58 (3), 182-184. (23) Palm, K.; Mannfors, 6.; PbtHa, L. 0. J. Mol. sbvct. 1988, 774, 10 1- 106. (24) Frlesen, W. L.; Michaeilan, K. H. Can. J . Spectrosc. 1988. 33 (2), 29-34. (25)-D&man, R. P.; Wood, D. J. Anel. Appl. Specbosc. [Roc.Int. Conf.] 1987. 235-237. (26) Lewis, E. N.; Kalaslnsky. V. F.; Levin, I. W. Appl. Specbosc. 1988, 42 (7), 1186-1193. (27) Hathark. V. M.; Zimba, C. G.; Scoalen. J. D.; Rabdt, J. F. M m c h i m . Acte 1987, 2(1-6), 215-218. (28) VOgt, H. Labor R ~ x 1988, & 72(11). 1215-1216. (29) Bergin, F. J.; Shvveli, H. F. Appl. Spectrow. 1989, 43(7), 516-522. 130) church, S. P.: Stethenson, P. J.: Hendra. P. J. Chem. Ind. (London) ’ 1989, (11). 339-340.. (31) Adar, F.; Lerner. J.; Taiml, Y. klYcrobeem. Anel. 1987, 22nd, 141-143. (32) Mar, M.; Canon, K. T.; Fiuhr, W.; Wokaun, A. Appl. Spectrosc. 1988. 42 (6), 1066-1072. (33) SCMottw, N. E.; Schaertel, S.A.; Kelty, S. P.; Howard, R. Appl. SpecbosC. 1988, 4 2 (9,748-753. (34) ScMottW, N. E. Opt. fw.1987, 822, 110-113. (35) Campkn, A.; Woodruft, W. H. Anal. Chem. 1987, 59 (22), 1299A. (38) Pemberton, J. E.; Soboclnski, R. L. J . Am. Chem. Soc. 1989, 7 7 7 (2), 432-434. (37) WHHemson. J. M.; Bowling. R. J.; McCreery, R. L. Appl. Spectrosc. 1989, 43 (3). 372-375. (38) Mmaguchi, H. Appl. Spectrosc. Rev. 1988, 24 (1-2), 137-174. (39) W%m, K. P. J.; &nard, D. L. Shrd. phys. Theor. Chem. 1987, 45, 133-142. (40) Pwcell, F. J. SpecboscopV (ELlgeneoleg)1989, 4 (2), 24-25. 28, 30, 32-33. (41) humark, V. M.; zknba, C. G.;Swalen, J. D.; Raboit, J. F. Specbosccpy ( E m , &08) 1987, 2 (6), 40, 42, 44-47. (42) Chase, 0. Wmchh.Acte 1987, 3(1-6), 81-91. (43) Tllpp, C.; Buije, H. A&&h. Acta 1987, 2 (1-6). 209-213. (44) Parker. S. F.; Wiiilams, K. P. J.; Hendra, P. J.; Turner, A. J. Appl. Spscbpsc. 1988. 42 (5), 796-800. (45) eUya, H.; GUY, H.; Bordelau, A.; DlOn, S.; Ismaei, A. Am. Lab. (F8kf%M, Conn) 1989, 27 (2), 62, 64, 66, 68-69. (48) Schrader, 6.; Simon, A. W r w h l m . Acta 1987. 2(1-6). 227-230. (47) Swelen, J. D.; Rabott, J. F. Specbosc. 1987, 47 (5). 721-728. (48) Savoie, R.; Beeuchesne, P.; Levesque, D. Mlkrochlm. Acta 1987, 2 (1-6), 223-225. (49) Lewls, E. N.; Kalaslnsky, V. F.; Levin, 1. W. Appl. Spectrosc. 1989, 43 (l), 156159. (50) Stdcheff, B. P. NATO AS1 Ser, Ser. C 1988, 234, 63-88. (51) Oustafson, T. L. Opt. Commun. 1988, 67(1), 53-57. (52) Kelly, P. 6.; Ll, S.; Strahan, G. D.; Hodson, B. AIP Conf. Proc. 1987, 760, 430-432. (53) mu, J.; Chen. H.; Chen, W. Y/ql Yibko Xuebao 1988, 9 (I), 108-112; Chem. Abstr. 1 9 1 , 709: 160103h. (54) Gaohko, 0. A.; Zyl’bert, V. K.; Kivach, L. N.; Maskevitch. S. A.; Podtyn-0, S. G. Zh.MI. SPWOSk. 1988, 49(4), 692-695; Chem. Ab&. 1988. 709: 240343b. (55) Lowe, M.; Biumenroeder, S.; Kutt, P. H. Comput. phys. Commun. loan. 387-373. . - . 50 - .( -3 ,. - - . - . -. (56) Armstrong, D. P.; Fletcher, W. H.; Trimble, D. S. J . Raman Spectrosc. 1088. 79 . 18). ,., 547-552. . ..(57) Stwle, D.; Stevens, J. A.; Gerrard, D. L.; Maddams, W. F. S. Raman Spsctrosc. 1987, 78 (5). 373-374. (58) Hendra, P. J.; Ellis, 0.;Cutler, D. J. J . Raman S p e c m c . 1988, 79 (6), 4 13-41 8. (59) Archibald, D. D.; Lln, L. T.; Honigs, 0. E. Appl. Spectrosc. 1988, 42(8), 1558-1563. (60) Drozdzewski, P. M.; Johnson, M. K. Appl. Spectrosc. 1988, 42 (8). 1575-1577. (81) Chla, V. K. F.; Veirs, D. K.; Rosenbiatt, G. M. J. Vac. Scl. Techno/.A 1989, 7(1), 108-109. (62) Freeman, R. D.; Hammaker, R. M.; Meloan, C. E.; Fateiey, W. G. Appl. spscbapc. IS68, 42(7), 1319-1321. (63) Bells, S. E. J.; Gordon, K. C.; McQarvey, J. J. J . R8m8n Spectrosc. 1989, 20 (2). 105-119. (64) Fateby, W. 0.; Tilolta, D. C. PCT Int. Appl. WO 89 01, 622. (65) Kamogewa, K.; Kltagawa, T. Bunko Kenkyu 1987, 36 (l), 3-19; Chem. Abstr. 1987, 107: 164155h. (68) Viot, P.; Tarjus. 0.; Bratos, S. J . Mol. Liq. 1987, 36, 185-204. (67) Chaw, S. G.; LMejohn, D.; Hu, K. Y. Science (Wash/ngton, D.C. 18834 1987, 297 (4816), 756-758. (68) Babsubramanian, D.; Rao, C. M.; Kshirsagar, S. T. Interact. Water I M k hknknlc m t e s , ROC. 1987, 246-50. (69) C%&eS, R.; Brbes, J. L.; Spatouch, S.; Ammour, J.; Malllols, J. J . Ramen speclrasc. 1988. 79 (3), 149-153. (70) Amorim da Costa,A. M. J . W .sbuct. 1988, 774, 195-200. (71) Tasaka, A.; Takenaka, Y. Denki Kag~druOyobl K o g ~ oButauri Kagaku 1988, 56 (9), 745-750 Chem. Abstr. 1989, 709: 1 0 7 2 4 1 ~ . (72) Jebsr, M.; W n , F.; Thomas-Davld, G. Bcdl. Soc.Chkn. Fr. 1988, (3), 470-473; Chem. Abstr. 1989, 770: 83146r. (73) Llu, 0.; Wu, G. Specbpcmbn. Acta PartA 1988. 44A (lo), 1007-1010. (74) Eysel. H. H.; Lim, K. T. J. Raman Specirosc. 1988, 79 (a), 535-539. M. K.; K. A. J . @st.5vtnYt 1987, 84(4), 577-588. (75) Cm-, (76) Adachl, A.; Klyoyama, H.; Nakahara, M.; Masuda, Y.; Yamatera, H.; Shlmku, A.; Tanlguchl, Y. J. Chem. phys. 1989, 90 (l), 392-399. (77) James, D. W.; Mayes, R. E.; Leong, W. H.; Jamie, I. M.; Zhen, G. FWliday DlSCUSS. Chem. Soc. 1988v85, 269-281.

Am.

. .

~

. .

m.

m.

