46 Studies on the Practical Application of Producer Gas from Agricultural Residues as Supplementary Fuel for Diesel Engines IBARRA E. CRUZ
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
College of Engineering, University of the Philippines, Diliman, Zuezon City, Philippines 3004 The P h i l i p p i n e s is an a g r i c u l t u r a l country where c r o p i r r i g a t i o n h a s b e c o m e e s s e n t i a l to a c c e l e r a t e food p r o d u c t i o n . Manyirrigation systems use diesel engines. In r i c e p r o d u c t i o n , f o r instance, a government-supported cooperative-type f a r m based o r g a n i z a t i o n h a s i n s t a l l e d s i n c e 1975 a t o t a l of 334 d i e s e l e n g i n e d r i v e n p u m p s o f s i z e s r a n g i n g f r o m 15 to 150 h o r s e p o w e r (1 h o r s e p o w e r i s 746 w a t t s ) w h i c h e n a b l e d f a r m e r s to h a r v e s t t w o a n d even three crops in a year. W i t h the c o n t i n u i n g i n c r e a s e i n p r i c e c o u p l e d w i t h the s c a r c i t y of f u e l o i l s , p a r t i c u l a r l y d i e s e l f u e l , i t is b e c o m i n g m o r e and m o r e d i f f i c u l t to continue o p e r a t i n g these diesel engine-driven pumps. T h e o b j e c t i v e of t h e s e s t u d i e s t h e r e f o r e i s to a s s u r e the c o n t i n u e d o p e r a t i o n of e x i s t i n g d i e s e l e n g i n e s , p a r t i c u l a r l y t h o s e u s e d i n c r o p i r r i g a t i o n , b y c o n v e r t i n g t h e m to d u a l - f u e l e n g i n e s w i t h m i n i m u m m o d i f i c a t i o n s and u s i n g p r o d u c e r gas as s u p p l e m e n t a r y f u e l . It i n c l u d e s t h e d e s i g n o f a s i m p l e g a s p r o d u c e r that c a n be f a b r i c a t e d i n e x p e n s i v e l y . A d i e s e l engine w i t h a l i t t l e m o d i f i c a t i o n , c a n be o p e r a t e d as a d u a l - f u e l e n g i n e , that i s , an engine that u s e s both g a s e o u s fuel and liquid injection f u e l . N o r m a l l y , a d i e s e l engine a s p i r a t e s a i r d u r i n g the i n t a k e s t r o k e of the p i s t o n a n d c o m p r e s s e s t h i s to a h i g h p r e s s u r e and t e m p e r a t u r e . The c o m p r e s s i o n ratio of the d i e s e l e n g i n e i s h i g h e n o u g h s o that the t e m p e r a t u r e of the a i r i n s i d e the e n g i n e c y l i n d e r a f t e r the c o m p r e s s i o n s t r o k e a t t a i n s a s u f f i c i e n t l y h i g h l e v e l s o as to i g n i t e the d i e s e l f u e l that i s i n j e c t e d i n t o i t . In d u a l - f u e l o p e r a t i o n , a m i x t u r e of g a s e o u s f u e l a n d a i r i n the p r o p e r p r o p o r t i o n i s a s p i r a t e d i n t o the e n g i n e a n d c o m p r e s s e d d u r i n g the c o m p r e s s i o n s t r o k e . The gaseous f u e l - a i r m i x t u r e i s o n the l e a n s i d e s o that it does not p r e - i g n i t e d u r i n g the c o m p r e s s i o n s t r o k e . O n l y the i n j e c t i o n of the l i q u i d f u e l i n i t i a t e s i g n i t i o n and f i n a l c o m b u s t i o n of both g a s e o u s and 0-8412-0565-5/80/47-130-649$05.25/0 © 1980 American Chemical Society
Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
THERMAL CONVERSION OF SOLID WASTES AND
650
BIOMASS
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