146R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(78) Campbell. S. A.; Lowry, R.; Newmark, R. D.; Peter, L. M. Chem. Phys. Lett. 1989, 755 (l), 89-92, (79) Kudalbergenor, S. E.; S w , V. 6.; Bekturov, E. A.; Ketts. I.; FHlpp, B. VysdOtTWl. S & Ser. 8 1989, 37 (2), 132-138; chem.Abslr. 1989, 770: 213749~. (80) Packard, R. T.; McCreery, R. L. J phys. Chem. 1988, 92 (22), 6345-6351. (81) Hug~t-le’Goff, A.; Joiret, S.; Saidani. 6.; Wlart, R. J . Ektrmnel. Chem. I n t e r f e c i a l E . 1989, 263 (l), 127-135. (82) Uppert. J. L.; Meipoldet. S. 6.; Kelts, L. M. J . Non-Cryst. So&% 1988, 704 (l), 139-147. (83) Sue, J.; Mukamel, S. J . Opt. Soc.Am. 8 : Opt. phys. 1988, 5 (7), 1462-1472. (84) Vandemoff. J. A.; Bunte. S. W.; Donmoyer, P. M. Report 1988, BRL-lR2845; Order No ADA187291, Avail. NTIS from Gov. Rep. Announce. Index (US) 1988, 88 (8), Abstr. No 618, 970; Chem. Abstr. 1988, 709: 238602. (85) Fung, K. H.; Tong, I. N. Appl. Opt. 1988, 27(2), 206-8. (86) Emons. H. H.; Blrkeneder, F.; Poltmar, K. Interect. Water Ionlc Nonlonic W t e S , ROC. SVmp. 1887, 51-54. (87) Sbygln, L. M.; Vovk, S. M.; Goncher, V. F. Zh. Neorg. Khim. 1988, 33(7) 1706-1712; Chem. Abstr. 1988, 709: 1360359. (88) Persson, I.; Sendstroem, M.; w i n , P. L. Inorg. Chim. Acta 1987, 129 (2), 183-197. (89) Culbert, B. P.; Taulelle, F.; Tremiibn, B. J . Raman Spectrosc. 1988, 79 (l), 1-8. (90) Tagaki, Y.; Itoh. N.; Nakamura, T. J . Chem. Soc. Faraday Trans. 7 1989, 85 (3), 493-501. (91) Happ, H.; Boehm, T.; Kasemann, A.; Neuerbourg, R. J . phys. C : SoM Staete MyS. 1987, 20 (34), 5869-5900. (92) Kato, T.; Machida, K.; Oobatake, M.; Hayashi, S. J . Chem. phys. 1988, 89 (5), 3211-3221. (93) Igarashi, K.; Okamto, Y.; Ohno, K.; Mochlnaga, J.; Umesaki, N.; Iwamoto, N. Kidorui 1988, 72, 52-53; Chem. Abstr. 1988, 709: 2375 16r. (94) Davidson. 0.; Davies, C. L. Spectrochim. Acta Part A 1989, 45A (3), 371-373. (95) Barron, L. D. NATO AS1 Ser. Ser. C 1988, 234 (Front. Laser Spectrow. Gases), 241-280. (96) N W , J. W.; Pubanz. G. A. A&. Speclrasc. (Chlchester UK) 1988, 75 (Adv NonUnear Spectrosc), 1-50. (97) Nlbk, J. W.; Yaw, J. J. Annu. Rev. phys. Chem. 1987, 38,349-381. (98) Watanabe, M. Stud. Swf. Scl. Catal. 1987. 32 (Thin Met Films Gas ChemisWpt). 369-432. (99) Richter, W.; Huenermann, L. Chemtronlcs 1987, 2 (4), 175-182. (100) Nemets, V. M.; Petrov, A. A.; Solov‘ev, A. A. Zh. Rlkl. Spektrosk. 1987, 47 (4), 536-548 Chem. Abstr. 1988, 708: 482381. (101) Bier, K. D.; Jodl, H. J.; Daeufer, H. Can. J . phys. 1988, 66 (a), 708-715. (102) Bier, K. D.; Jodi, H. J.; Daeufer, H. Can. J . phys. 1988, 66 (e), 718-720. (103) Alikhani, M. E.; SUvi. 6.; Perchard, J. P.; Chandrasekharan, V. J . them. PhYS. 1989, 90 (IO), 5221-5231. (104) Bukhmarina, V. N.; Predtechenskii. Y. 6.; Shyklyarik, V. G. Opt. Spektrosk. 1987, 82 (5). 1187-1188; Chem. Abstr. 1987, 707: 297723m. (105) Bunova. 0. V.; Sklyarik, V. G.; Shcherba, L. D. Zh. Fiz. Khlm. 1988, 62 (6). 1640-1642 Chem. Abstr. 1988, 709, 82418~. (106) b i g , J. R.; Sullhran, J. F.; Geyer, T. J.; m y , S. E.; Little, T. S. h e Appl. Chem. 1987, 59 (lo), 1327-1342. (107) Sensbn, R. J.; Mayne, L.; Hudson, B. J . Am. Chem. Soc. 1987, 709 (16), 5036-5038. (108) Touin, J. 2.Chem. 1987, 27(5), 180-181; Chem. Abstr. 1987. 107, 2 109880. (109) Fob, G. W.; M&Js, C. F. J . 1987, 708 (2), 409-425. (110) England, W. A.; Cyimore, A.; Greenhalgh, D. A,; Thomas, W. J.; Uilah, U.; WMttleY. S. T. Appl. &tal. 1988, 3 7 (1-2), 259-272. (111) Bekhtadze, Y. V.; Eristavl, V. D. Naudn,. Tr-chrr pokyekh Inst. lm V I Len& 1988, 4 , 13-14; Chem. Abstr. 1988, 709, 60555~. (112) Riebesell, M.; Voss, E.; Lohmann, W.; Weitkamp, C.; Michaelis. W. Roc. Int. Conf. Lasers 1988, 129-135. (113) Stuart, A. D.; Samson, P. J.; Fredericks, P. M. Repat 1988, BHPCRL/R-25/86, Avail. BHP, Cont. Res. Lab., Shortland, Australia. (114) Nussbaumer. H.; Schmld, H. M.; Vogel, M. Astron. Astrophys. 1989, 277 (2), L27-L30. (115) Vaughan, G.; Wareing. D. P.; Thorias, L.; Miter, V. 0 J R h.ieteord. Soc. 1988, 774 (484), 1471-1484. ( 116) Van Wagenen. R. A.; Geisler, J. D.; Gregonis, D. E.; Coleman, D. L. U S US4 784 488 (C1 356-301; 01J3/44). 15 Nov 1988, Appl. 106 791. (117) WeStenskow, D. R.; smlth,K. W.; Coleman, D. L.; Ctegorls. D. E.; Van Wagenen, R. A. Anesihesldogy 1989. 70 (2). 350-355. (118) Kato, S.; TakeucM, K.; Oyama, T.; Satooka, S.; Midorikawa, K.; Tashimo, H.; N e w ,S. Reza Kagaka Kenkyu 1987, 9 , 55-57: Chem. Abstr. 1988, 708: 120718k. (119) Liu, D. K.; Chang, S. G. Envhon. Sci. Techno/. 1988, 22 (lo), 1196-1200. (120) Dutta. P. K.; Purl, M.; Shieh, D. C. Wtw. Res. Soc. Symp. Roc. 1988, 7 7 7 (Microstruct Prop Catal), 101-106. (121) Buckley, R. G.; Deckman, H. W.; Newsam, J. M.; McHenry, J. A,: Persons, P. D.; Wkzke, H. Meter. Res. Soc. Symp. Roc. 1888. 7 7 7 (Miaostruct. Prop. Catal), 141-146. (122) Oulncy, R. 6.; Houalla, M.; Hercules, D. M. J. Catal. 1987, 706(1), 85-92. (123) Van Veen, J. A. R.; De Wit, H.; Emlls, C. A.; Hendrlks, P. A. J. M. J . Catal. 1987, 707 (21, 579-582. (124) Murgraf, R.; Leyser, J.; Knoezlnger, H.; Taglauer, E. S w f . Scl. 1987, 189-190, 842-850.

a&/.

RAMAN SPECTROSCOPY (125) Stranlck, M. A.; Houalla, M.; Herules, D. M. J . Catal. 1987, loS(2), 362-368. (126) Hauskrgw, G.; Schmeltz, H.; Knoesinger, H. Appl. Catal. 1988, 39 (I-2), 287-283. (127) Rlchter, M.; Relch, P.; Oehimann, 0.J . Mol. Catal. 1987, 46(1-3), 79-86. (128) Ono. T.; Yamanaka, T.; Kubokawa, Y.; Komlyama. M. J . Catal. 1988. 109 (2), 423-432. (129) Grabowski, R.; Sloczynskl, J.; Dyrek, K.; Labanowska, M. Appl. Catal. 1987,32(1-2), 103-115. (130) Yang, X. alyw Xuebao Shiyw Jisgong 1987,3 (4), 92-98; Chem. Abstr. 1988, 109: 1167501. (131) Barbier, J.; Churin, E.; Marecot, P. Bull. Soc. Chlm. Fr. 1987,(6), 910-916 Chem. Abstr. 1988, 108, 1 8 9 4 7 5 ~ . (132) Watanabe, M. Appl. Catal. 1988, 38 (I), 1-17. (133) Shibata, S.;Shlnji, T. Bunseki 1988, (12), 932-938; Chem. Abstr. 1989, 110: 178043~. (134) Matttn, F.; Rkto, A. C.: Martin, I.; Ruil, F. J . Raman Specfrosc.1989, 20 (I), 21-25. (135) Von Czarnowski, A.; Huebner. K. Phys. Status Sdidi 6 1987, 142 (I),

K9l-K96.

(136) WIHlams, 0.; Jeanioz, R.; McMilian, P. J . oeophvs. Res. B 1987,92 (sa), 81 16-8128. (137) ohose, S.; Hastlngs, J. M.; Corliss, L. M.; Reo, K. R.; Chaplot, S. L.; Choudhury, N. SoM State Commun. 1987,63 (ll), 1045-1050. (138) Wada, N. AIP Conf. Roc. 1987, 154 (Phys Chem Porous Media 2). 195-205. (139) Mangas, J.; Arribas. A. Bull. Mlnerall988, 11 1 (3-4), 343-358. (140) Dron, R. Can@. Int. a i m . Clmento [ A n ] , 8th 1988, 4 , 81-85; Chem. Abstr. 1988, 109, 115200b. (141) Bowley, H. J.; Gerrard, D. L. P C T Int Appi WO 88 07, 189 (C1 G01N21/65), 22 Sept 1988sGB Appi 8716 422, 18 Mar 1987. (142) Bowley, H. J.; Gerrard, D. L. P C T Int Appl W087 03 983 (C1 G01N21/87), 02 Jui 1987, G B Appi. 85/31 330, I 9 Dec 1985. (143) Fitzer, E. Carbon 1988, 26 (4), 594-595. (144) BoWthQ, R.; Packard, R.; McCreery, R. L. J . Electroahem. Soc.1988, is5 (61,1605-1606. (145) Sakata, H.; Dresselhaus, 0.; Endo, M. Report 1987 AFOSR-TR-880234; Order No ADAl91710, Avail. NTIS from Gov. Rep. Announce. Index (U S) 1988, 88 (16), Abstr. No 841 759. (146) Robinson, I.M.; Zaklkhani, M.; Day, R. J.; Young, R. J.; Galiotis, C. J . . . Len. lam. -~- - e t a .r sci. .--., 13 1101. .. ,, 1212-1214. .- .- .- . . . (147) Morgan, S. H.; Magruder, R. H.; Silberman, E. J . Am. & r a m . Soc. 1987. 70 (121. , -,, C378-C380. - . . - ... (148)-Miudder, C. A. M. J . Non-Cryst. Sol& 1987,95-96 (Pt I), 303-310. (149) Yasui, I.; Inoue, H. Meter. Sci. Forum 1987. 19-20(Haiide Glasses, Pt I), 103-109. (150) Clarke, D. R.; Schwa*, B. J. h4ater. Res. 1987,2 (6), 801-804. (151) Wasylak, J.; Czerwosz. E.; DMuszuko, R. Sprechreal 1987, 120 (9), 739-743. (152) Miller, A. E.; Nassau, K.; Lyons, K. 8.; Lines, M. E. J. Non-Cryst. SONds 1988, 99 (2-3). 289-307. (153) Kwkjian, C. R.; Peterson, G. E.; Lunt, S. R.; Kroi, D. M. Colkct. PapInt. Congr. oless 14th 1988, 1 , 68-73. (154) Kadono, K.; Nokamichi, H.; Tanaka, H. Meter. Sci. Forum 1988, 32-33. (Halide Glasses 5), 433-436. (155) Kuzmany, H. Meter. Scl. Forum 1987,2 1 , 95-1 10. (156) Zerbl, 0.;Dellepiane, 0.Oeu. CMm. Ital. 1987, 117(10),591-598. (157) Lefrant, S.; Muiaui, E.; Faulques, E.; Penln, E. J . Mol. Electm 1988, 4 (3), 167-172. (158) Lefrant, S.;Perrin, E.; Mulaui, E. Synth. Met. 1989, 28 (3), 0295D302. (159) Schen, M. A.; Lefrant, S.;Penin, E.; Chien, J. C. W.; Mulazzi, E. Synth. Met. 1989, 28 (3), D2874294. (160) TekWchl, H.; Arakawa, T.; Furukawa, Y.; Harada, I.; Shirakawa, H. J . Mol. sbyct. 1987, 158, 179-193. (161) Scheefar-Skbert, D.; Roth, S.;Budrowski, C.; Kuzmany, H. Synth. Met. 1987,21 (3), 285-291. (162) Lefrant. S.Conduct Polym. Roc. Workshop 1988,37-46. (163) Dutta, P. K.; PWl, M. J . Catal. 1988, 171 (2), 453-456. (164) F m , J. R.; Furlenl, A.; Russo, M. V. Appl. Spec&osc.1987. 41 (5), 830-833. (165) ahanbak, J.; BHlaud, D.; Perrin, E.; Verdon. T.; Lefrant, S. Synth.Met. 1989, 28 (3), D339-0344. (1661 Pericheud. A,; Dhainaut. S.: Bernler. P.: Lefrant, S.Synfh. A&. 1988, ' 2h (1-2), 7-13. (167) Sarlcmci, N. S.;Kuzmany, H.; Neugebauer, H. J . Mol. Electron 1987, 3 (3), 141-147. (168) Hagiwara, T.; Yamawa, M.; Iwata, K. Synth.Met. 1988, 25 (3), -243-252. .-. (169) Bein, T.; Enzel, P. Synth.Met. 1989. 29 (I), E163-EI68. (170) Furukawa, Y.; Ueda, F.; Hyodo,Y.; Harada, I.; Nakajima, T.; Kawagoe, T. Akcromdecuks 1988, 21 (3,1297-1305. (171) Olk. C. H.; Beetz, C. P.; Heremans, J. J . Meter. Res. 1088. 3 (5), 984-988. (172) cheung,K. M.; Smith, 8. J. E.; Batchelder, D. N.; Bkor, D. Synfh. Met. 1987,21 (2), 249-253. (173) Fmkawa, Y.; Sakamoto, A.; Tasumi, M. J. Phys. Chem. 1989, 93 1141. . .,, 5354-5358. - - - . - - - -. (174) Bo-. C.; Luueti. S.;Dellepiane, G.; Taliani, C. Synth. Met. 1989. 28 13). D3314337. (175i"enfiand, M.; Brillante, A.; Syassen, K.; Stamm, M.; Fink, J. J. chem. P h 9 . 1980,90 (3). 1930-1934. (176) Mnfiand. M.; Brlilante, A.; Syassen, K.; Stamm. M.; Fink, J. Synth. Met. 1989, 29 (1). E13-El6. ~

__

.

(177) Ashley, K.; Party, D. 8.; Harris, J. M.; Pons, S.; Bennion. D. N.; La Follette, R.; Jones, J.; King, E. J. Ekb.ochlm. Acta 1989, 34 (5), 599-610. (176) Bulkin, 8. J.; Lewin, M. Int. Symp. &&m. A&. Technol. Invked Lect. Sel. Contrib. Pap. 1987,891-899. VCH New York, 1988. (179) Gillberg, G. J . Adtms. 1987,21 (2), 129-154. (180) S t m , W. E. &k&. chem.,M e w . Symp. 1988, 18, 77-92. (181) Schiotter. N. E. I n Enecycl. polLim. Sci. Eng. 1988, 14, 8-45. Ed. Kroschwk, J. 1.; Wiley: New York. (182) Mandekern, L. P o r n . Meter. Sci. Eng. 1988, 59, 464-465. (183) Wlkes, G. L. Encycl. P0b-m. Sci. Eng. 1988, 14, 542-621. Ed Kroschwitz, J. I.; Wley: -New York. (184) Richter, A.; Carius, W.; Kammer, H. W.; Graefe, F. Acta polLim. 1987, 38 1101. .. , 597-581. - - . - - .. (I85j Williams, K. P. J.; Parker, S. F. Pokm. Commun. 1988, 29 ( l l ) , 3 14-3 16. (186) Siperko. L. M. Appl. Spectrosc. 1989, 43 (2). 228-229. (187) Voigt-Martin. I. G.;Stack, G. M.; Peacock, A. J.; Mandetkern, L. J . Polym. Sci., Part B : Polym. Phys. 1989, 2 7 ( 5 ) , 957-965. (188) Prasad, K.; Grubb, D. T. J . Polym. Sci., Part6: Polym. Fhys. 1989, 27 (2), 381-403. (189) Dothee, D.; Berjot, M.; Marx, J. Pokm. w a d . Stab. 1988, 20 (2). 149-155. (190) Bowley, H. J.; Genard, D. L.; Bmin, I. S. Pokm. Degrad. Stab. 1988, 20 13-4). 257-269. (191) i3Owby. H. J.; Blggin, I.S.; Gerrard, D.L.; Williams, K. P. J. A&. Org. Coat. Sci. Technol. Ser. 1988, 10 (Int. Conf. Org. Coat. Sci. Technoi. 12th, 1986), 92-96. (192) Bowley, H. J.; Gerrard, D. L.; Biggin, I. S. J. Vhyi. Technol. 1987,9 (2), 43-45. (193) Cousin, P. J. Vinyl Techno/. 1988, 10 (4), 175-177. (194) Cias, S. D.; Heyding, R. D.; McFaddin, D. C.; Russell, K. E.; Scam meiCBuilock, M. V.; Kelusky, E. C.; St-Cyr, D. J. Pokrn. Sci., Part B: Polym. Phys. 1988, 2 6 ( 6 ) , 1271-1286. (195) Song, K.; Krimm, S. Macmnwlecules 1989, 22 (3), 1504-1505. (196) Fine. L. J.; Bower, D. I.; Ward, I . M. Polymer 1988, 29 (12), ~

.

-3146-9151 . .- - .- ..