l i q u i d f u e l s . S i n c e c o m b u s t i o n of the g a s a s p i r a t e d w i t h a i r p r o v i d e s p o w e r , a m u c h l e s s a m o u n t of l i q u i d f u e l , c o m p a r e d to s t r a i g h t d i e s e l o p e r a t i o n , n e e d be i n j e c t e d to p r o d u c e a g i v e n power output. T h u s a s i g n i f i c a n t s a v i n g s i n the l i q u i d i n j e c t i o n fuel (diesel oil) is effected. T h e e c o n o m i c s of d u a l - f u e l o p e r a t i o n b e c o m e s f a v o r a b l e i f the g a s e o u s f u e l c a n be o b t a i n e d f r o m i n d i g e n o u s s o u r c e s . One such gaseous fuel is producer gas f r o m a g r i c u l t u r a l r e s i d u e s . S t u d i e s on the p r o d u c t i o n of g a s f r o m a g r i c u l t u r a l w a s t e s h a v e e a r l i e r b e e n r e p o r t e d (1). Experimental
Work With a Single-Cylinder
Engine
I n i t i a l e x p e r i m e n t a l w o r k o n the u s e of p r o d u c e r g a s f r o m c o c o n u t s h e l l c h a r c o a l w a s done w i t h the s u p p o r t of the P h i l i p p i n e C o c o n u t A u t h o r i t y (2). C h a r c o a l as fuel was c h o s e n because t h e c l e a n i n g of t h e g a s f r o m c h a r c o a l w a s s i m p l e r d u e t o l e s s t a r i n the g a s . F i g u r e 1 s h o w s the e x p e r i m e n t a l l a y - o u t f o r s t u d y i n g the p e r f o r m a n c e of a s i n g l e - c y l i n d e r d i e s e l engine when u s i n g p r o d u c e r gas as its m a i n f u e l . T h e e n g i n e h a d a b o r e of 4 . 5 i n c h e s a n d a s t r o k e o f 4 . 25 i n c h e s (1 i n c h i s 2 . 54 c e n t i m e t e r s ) . The engine was manufactured by L i s t e r - B l a c k s t o n e . I n F i g u r e 1, i t i s s e e n t h a t t h e p r o d u c e r g a s i s a s p i r a t e d i n t o the engine t o g e t h e r w i t h the a i r . T h e r e f o r e , the o n l y m o d i f i c a t i o n n e c e s s a r y to a l l o w the d i e s e l e n g i n e to u s e p r o d u c e r g a s i s a g a s p i p e l i n e c o n n e c t i o n t o the a i r i n t a k e p i p e of the e n g i n e w i t h a p p r o p r i a t e c o n t r o l v a l v e s f o r p r o p o r t i o n i n g the a i r - g a s mixtures. The gas p r o d u c e r w a s mounted on a p l a t f o r m s c a l e to a l l o w w e i g h t m e a s u r e m e n t s of the c h a r c o a l c o n s u m e d d u r i n g a t e s t run. F r o m d e r i v e d r e l a t i o n s , the w e i g h t r a t e of p r o d u c e r g a s u t i l i z e d i n the engine w a s c a l c u l a t e d . The l i q u i d f u e l tank, c o n taining d i e s e l o i l was l i k e w i s e mounted on a w e i g h i n g s c a l e . A r o t a m e t e r o r f l o w m e t e r w a s a l s o i n s t a l l e d i n the l i q u i d f u e l l i n e to s e r v e a s a c h e c k o n the r a t e of f u e l c o n s u m p t i o n . T h e e n g i n e w a s s t a r t e d i n the n o r m a l w a y b y h a n d c r a n k i n g , w i t h the a i r intake v a l v e f u l l y open and the p r o d u c e r gas v a l v e f u l l y c l o s e d . T h u s the engine w a s r u n on d i e s e l f u e l a l o n e at the start. The engine torque output w a s m e a s u r e d b y a p r o n y b r a k e mounted on another p l a t f o r m s c a l e , and the engine R P M b y hand tachometer. The b r a k e h o r s e p o w e r output i n e a c h r u n was thus determined.
Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Experimental layout for studying the use of producer gas from solid waste fuels in a diesel engine
(I) platform scale; (2) gas producer; (3) cyclone filter; (4) scrubber; (5) water outlet; (6) water inlet; (7) drain; (8) gas filter (coconut fiber); (9) control valve (gas); (10) control valve (air); (11) air filter; (12) gas analyzer; (13) diesel engine; (14) prony brake; (15) platform scale; (16) flowmeter; (17) liquid fuel; (18) weighing scale
Figure 1.
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
652
THERMAL CONVERSION OF SOLID WASTES AND
BIOMASS
The gas p r o d u c e r was a s u c t i o n - t y p e , downdraft r e a c t o r with 12 a i r h o l e s a r o u n d t h e m i d - s e c t i o n o f t h e c y l i n d r i c a l b o d y , a n d a s i n g l e gas o u t l e t at the b o t t o m . C o n n e c t e d to the g a s o u t l e t w a s a c y c l o n e s e p a r a t o r (3) t o r e m o v e e n t r a i n e d d u s t a n d c h a r c o a l f i n e s o u t of t h e g a s b e f o r e i t w e n t t o t h e e n g i n e . The gas s c r u b b e r (4) a n d f i l t e r (8) w e r e l a t e r a d d i t i o n s w h e n f u e l s w i t h high t a r and volatile m a t t e r contents w e r e u s e d . A t s t a r t - u p , the g a s p r o d u c e r w a s i n i t i a l l y f i l l e d w i t h c h a r c o a l c r u s h e d to a b o u t 1 - i n c h s i z e , u p to the l e v e l of the a i r - h o l e s . F e e d i n g o f f u e l w a s d o n e b y o p e n i n g t h e t o p of t h e r e a c t o r . A b u r n i n g z o n e w a s s t a r t e d o n the t o p of the c h a r c o a l b e d b y i g n i t i n g s m a l l p i e c e s of w o o d a n d w h e n the c h a r c o a l w a s b u r n i n g e v e n l y a t a l l l e v e l s o f t h e a i r - h o l e s ( t h i s t o o k a b o u t 10 m i n u t e s to o c c u r f r o m the t i m e the f i r e w a s lighted), the p r o d u c e r w a s c h a r g e d with m o r e c h a r c o a l u n t i l it was f u l l . The top of the r e a c t o r w a s t h e n c l o s e d a n d the g a s i n t a k e v a l v e to the e n g i n e s l o w l y opened. The engine w o u l d now a s p i r a t e g a s f r o m the r e a c t o r and speed up. S i n c e the engine w a s c o n t r o l l e d b y a s p e e d g o v e r n o r a d j u s t e d to about 1000 R P M , the l i q u i d f u e l i n take w o u l d be a u t o m a t i c a l l y r e d u c e d as m o r e p r o d u c e r gas w a s a s p i r a t e d into the e n g i n e , u n t i l a m i n i m u m u s e of l i q u i d f u e l , that which was r e q u i r e d only for ignition, was reached. T h e i n i t i a l d e s i g n of the g a s p r o d u c e r w a s s u c h that i t c o u l d be c o n v e r t e d r e a d i l y to operate e i t h e r as a downdraft o r as an updraft reactor. A l s o , the a i r intake c o u l d e i t h e r be b y s u c t i o n f r o m the e n g i n e o r b y f o r c e d d r a f t f r o m a c o m p r e s s e d a i r t a n k . T h e r e w a s o n l y a s i n g l e a i r i n l e t at the s i d e of t h e p r o d u c e r w h e n i t w a s o p e r a t e d a s a d o w n - d r a f t r e a c t o r , s o that the c o m b u s t i o n z o n e w a s c o n c e n t r a t e d i n the v i c i n i t y of t h i s s i n g l e a i r i n l e t . W h e n o p e r a t e d a s a n u p d r a f t r e a c t o r , the a i r e n t e r e d f r o m b e l o w the r e a c t o r a n d p a s s e d u p u n i f o r m l y t h r o u g h a b a r g r a t e . The q u a l i t y of t h e g a s t h u s p r o d u c e d w a s b e t t e r i n t h e u p d r a f t p r o d u cer. However, downdraft operation produced a cleaner gas, particularly when fuel with high volatile matter was used. Theref o r e a f t e r about h a l f of the e x p e r i m e n t a l r u n s w e r e f i n i s h e d , the p r o d u c e r w a s r e d e s i g n e d to o p e r a t e p e r m a n e n t l y as a s u c t i o n , downdraft r e a c t o r . R e d e s i g n i n g the r e a c t o r i n v o l v e d p r o v i d i n g f o r a d d i t i o n a l a i r i n l e t s s o that a i r d i s t r i b u t i o n to the c o m b u s t i o n z o n e c o u l d be more uniform. A l s o to i n c r e a s e the depth of the c o m b u s t i o n z o n e , the a i r h o l e s w e r e d i s t r i b u t e d a r o u n d t h r e e c i r c u m f e r e n t i a l p l a n e s (4 h o l e s t o a p l a n e ) s p a c e d 3 i n c h e s a p a r t t h u s e x t e n d i n g the b u r n i n g z o n e to a d e p t h of at l e a s t 6 i n c h e s . Furthermore, the c r o s s - s e c t i o n a l a r e a of t h i s c o m b u s t i o n z o n e w a s r e d u c e d to
Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
46.