7) Zerbi, G.; Roncone, P.; Longhi, G.; Wunder, S. L. J. Chem. Phys. 9 89 (I), 166-173. (198) Lehockey, E. M.; ReM, I.; Hili, I . J. Vac. Sci. Technoi., A 1988, 6(4), 2221-2225. . -. (199) Debe, M. K. Rog. Surf. Sci. 1987,24(1-4), 1-282. (200) Takenaka, T. Meku 1987, 12(4), 201-210; Chem. Abstr. 1987,107: 243228n. (201) Swalen, J. D. J . Mi. Electron. 1988, 2(4), 155-181. (202) Morelii, D. T.; Beetz, C. P.; Perry, T. A. J. Appl. Phys. 1988, 64 (6), 3063-3066. (203) Sawabe. A.; Yasuda, H.; Inuzuka, T.; Suzaki, K. Appl. Surf. Sci. 1987,33-34 (1-4). 539-545. (204) Shroder, R. E.; Nemanich, R. J.; Glass,J. T. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 969 (Dlamond Opt.), 79-85. (205) Hirose, Y.; Teraswra, Y.; Takahashi, K.; Iwasaki, K.; Tezuka. K. Oyo Butswi 1987,56(2), 247-255; Chem. Abstr. 1987, 107: 117780~. (206) Rawer, S.; Kalish, R.; Adel, M.; Richter, V. J. Appl. Phys. 1987, 61 (9), 4492-4500. (207) Kobayashi, K.; Karasawa, S.;Watanabe. T. Hyomen Gjutsu 1989, 40 (l), 108-109; Chem. Abstr. 1989, 110: 176038~. (208) Moustakas, T. D.; Dismukes, J. P.; Ye, L.; Walton, K. R.; Tledje. J. T. Roc.-Electro&em. Soc. 1987,87-8 (Proc. Int. Conf. Chem. Vapor Deposition. loth 1987). 1164-1173. (209) Watanabe, I.; Sugata,K. Jpn. J . Appi. Phys., Part 11988, 2 7 ( 8 ) , 1397- 1400. (210) YosMkawa, M.; Katagiri, G.; Ishide, H.; Ishltani, A.; Akamatsu, T. Appl. Phys. Lett. 1988, 52 (19), 1639-1841. (211) Sato, T.; Furuno, S.;Iguchi, S.; Hansbusa, M. Appl. Phys. A 1988, A45 (4), 355-360. (212) Plano, L. S.; Adar, F. Roc. SPIE-Int. Soc. Opt. Eng. 1987. 822(Int. Conf. Raman. Lumin. Spectrosc. Technol. l987), 52-56. (213) Okano. K.; Naruki. H.; Akiba, Y.; Kurosu. T.; Iide, M.; Hirose, Y. Jpn. J . Appl. Phys., Part 2 1988. 27 (2), L173-L175. (214) Stegeman, G. I.Report 1986, ARO-20055.5-PH; Order No. A D A175658/4/GAR, Avail. NTIS From Gob. Rep. Announce. Index (U S) 1987, 87 (a), Abstr. No 713, 701. (215) Kaneko, F.; Dresselhaus. M. S.;Rubner, M. F.; Shibata, M.; Kobayashi, S. Thin Wid Films 1988, 160, 327-332. (216) Vandevyver, M.; RuaudeCTeixier, A.; Barraud. A. Thin Sdid Films 1988, 159, 315-322. (217) Swalen, J. D. Thin Wid Films 1987. 152 (1-2). 151-154. (218) Miller, D. R.; Bohn, P. W. Appl. Opt. 1988, 2 7 ( 1 2 ) , 2561-2566. (219) Tallant, D. R.; Higgins. K. L.; Stewart, A. F. Appl. Spectrosc. 1988. 42 (2), 326-30. (220) Bohn, P. W. r r . AC. Trends A M . chem. (Pea. Ed.) 1987, 6 (g), 223-233. (221) Roy, S.; De, S. C.; Barus, A. K. Thin SoM Films 1088, 156 (2), 277-285. (2221 Olechant. A.; Bailand, B.; Ronda, A.; Bureau, J. C.; Plossu, C. Surf. SCi. 1988. 205 (I-2), 287-310. (223) She, C. Y. Thk, Sol& Films 1987, 154 (1-2). 239-247. (224) Mccarty. K. F. Appl. Opt. 1087,26 (20). 4482-4486. (225) Dellchere, P.; Hugot-Le Goff. A.; Joiret, S. SIA Surf. Interface Anel. 1987. 12 11-12). 419-423. (226) &ize,'R. € h i m . Acta 1988. 33(11), 1619-1627. (227) She. C. Y.; Hau, L. S. NBS Spec. Pubi. (U S) 1988, 746 (Laser Induced Damage Opt. Mater.: l985), 383-387. (228) Scott, J. F.; Pouilgny, B. J. Appl. Phys. 1988, 64 (3), 1547-1551.

___ ___

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

147R

RAMAN SPECTROSCOPY (229) Chbhi, H. L.; Audbb, S.; Dupuy, J. C.; b e a u , J. C. I n Second Ion Mass Spectrom. Proc.. Int. Conf. 6th 1987, 1003-1006. Eds Benntnghoven, A.; Huber, A. M.; Werner, H. W.; Wiley: Chlchester, UK. (230) Bohn, P. W.; Fell, N. F. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 990 (Chem., Bkchem., Envlron. Appl. Fibers). 130-137. (231) Nowak, I.;Anzenbacher, P.; Twardowski, J. Zagadnbnia B/o& WSp0kzesmJ1988, 13 (1). 31-50 Chem. Abstr. 1988, 109: 88481k. (232) Carey, P. R.; Storer, A. C. Zagadn/enla Bloflz Wspolcresnej 1988, 13 (l), 15-30. (233) Levin. I.W.; O'Leary, T. J. Appl. Polym. Anal. Charact. 1987, 143-156. Ed. Mltcheii, J.; Hanser: Munich, Fed. Rep. Ger. (234) Kisters, B. Bar Kmfofs&wgsan&ge Juellch 1988, Juel-2179; Chem. Abstr. 1988, 109: 110865n. (235) Harada, I.; Takeuchi, H. Adv. Spectrosc. (Chlchester, UK) 1988, 13 (SpeCtrOSC. BIOI. SySt.), 113-175. (236) Thomas, G. J. Adv. Spectrosc. (Chlchester, UK) 1988, 73 (Spec~~OSC Bbl. . SySt.), 233-309. (237) Krimm, S. Vib. Spectra Struct. 1987, 16, 1-72. (238) Tsuboi, M. Stud. Phys. Thew. Chem. 1987, 45 (Laser Scattering Spctrosc. Bioi. Objects), 351-368. (239) O'Leary, T. J. Springer Ser. Opt. Sci. 1987, 54 (Lasers, Spectrosc. New Ideas), 317-326. (240) Shiro, T. G.; Grygon, C. A. J. Mol. Struct. 1988, 173, 79-90. (241) song, S.; Asher, S. A:; Krimm, S.; Bandekar, J. J . Am. Chem. Soc. 1988, 710 (25), 8547-8548. (242) Stewart, 8.; De Groot, J.; BrameM, J.; Hester, R. E. Stud. Phys.

(279) Abstreiter. G. NATO ASI Ser. Ser. B 1987. 152(0d. . . Prom Narrow' &p Low-Dimens Struct), 269-278. (280) Bandrauk, A. D. NATO ASI Ser, Ser. B 1987, 155 (LowDlmensConduct-Supercond), 295-305. (281) Sapriel, J. Roc. SPE-Int. Soc. Opt. Eng. 1988, 946(Spectrosc. Charact. Tech. Semlcond. Technol. 3), 136-145. (282) Fauchet, P. M.; Campbell, I.H. Roc. SPE-Int. Soc. Opt. Eng. 1987, 794 (Mod. Opt. Charact. Tech. Semicond. Semlcond. Devices), 167- 169. (283) Abstreltar, G.; Brugger, H.; Eberl, K.; Zachal, R. Roc. P I E - I n t . Soc. Opt. Eng. 1987, 792 (Quantum Well Supertattlce Phys.), 77-85. SPIE-Int. SOC.Opt. Eng. 1989, 7037 (Monit. (284) Wicks, G. W. ROC. Control Plasma-EnhancedProcess Semicond.), 30-34. (285) Lannin, J. S. Phys. Today 1988, 41 (7). 28-35. (286) Harris, T. D.; Lamont, M. G.; Seibles, L. Mater. Res. Soc. Symp. R o c . 1988, 104 (Defects Electron. Mater.), 479-462. (287) Wagner, J.; Ramsteiner, M.; Seelewind, H.; Clark, J. J . Appl. Phys. 1988, 64 (2). 802-807. (288) Wagner, J.; Wlndscheif, J. SemCInsul 1114 Mater. hoc. Conf. 5th 1988. 507-514. Ed. Grossmann, G.; Ledebo. L.; Hilger: Bristoi, UK. (289) Zhang, S.; Klein, M. V.; Kiem, J.; Morkoc, H. Phys. Lett. A 1988. 64 (2). 802-807. (290) Tsen, K. T.; Morkoc, H. Roc. Int. Conf. Lasers 1987, 575-579. (291) Nakashima, S.; Fujii, A.; Mizoguchi, K.; Mitsuishi, A.; Yoneda, K. Jpn. J. Appl. Phys.. Part 7 1988, 27(7), 1327-1330. (292) Ilkawa. F.; Cerdeira, F.; Vazquez-Lopez, C.; Motisuke. P.; SacYattl, M.

229-248. (243) Bassian, B. M.; Sander, C. Blochemistty 1989, 28 (lo), 4271-4277. (244) Susl, H.; Byler, D. M. Appl. Spectrosc. 1988. 42 (5), 819-826. (245) Grygon, C. A.; Perno, J. R.; Fodor, S. P. A.; Spko, T. G. 6lotechnlques 1988, 6 ( l ) , 50-55. (246) Austin, R. H. AIP Conf. Roc. 1988, 180 (Proc. Int. Symp. Front. Sci. 1987), 66-82. (247) Maeda, A. Tanpakushitsu Kakusan Koso 1989, 34 (5). 428-439; Chem. Abstr. 1989, 110: 227198). (248) Petrich, J. W.; Martin, J. L. Chem. Phys. 1989, 731 (l), 31-47. (249) Havel, H. A.; Chao, R. S.; Haskeli, R. J.; Thamann, T. J. Anal. Chem . 1989, 61 (7), 842-850. (250) Lalgle, A.; Chlnsky, L.; Turpln, P. Y.; Jolles, 8. Nucleic Acids Res. 1989, 17 (7), 2493-2502. (251) SmulevRch, G.; Feis, A.; Mantini, A. R.; Marzocchi, M. P. Indlan J . Pure Appl. Phys. 1988, 26 (2-3), 207-21 1. (252) Wang, Y.; Thomas, G. A.; Petlcolas, W. L. J. 6lomoi. Struct. Dyn. 1987, 5 (2), 249-274. (253) Nlshhura. Y. Adv. Biophvs. 1985, 20, 59-74. (254) Jolles, B.; Chinsky, L.; Lalgle, A. J . Ramen Spectrosc. 1988, 19 (3), 155- 159. (255) Seuvre, A. M.; Mathlouthi, M. Carbohydf. Res. 1987, 769, 83-103. (258) Trulson, M. D.; Cruz, P.; Pugllsl, J. D.; Tinoco, I.; Mathles, R. A. BloCh6d&y 1987, 26 (26), 8624-8630. (257) Lugtenburg, J.; Mathies, R. A,; Grlffin, R. G.; Herzfeld, J. Trend.. Blo&em. el.(Pers. Ed.) 1988, 13 (10). 388-393. (258) OnolengM, M.; Sheves, M. Springer Roc. Phys. 1987, 20 (Primary Processes Photoblol), 144-153. (259) Atklnson, G. H. Spfllnger Roc. Phys. 1987, 20 (Primary Processes PhOtObiOi.), 213-222. (260) Owfa, T.; Ma&, A.; Nakagawa, M.; Kltagawa. T. Sprhger Roc. Phys. 1987, 20 (Primary Processes Photoblol.), 233-241. (261) Dllbr, R.; Stockburger, M.; Oesteheit, D.; m o r , J. FEBS Lett. 1987, 277 (2), 297-304. (282) Dlller, R.; Stockburger, M. Biochemsfry 1988, 27 (20;, 7641-7651. (283) Fodor, S. P. A.; Ames, J. B.; Gebhard, R.; Van den Berg, E. M. M.; Stoeckenlus, W.; Lugtenburg, J.; Mathles, R. A. SnbChemisi?y 1988, 27 (le), 7097-7101. (264) Ikegami, A.; Kouyama, T.; Kinoshlta, K.; Otomo, J.; Urabe. H.; Fukuda, K.; Kataoka, R. ReHnal Proteins, Roc. Int. Conf. 1988, 307-315. Or-

(12). 8473-8476. (293) Ikawa, F.; Cerdeira. F.; Vazquezlopez, C.; Motisuke, P.; Sacibtti, M. A.;Roth, A. P.; Masut, R. A. SokidStatecommUn. 1988, 68(2), 211-214. (294) Emura, S.; Gonda, S.; Matsui, Y.; Hayashi, H. Phys. Rev. 6 : Condens. Matter 1988, 38 (5), 3280-3286. (295) Bums, G.; Wle, C. R.; Dacol, F. H.; Petit, G. D.; Woodail, J. M. Report 1987. TR-8; Order No ADA163320. Avail. NTIS From Gov. Rep. Announce Index (U S) 1987, 87 (22), Abstr. No 752 607. (298) Diebold, A. C.; Steinhauser, S. W.; Mariella, R. P. J. Vac. Sci. Techno/., B 1989, 7(2), 365-370. (297) Olego. D. J.; Shahzad, K.; Petruuelb, J.; Cammack, D. Phys. Rev. 6 : Condens. Matter 1987, 36(14), 7674-7677. (298) Martin, R.; Braunsteln, R. J . Phys. Chem. SoNds 1987, 48 (12), 1207-1212. (299) Wagner, J.; Ramsteiner, K.; Seeiwlnd, H. Roc. SPIE-Int. Soc. Opt. Eng. 1987, 822 (Int. Conf. Raman Lumin. Spectrosc. Technol. 1987), 16-21. (300) Wan, K.; Young, J. F.; Devine, R. L. S.; Moore, W. T.; Sprlngthorpe, A. J. J . APPl. P h y ~ .1988. 63 (11). 5598-5600. (301) Watt, M.; Sotomayor-Torres, C. M.; Cheung, R.; Wilkinson, C. D. W.; Arnot, H. E. G.; Beaumont, S. P. Superlattices Mlcrostruct. 1988, 4 (2), 243-244. (302) Fukasawa, R.; Katayama, S.; Hasegawa, A.; Ohta, K. J . Phys. Soc. Jpn. 1988, 57 (lo), 3632-3640. (303) Kawchke, W.; Cardona, M. mys. Ser. T 1989, T25(Proc.Gen. Conf. Condens. Matter Dw. Eur. Phys. Soc., 8th 1988), 201-205. (304) Sela. I.; Beserman, R.; Morkoc, H. Phys. Rev. 6 : Condens. Matter 1989, 39 (5), 3254-3257. (305) &to, Y.; Kamo, M.; Setaka, N. Mater. Scl. Monogr. 1987, 38B(High Tech. Ceram., Pt B), 1719-1726. (306) Tsang, J. C.; Iyer, S. S. I€€€ J . QuentumElectron. 1989, 25(5, Pt I), 1008-1011. (307) Weinstein, B. A. Semlcond. Sci. Tedmol. 1989, 4 (4), 283-285. (308) Irmer, 0.; Siegei, W. Phys. Status SdMl A 1988, 105 (2), 549-553. (309) Farrow, L. A.; Sandroff, C. J. Roc. SPIE-Int. SOC. Opt. Eng. 1987, 822 (Int. Conf. Raman Lumin. Pectrosc. Technol. 1987), 22-24. (310) Wicks, G. W.; Bradshaw, J. T.; Radulescu, D. C. Appl. Phys. Lett.

Thew. chem. 1987, 45 (Laser Scattering Spectrosc. Bioi. Objects),

chinnikov, Y. A., Ed.; VNU Sci. Press: Utrecht, Neth.

(265) Atklnson, G. H.; Brack, T. L.; Blanchard, D.; Rumbles, G. Chem. Phys. 1989, 131 (1). 1-15. (266) Wlnter, W. T.; Kwak, Y. T. FoodHyc+ocdkids 1987. l(5-6). 461-463. (267) Lewis, E. N.; Kalasinsky, V. F.; Levln, I. W. Anal. Chem. 1988, 60 (20)- 2306-2309. (268) Merlin, J. C.; Broulllard, R.; Noel, P. Y.; Dehaye, M. Stud. Phys. Theor. Chem. 1987, 45 (Laser Scattering Spectrosc. Bioi. Objects), 541-548. (289) b n y , C.; Jouan, M.; Nguyen, Q. D. Anal. Chim. Acta 1988, 275 (1-2). 211-221. (270) Zheng, S.;Tu, A. T. Appl. Spectrosc. 1987, 41 (4). 696-697. (271) L a m , M.; Pezolet, M.; Caille, J. P. J . Phys. Chem. 1989, 93 (4), 1522-1526. (272) Clarke, R. H.; Hanlon, E. B.; Brody, H.; Isner, J. M. J . Raman SpectrOSC. 1988, 79(3), 183-188. (273) Hoey, S.; Brown, D. H.; McConnell, A. A.; Smith, W. E.; Marabani, M.; Sturrock, R. D. J . Inorg. Bkchem. 1988. 34(3), 189-199. (274) Bldoglcal AppUceths of Raman Spectroscopy, VoI 1: Raman Spec-

tra and the Conformations of Bbloglcal Macromolecules. Spiro, T. G., Ed.; John Why and Sons: New York, 1987. (275) B w i c e l AppHcations of Raman Spectroscopy, Vol 2: Resonance Raman Spectra of Polyenes and Aromatics. Splro, T. G., Ed.; John Wlley and Sons: New York, 1987. (276) Blologlcal Applications of Rarnan Spectroscopy, Voi 3: Resonance Raman Spectra of Heme and MetaUoprotelns. Splro. T. G., Ed.; John Wlley and Sons: New York, 1988. (277) Purcell. F. J. Spec~scopy(Eugene,Oreg) 1987. ~ ( 1 2 )33-34. . (278) Wagner. J. S M - S t a t e Electron. 1987, 30 (11). 1117-1120.

148R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

A.; Roth, A. P.; Masut, R. A. Phys. Rev. 8 : Condens. Matter 1988, 38

wa0.

52 (7). 570-572. .,,-.~

(311) Kostadlnor, I.;Mlkhov, M.; Khadzhev, V.; Ill,M.; Pelrov, 0.; Matsev, M.; Tlnchev, S.; Tikhov, I.; Dinolova, E. Physlca C (Amsterdem) 1988, 753- 155 fPt 1). 627-628. (312) Feile, d.; Schmm, U.; Leiderer. P.; Schubert, J.; Poppe, U. 2.Php. B: Condens. Matter 1988, 72 (2), 161-164. (313) Gupta, V. B.; Gupta. H. C. Php. Status SdUi 6 1988, 146 (2), 481-486. (314) Burns, G.; Dacol, F. H.; Kliche, 0.; Koenig, W.; Shafer, M. W. Mater. Res. Soc.Symp. Roc. 1988, 99 (High-Temp. Supercond.), 817-820. (315) Zhang, S. L.; Zhou, H. T.; Wel, C.; Lin, Q. SolM State Commun. 1988, 66 (10). 1085-1087. (316) bale. P. D.; Scott, J. F.; Zhang, M.; Chen, 2.; Hug. G.; Jin, X.; Shao, H.; Wang, G.; Zhao, J. SolklState Commun. 1988, 65(10), 1145-1147. (317) Katsuyoshl, H.; Suzuki, T.; Koike, Y.; Hkose, H. FuntalOyoblFumnarsu Yakln 1988, 35(9), 970-973; Chem. Abstr. 1989, 710, 223669r. (318) eaves, P. R.; Johnston, C. SolM State Commun. 1988, 67 (2), 113-118. (319) Erle. A.; Blumenroeder, S.; Zlrnglebl, E.; Veit. M.; Langen, J.; Guentherodt, 0. Physlca C (Amsterdam) 1988, 153- 155 (Pt 1). 296-297. (320) kcfarlane. R. M.; Rosen. H. J.; Engler, E. M.; Jacowitz. R. D.; Lee, V. Y. Phys. Rev. B : Condens.Miter 1988, 38 (l), 284-289. (321) Rebane, L.; Finberg, T.; Fefer, E.; Blumberg. G.; Loon, E. Pk'ma Zh. fksp. Teor. Fi... 1988, 47 (7), 360-363; Chem. Abstr. 1988, 108: 228690j. (322) Jayaraman, A. Indian J Pure Appl. Phys. 1988, 26 (2-3). 163-178. (323) Hemley, R. J.; Pater, R. F. Scr. MeW. 1988, 22(2), 139-144. (324) Spain, I.L. Contemp. Phys. 1987, 28 (S), 523-548. (325) Ramaseshan, S.;Parthesurathy, G.; Gopal, E. S. R. Ramona 1987. 28 (5), 435-439. (326) Takano, K. J.; Tabata, K.; Wakatsukl, N. Jpn. J . Appl. Phys. Pari 7 1989. 28 ( l ) , 80-85

RAMAN SPECTROSCOPY (327) Wa J.; Yang, M.; Un, D.; Shen,J.; Zhao, Y.; Lln, Z.; CU,I Q.Po&mer 1888, %(3), 524-527 (328) Ves, S.; P w p , Y. A.;Syassen, K.; Cardone, M. solkl State Conwnun. 1888, 70 (3), 257-260. (329) Zerda, T. W.; Hoang, G. J. Non-Clyst. solydp 1888, 709 (I), 9-17. (330) Varlano, B. F.; Schbtter, N. E.; Hwang. D. M.; Sandroff, C. J. J. Chem. PnyS. 1988, 88 (4), 2846-2850. (331) Jephcoet, A. P.; Hemley, R. J.; Mao, H. K.; Cohen, R. E.; Mehl. M. J. phys. Rev. E: Condens. Matter 1888, 37 (9), 4727-4734. (332) Mknte, A.; Della Valle. R. G.; Syassen, K. J. Chem.Phys. 1888, 89 (5). 3163-3167. (333) Jayeraman, A.; Kourouklb. G. A.; Van Uitert, L. G. phys. Rev. E: c o n m s . Matter 1887.36 (le), 8547-8551. (334) Ecdhret, C.; Lemee, M. H.; Delugeard, Y.; Glrard, A.; Bertauk, M.; Collet, A.; MieneJewskl, A. Mater. Scl. 1987, W(1-2), 55-58. (335) Arora, A. K.; Suh, E. K.; Debska, U.; Ramdas, A. K. phys. Rev. E: ConCkMs. Matter 1888. 37 (6), 2927-2932. (336) Alzvab. 8.; P w , C. H.; Ingel, R. P. J. Am. Ceram. Soc. 1887, 70 . (lo), 760-765. (337) Kowouklls, G. A,; Anastassekls, E. php. Sfatw SoMl E 1888, 152 (l),88-89. (338) KucMe, 6.; ERers, R. D. Mys. Rev. E : Conams. Matter 1988,38 (9), 82854269. (338) Anderm, A,; Demoor, S.;Henson, R. C. Chem. phys. Lett. 1887, 740 (5), 471-475. (340) Hemley, R. J.; Mao, H. K. phys. Rev. Lett. 1988, 67 (7). 857-860. (341) hrhtsuzakl, S.; Kyda, T.; Ando, T.; Sano, M. SdM State Commun. 1888, 67 (5), 505-507. (342) Javadpour, J.; Eror, N. G. J. Am. &am. Soc.1988, 7(4), 206-213. (343) Wpova, L. P.: Smlmova, T. V.; Ivanova, S. V. Isv. Vyssh. Uchebn. Zaved Flz. 1888, 32 (2), 105-107; Chem. Ab&. 1888, 7 1 1 : 146361. (344) Raptb, C.; Mc&mvy, R. L.; Seguler, D. G. phys. Rev. E: Condens. MattSr 1988, 39 ( l l ) , 7986-7999. (345) Kanb. A.; Kugel, G. E.; Roleder, K.; Pawelezyk, M.; Hafld, M.; Fontana, M. D.; Carabetos, C. FerroelecMCS 1987, 80, 137-140. (346) a, K. c.; M o , F. E. A.; Mendes, F. J.; (hrmano, F. A.; Moreka, J. E. SOW Stete Commun. 1888, 66 (6), 575-584. (347) Lal, X.; Wa, 0. SpectrOcMm. Acta, Pari A 1887, 43A (11). 1423- 1426. (348) Dakerk, R. A.; Owens, F. J. W M State Commun. 1988, 67 (6). 873-676. (349) Burger, A.; Morgan, S.; Jiang. H.; Siiberman, E.; Schiebo, M.; Vend den Berg, L.; Keller, L.; Wagner, C. N. J. J. Appl. phys. 1888, 63 (9), 4769-4770. (350) Cylbert. 6.: Williams, S. D.; Mamantor, 0. Inorp. Chem. 1888, 27 (13), . 2359-2363. (351) Qardiner. D. J.; Walker, N. A.; DareEdwards, M. P. Spectrochim. . Acta, h r i A 1987. 43A (l), 21-34. (352) Rabe, J. P.; Novotny, V.; Swalen, J. D.; Raboit, J. F. Thin SolM Fllms 1888, 759, 359-367. (353) Wu, 0.; Tashlro, K.; Kobayashi, M.; Komatsu, T.; Nakagawa. K. Macromdecuks 1889, 22 (2), 758-765. (354) Emons, H. H. flectrochlm. Acta 1888, 33(9), 1243-1250. (355) Irlsh, D. E.; Murata, K. Bunseki Kagaku 1987, 36 (7), T72-T76 Chem. Abslr. 1887, 707: 225145d. (356) Anderson, B. G.; Irlsh, D. E. J. Solution Chem. 1888, 77(8),763-775. (357) McCarty, K. F. SolM State Commun. 1888, 68 (8), 799-802. (358) Nakashlma, S.; Hangyo, M. I €€€J. Quantum Electron. 1889, 25 (5, Pt l), 965-975. (359) Fauchet. P. M. Mbobeam Anal. 1887, 22nd, 144-146. (360) Pasterls. J. D.; Wopenka, 6.; Seh, J. C. Gsochim. Cosmochlm. Acta 1988, 52 (5), 979-968. (361) Etz, E. S. Microbeam Anal. 1887, 22nd. 158-162. (362) Adar, F. Mlcrochem. J . 1988, 38 (I), 50-79. (363) KWer, W. Croet. Chem. Acta 1888, 61 (3), 473-486. (384) Bowden, M.; Dlxon, N. M. Anal. Appl. Spectrosc. [Roc.Int. Conf.] 1887, 238-244. Ed. Creaser, C. S.; Davies, A. M. C. R. Soc Chem.: '

London, UK.

(365) Kurosakl, K. Kino Zalrvo 1987, 7 (7), 62-72; Chem. Abstr. 1987, 707: 218312~. (366) Benosman, A.; Vergoten. G.; Moschetto, Y.; Fleury, G. J. Raman ~pechosc.1887, 18 (5)' 317-322. (387) Barres. 0.; Burneau, A.; Dukssy, J.; Pagel, M. Appl. Spectrosc. 1887. 47 (6), 1000-1008. (368) Lamb, W. M.; Valley, J. W.; Brown, P. E. Contrlb. Mlneral Petrol. 1987, 96 (4), 485-495. (369) Pasterb. J. D.; Wopenka, B. Microbeam Anal. 1887, H n d , 205-209. (370) Ayova, C.: Guilheumou, N.; Toway, J. C.; Melgarejo, J. C. Bull. Minera l . 1987, 770(6), 803-611. (371) Oulllani, 0.; Li, Y. D.; Sheng, T. F. Miner. Deposita 1988, 23 ( l ) , 24-33. (372) Guilhaumou, N.: Jouaffre, D.: Velde. 8.; Benv. C. Bull. Mineral 1988. ' 7'77 (8), 577-585. (373) Istrate, G.; Althaus, E. Neues Jahrb. Mineral. Monatsh. 1888, (3), '

97-108 _.

(374) AimeMa, A.; Noronha, F. BUN. Mineral 1888, 7 7 7 (3-4), 331-341. (375) Pesteris, J. D.; Wanamaker, B. J. Am. Mineral. 1988, 73 (9-10). 1074- 1088. (376) Mao, H.; Hemley, R. J.; Chao, E. C. T. Scanning Mkrosc. 1887, 7 (2). 495-501. (377) Cheong, Y. M.; Marcus, H. L.; Adar, F. J. Mater. Res. 1887, 2 ( 6 ) , 902-908. (378) cheong, Y. M.; Marcus, H. L.; Adar. F. Proc. SPIf-Int. Soc. Opt. Eng. 1887, 822 (Int. Conf. Raman. Lumln. Spectrosc. Technoi. 1987). 61-65.

(379) Leach, C. A. J. Mater. Sci. 1888, 24(4), 1380-1382. (380) Ishksuka, M.; Sato, T.; Endo, T.; Shlmada, M.; Arashl, H. J . Mater. Scl. Lett. 1888. 8 (6), 638-640. (381) Krantz, M.; Rosen. H. J.; Macfarlane, R. M.; Lec. W. Y.; Lee, V. Y.; Savoy, R. Sdkl State Commun. 1888, 69 (3), 209-21 1 . (382) Qaislev, V. A.; Kwochklna, T. V. R i b . Tekh. Eksp. 1888, (4), 170172; Chem. Abstr. 1888, 709, 200853~. (383) Gijsbers, G.; Vrensen, G.; Wlllekens. 6.; Mastman, D.; De Mul, F.; &eve. J. Stud. phys. Theor. Chem. 1887, 45 (Laser Scattering SpectrOSC. BIOI. ObjWtS). 583-594. (364) Yu, N. T.; Cal, M. Z.; Ho, D. J. Y.; Thompson, F. L.; Kuck, J. F. R. Mcroham Anal. 1887. 2M, 197-198. (385) Ishlda, H.; Ozakl. Y.; Kamoto. R.; Ishltani, K.; Irlyama. K.; Takagi, I.; Tsukie, E.; Shlbata, K.; Ishihara, F.; Kameda, H. Mbobeam Anal. 1887, 22nd, 188-191. (386) Wang, A.; Dhamelincourt, P.; Turrell, 0. J. Mol. Struct. 1888. 175, 183-188. (387) Wang, A.; Dhamellncourt, P.; Turrell, G. Appl. Spectrosc. 1888. 42 (8), 1441-1450. (388) Butler, I.S.; Gilson, D. F. R.; Paroli. R. M.; Kawai, N. T.; Lord, G. Microbeam Anal. 1988, 23rd. 165-166. (389) Day, R. J.; Zakikhani, M.; Young, R. J.; Robinson, I. M. Roc. S P I f Int. Soc. Opt. f n g . 1888, 978 (Appl. Infrared Technol.), 94-99. (390) Young, R. J.; Day, R. J. Er. P@m. J . 1888, 27 (l), 17-21. (391) Gulneau, B. Stud. Consew. 1888, 34 (1). 38-44. (392) Adar, F.; Noether. H. D. Integr. Fundam. Pokm. Sci. Techno/-2, [Roc.Int. Meet. Potym. Scl. Technd. RoMuc. Polym. Meet.-P] 1887, 441-445. Eds. Lemstra, P. J.; Klelntjens, L. A.; Elsevier: London, UK. (393) Dhamellncourt, P.; Bremard, C.; Laureyns, J.; Merlin, J. C.; Turreli, 0. Mcrobeam Anal. 1887, Z n d , 139-140. (394) Bremard. C.; Laureyns, J.; Merlin, J. C.; Turrell, G. J. Raman Spec~ ~ O S C1887. . 18 (5), 305-313. (395) Bremard, C.; Laureyns, J.; Turrell, G. Can. J . Spectrosc. 1887, 32(3), 70-78. (396) Armstrong, D. P.; Fletcher, W. H. Appl. Spectrosc. 1888. 42 ( l ) , 174-175. (397) Delhaye, M.; Truchet, M. Fr. Demande FR 2,596,883 (C1 G01N23/00), 9th OCt 1987, Appl. 8614.947, 7th Apr 1986; Chem. Abstr. 1888, 708: 21552Od. (398) Treado, P. J.; Morris, M. D. Appl. Specfrosc. 1888, 43(2), 190-193. (399) Messerschmldt, R. 0.; Chase, D. B. Appl. Spectrosc. 1888, 43 (l), 11-15. (400) Bennett, M. J.; Graves, P. R.; Hawes, R. W. M. Comm. Eur. Communities, [Rep], EUR 1987, EUR 11365, Hlgh Temp. Alloys, 205-215. (401) &diner, D. J.; LMleton. C. J.; Strafford, K. N. Comm. Eur. CommunC ties, [Rep], EUR 1987, EUR 11365, Hlgh Temp. Alloys, 155-164. (402) Turpin, P. Y.; Chinsky, L.; Laigle, A. Stod. Phys. Theor. Chem. 1887, 45 (Laser Scattering Spectrosc Blol. Objects), 369-385. (403) Harada, I.; Takeuchl, H. A&. Spectrosc. (Chlchester, UK) 1988. 73 (Spectrosc. Blol. Syst.), 113-175. (404) Hudson, B. J. Lumln. 1888, 40-41, 827-828. (405) Asher, S. A. Annu. Rev. Phys. Chem. 1888, 39, 537-588. (406) Ktagawa, T.; Ozaki, Y. Struct. Eondlng (Berlin) 1987, 64 (Met. Complexes Tetrapyrrole Ligands l), 71-1 14. (407) Nakashima, S.; Wada. A.; Fujiyasu, H.; Aoki, M.; Yang, H. J. Appl. P h y ~ 1887, . 62 (5), 2009-201 1 . (408) Dharma-Wardana, M. W. C.; Lockwood, D. J.; Aers, G. C.; Barlbeau, J. M. J . Phys.: Condens. Matter 1888, 1 (13), 2445-2450. (409) Packard, R. T.; McCreery. R. L. Anal. Chem. 1987, 59 (21), 2631-2637. (410) Sariciftci, N. S.: Kuzmanv. H.; Newebauer, H. Mater. Scl. 1887, 73 (i-2), 227-230. (411) Trlpathi, G. N. R.; Schuler, R. H. J. Phys. Chem. 1988, 92 (16), 5129-5 133. (412) Jones, C. M.; Asher, S. A. J. Chem. Phys. 1988, 89(5).2649-2661. (413) Kelly, P. B.; Westre. S. G. Chem. Phys. Lett. 1988. 157 (3), 253-257. (414) Hashimoto, H.; Koyama. Y. J. Phys. Chem. 1988, 92(8),2101-2108. (415) Berdyugin, V. V.; Burshtein, K. Y.; Shorygin, P. P. Opt. Spekfrosk. 1887, 63(5), 1154-1158; Chem. Abstr. 1988, 109: 92154~. (416) Rumelfanger, R.; Asher, S. A.; Perry, M. B. Appl. Spectrosc. 1888. 42 (2), 267-272. (417) Johnson, C. R.; Asher, S. A. J. Raman Spectrosc. 1887, 78 (5), 345-349. (418) Clarke, R. H.; Ha, S. Spectrochim. Acta, Pari A 1887, 43A ( l l ) , 1385-1392. (419) Nishlmura, Y.; Tsuboi, M.; Kubasek, W. L.; Bajdor, K.; Peticolas, W. L. J . Raman Spectrosc. 1887, 18 (3). 221-227. (420) Chlnsky, L.; Jolles, 6.; Laigle, A.; Turpin, P. Y. J. Raman Spectrosc. 1887. 78 (3), 195-198. (421) Ludwig, M.; Asher, S. A. J . Am. Chem. Sqc. 1888, 770 (4), 1005-101 1 . (422) Ramsteiner, M.; Wagner, J. Appl. Phys. Lett. 1887, 57 (17), 1355-1357. (423) Ohana, Y.; Yacoby, Y.; Schmettzer, D. Phys. Rev. E: Condens. Matter 1987, 36 (6), 3442-3448. (424) Ozakl, Y.; Iriyama, K.; Iwasaki, T.; Harnaguchi, H. Appl. Surf. Scl. 1987. 33-34 (1-4), 1317-1323. (425) Wrobel, D.; Kozielski, M. Blophys. Chem. 1988, 29 (3). 309-315. (426) Matsushlma, T.; Kawasaki, M.; Sato, H. Mater. Res. Soc. Symp. '

Proc

.

1888, 10 (Laser Part.-Beam Chem. Process Microelectron),

459-462. (427) Paeng, I. R.; Shiwaku, H.; Nakamoto, K. J. Am. Chem. Soc. 1888, 770 (6). 1995-1996. (428) Koirunui, H.; Suzuki, Y. Eunseki Kagaku 1888, 37 (4), 190-194; Chem. Abstr. 1888%709: 162639m. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12. JUNE 15, 1990

149 R

Anal. Chem. 1990, 62, 150R-155R (429) Womack. J. D.; Mann, C. K.; Vlckers, T. J . Appl. Specfrosc. 1989, 43 (3), 527-531. (430) ReWh, W.; Bett-nn, H. Appl. SpeCbapC. 1988, 42(3), 520-521. (431) MRomo, T.; Ichise, M.; Kojima, T. Buns&/ Kagaku 1988, 37 (12), T223-T227. (432) Cotton, T. M. A&. Spectrosc. (Chlchester. UK) 1988. IB(8pectrosc. Surf.), 91-153. (433) Vo Mnh, T.; Alak, A.; Moody. R. L. Smctrochim. Acta. Part 6 1987. 438 (4-5), 805-815. (434) Gerrell, R. L. Anal. Chem. 1989, 61 (81, 401A-402A, 404A, 406A408A, 410A-411A. (435) N e b , 1. R.; Efremov, R. 0.; Chumartov, 0.D. Vsp. f k . NaM. 1988, 154 (3), 459-498; chem.Abstr. 1988. 708: 182968~. (438) Creightm, J. A. A&. Spectrosc. (Chichester, UK) 1988, 16 (SpecttDSC. Swf.). 37-69. (437) Angel, S. M.; Sharma, S. K. U S US4.781,458 (C1 358-301; GOlN21185), 1st Nov 19888 Appi. 128, 159, 30th Nov 1987. (438) Force, R. K. Anal. Chem. 1088, 60(18), 1987-1989. (439) Shindo, H. Stud. Org. Chem. (Amsterdam) 1987, 30 (Recent Adv. ElectrWg. Synth.), 405-408. (440) Berttrod, A.; Laserna, J. J.; Wlnefordner, J. D. J . pharm. 6iomer.I. Anel. 1987, 6 (8-8), 599-808. (441) Torres T a g , E. L. 1988, 118 pp. Avail Univ Microfflms Int; Order No DA8718051. From Dlss. Abstr. Int. 6 1987, 48 (4), 1029. (442) Chese, D. B.; Parkinson, B. A. Appl. Spectrosc. 1988, 42 (7), 1188-1187. (443) Crookell, A.; Fleigchmann, M.; Hanniet. M.; Hendra, P. J. Chem. Phys. Len. 1868. 149 (2). 123-127. (444) Angel. S. M.;'Katz, L. F.; Archibald, D. D.; Honigs, D. E. App/. SpectrOSC. 1888, 43 (3), 387-372. (445) Angel, S. M.; Myrlck, M. L. Anal. Chem. 1989. 61 (15), 1848-1652. (448) Martin, F.; hieto, A. C.; De Saja, J. A.; A r m , R. J . Mol. Struct. 1888, 174, 383-368. (447) Kim, J. H.; Cotton, T. M.; Uphaus, R. A.; Moebius, D. J . Phys. Cham. 1989, 93 (9), 3713-3720. (448) Dorain, P. B. Report 1988, TR-7; Order No ADA191275, 11 pp. Avail. NTIS From Gov. Rep. Announce. Index (U S) 1988, 88 (15), Abstr. No 838, 215. (449) h a i n , P. B. 1988, TR-6; Order No ADA191512. 9 pp, Avail. NTIS From Gov. Rep. Announce. Index (U S) 1988, 86 (15), Abstr. No 838, 173. (450) ECSkokrofg, K. M.; Negm. S.; Taiaat, H. Roc. SPI€-Int. SOC. Opt. fng. 1888, 1009(Surf. Meas. Charact.), 302-308. (451) Ahern, A. M.; Gemell, R. L. Lengmu/r 1988. 4 (5). 1182-1168. (452) KOgM. E. J . Md. Struct. 1988, 173, 389-378. (453) @I'd R. L.; , Beer, K. D. Spectrochkn. Acta, Part 6 1987, 436 (4-5), 817-828. (454) Eckbreth, A. C.; StufRebeam, J. H. Mater. Res. Soc. Symp. Roc. 1888, 117 (Process Megn.: Meter., Combust., Fusion), 217-228. (455) Tsuchlya, U.; Ohya, M. K-I 1987, 22 (5), 305-316; Chem. Abstr. 1888, 108: 13097k. (458) Alden. M. KflntoVW8 E M . (MOSCOW) 1988, 15 (6), 1173-1184; Chem. Abstr. 1988, 109: 118288~.

(457) Valentine, J. J. Repr. Pap.-Am. Chem. Soc. Dlv. Fuel Chem. 1989, 34 (2). 493-497. (458) Alden, M.; Wendt, W. Appl. S p e c t r ~ ~ 1888, c. 42 (8), 1421-1427. (459) England, W. A.; Ali, A. Appl. Spec&osc. 1988, 42 (e), 1412-1421. (460) Wenzei, N.; Trautmann, B.; Gross-wude, H.; Schlemmer, 0.; Wek. B.; Marowsky, 0. Opt. Commun. 1088, 68 (1). 75-79. (461) Yueh, F. Y.; Beiting, E. J. Appl. Opt. 1988, 27(15), 3233-3243. (482) Spiberg, P.; Cahen, C.; Deschamps, P. J . Phys. Colbq. 1987, (C7), C7-7571'27-760. (483) Fujii, S.; Gomi, M. AIAA J . 1088, 26 (3), 31 1-315. (464) Fujii, S. NASA Tech. Memo. 1987, NASA-TM-100498, NASl.15:100498, Avail. NTIS From Sci. Tech. Aerosp. Rep. 1988, 28 (3), AbStr. NO N88-12353. (485) Lucht, R. P.; Tee% R. E.; Green, R. M.; Palmer, R. E.; Ferguson, C. R. Combust. SCi. Technol. 1987, 55(1-3), 41-61. (486) Attal-Tretoot, B.; Berlemont, P.; Taran. J. P. Spn'nger Ser. Opt. Scl. 1987. 55 (Laser Spectrosc. 8). 328-329. (467) Robertson. G. N. Roc. SPIE-lnt. Soc.qpt. fng. 1988, 674 (Roc.. Int. Congr. High Speed Photogr. Photonics, 17th. 1988. Voi 2), 582-570. (488) Barth, H. D.; Jackschath, C.; Pertsch, T.; Haisken, F. Appl. Phys. 6 1988, 645 (4), 205-214. (469) Marowsky. G.; Slenczka, A. Springer Ser. Opt. Sci. 1987. 55 (Laser Spectrosc. 8), 333-334. (470) Vu, T. H.; Field, R. AIP Conf. Proc. 1087, 160 (Adv. Laser Sci.-2), 693-695. (471) Kawasaki, M.; Kawai, E.; %to, H.; Sugai, K.; Hanabusa, M. Jpn. J . APPl. PhYS., Part 1 1987, 26 (9), 1395-1399. (472) Lueckerath, R.; Balk, P.; Flscher, M.; Grundmann, D.; Hertling, A,; Richter, W. C h e m / c s 1987, 2 (4), 199-205. (473) Hata, N.; Mutsude, A.; Tanaka, K. Roc.-flectrmhem. Soc. 1887, 87-8 (Proc. Int. Conf. Chem. Vapor. Deposition, loth, l987), 922-931. (474) Hata. N.; Matsuda, A.; Tanaka, K. J. Appl. Phys. 1987, 61 (8, Pt l), 3055-3060. (475) Lau, A.; Pfeiffer, M.; Werncke, W. Stud. Phys. Theor. Cham. 1987, 45 (Laser Scattering Spectrosc. Bioi. Objects), 127-132. (478) Kohles, N.; Lauberau, A. Chem. Phys. Len. 1987, 138(4), 385-370. (477) Takahashi, H. Kenkyu Hokoku-Asahi, Garasu Kogyo Gljutsu Shorekai 1987, 51, 181-192; Chem. Ab&. 1988, 109: 1194882. (478) Pinnick, R. G.;Biswas, A.; Chylek, P.; Armstrong, R. L.; Latifi, H.; Creegan, E.; Srivastava. V.; Jarzembski, M.; Fernandez, G. Opt. Lett. 1988, 13 (6). 494-496. (479) Qian. S.;Wang, J.; Li, Y. Chim. Phys. Lett. 1088, 5 (5), 205-208. (480) Golombok, M.; b e , D. P. Chem. Phys. Lett. 1988, 151 (1-2), 161-165. (481) Kurizki, G.; Nitzan, A. Jerusalem Symp. Quantum Chem. Biochem. 1987, 20 (Large Finke Syst.), 173-177. (482) Lavwel, B.; Mibt, G.; Saint-Loup, R.; Gonze, M. L.; Santos, J.; Berger. H.; Bonamy, J.; Robert, D. J . Phys. Collog. 1987, (C7), C7-781lC7-782. (483) Schauer, M. W.; Peiiin, M. J.; Blwer, B. M.; Gruen, D. M. AIP Conf. Roc. 1887, 160 (Adv. Laser Sci-2), 417-419. (484) Borysow, J.; Taylor, R. H.; Keto, J. W. Opt. Commun. 1988, 68 (I), 80-86.

Electron Spin Resonance Mysore Narayana Shell Development Company, Westhollow Research Center, P.O. Box 1380,Houston, Texas 77251-1380

TI$ article covers electron s in resonance (ESR) literature pubhshed during the period orJuly 1985 to December 1988. A lar e number of reviews, both generic and topic specific, have %een ublished durin this period along with an even larger numier of pa ers. 8bviously it is not ossible to do 'ustice to all the exceient articles that ap aretfin this period kecause of space, time, and sometimes Q limitations of the reviewer. Thus an attempt was made to reduce the bibliographic detail that a review usually gets into and place emphasis on the nonroutine nature of some of the huge number of papers published in this eriod. It was felt that it might be useful to the eneral auAence to have an easy reference to the various otter reviews mentioned above and, hence, a tabular form is given at the end of this article. Pulsed ESR techniques enjoyed some prominence during this period with numerous articles devoted to applications of electron spin echo modulation (ESEM) spectroscopy (1). Of particular interest is the technique described by Pfenni er et al. (2). In this novel time-domain technique, considera%le

p"

150 R

resolution improvement is achieved in powder patterns. When anisotropy is present in either Zeeman, fine structure, or hyperfine structure terms, specific crystallite orientations could be selected on the basis of sudden changes of the static magnetic field direction during the time interval between the microwave pulses of conventional two- or three-pulse electron spin echo sequences. Single or double jumps of the magnetic field vector were shown to be useful in the study of transition-metal complexes (2). Milov et al. (3)discussed the possibility of using ESEM as a method of tomography. By combination of the conventional ESEM experiment with pulsed magnetic field gradients, a s atial distribution of the parama netic centers could be ottained. The resolution of the metfmd is dependent on the to the ratio of the inverse of phase memory time (T2-!) magnetic field gradient and thus allows the possibilit to achieve a resolution higher than that in conventional JSR tomogra hy. The tReoretica1 aspects involving better incorporation of

0003-2700/90/0362-150R$09.50/00 1990 American Chemical Society