CRUZ
653
Producer Gas from Agricultural Residues
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
6 i n c h e s d i a m e t e r f r o m t h e o r i g i n a l 10 i n c h e s a n d t h e l o n g i t u d i n a l c r o s s s e c t i o n of the r e a c t o r now exhibited a c o n s t r i c t i o n o r a " t h r o a t " at the c o m b u s t i o n zone. The purpose of this throat w a s to m a k e c o m b u s t i o n m o r e i n t e n s e at this z o n e . Combustion rate p e r unit o r c r o s s - s e c t i o n a l a r e a would now be h i g h e r and hence temperature higher. T h u s , the c o m b i n a t i o n of h i g h e r t e m p e r a t u r e s a n d a deeper c o m b u s t i o n zone w o u l d l e n d to m o r e e f f i c i e n t c r a c k i n g of the v o l a t i l e a n d t a r r y m a t e r i a l i n the f u e l and to t h e p r o d u c t i o n of m o r e c o m b u s t i b l e g a s e s . A m a s s of data w a s obtained i n evaluating the p e r f o r m a n c e of the engine a s a d u a l - f u e l engine u s i n g p r o d u c e r g a s f r o m c h a r coal. The p a r a m e t e r s used f o r evaluating performance a r ethe b r a k e - h o r s e p o w e r ( B H P ) output, the b r a k e t h e r m a l e f f i c i e n c y (e^) o f t h e e n g i n e , a n d t h e p e r c e n t a g e e n e r g y f r o m p r o d u c e r g a s ( E P G ) u t i l i z e d i n the e n g i n e . E P G i s d e f i n e d a s the r a t i o of the heat r e l e a s e d b y the c o m b u s t i o n of p r o d u c e r gas a s p i r a t e d into the e n g i n e t o t h e t o t a l h e a t r e l e a s e d b y b o t h l i q u i d i n j e c t i o n f u e l ( d i e s e l ) a n d p r o d u c e r g a s , m u l t i p l i e d b y 100 t o e x p r e s s a s a p e r centage. D e r i v a t i o n of the equation f o r E P G a n d b r a k e t h e r m a l e f f i c i e n c y i s found i n the A p p e n d i x . T o o b t a i n a m o r e c o n v e n i e n t f o r m , the m a s s of d a t a w a s r e d u c e d to m u l t i p l e l i n e a r r e g r e s s i o n equations to g i v e the f o l l o w ing relationships: BHP
= 7. 2 5 - 1 . 90 χ 10
_Q
( R P M ) - 3 . 2 2 χ 10
_3
(CVn)
(1)
ο C o e f f i c i e n t of c o r r e l a t i o n , R
- 0 . 48
eb
= 2 5 . 63 - 1 . 3 4 χ 1 θ " 2 ( R P M ) • 8 . 60 χ 1 0 2 ( C V n )
R2
= 0 . 41
EPG R2
= 2 2 . 75 - 1 3 . 3 4 ( B H P ) + 1 . 0 3 ( C V n )
(2)
(3)
= 0 . 53
C V n i n the above equations i s the n e t c a l o r i f i c value of the gas i n B t u / f t 3 at N T P , i . e . , at n o r m a l t e m p e r a t u r e a n d p r e s s u r e of 2 7 3 Κ a n d 1 a t m o s p h e r e . (One B t u / f t 3 i s 37. 25913 k j / m 3 ) . T h e r a n g e of v a l u e s of the p a r a m e t e r s u s e d i n o b t a i n i n g t h e above equations a r e as follows:
Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
654
THERMAL
(1) Engine speed: (2) Brake-horsepower: (3) Net c a l o r i f i c value in B t u / f t (4) Percent energy f r o m producer gas:
Downloaded by UNIV OF ARIZONA on June 19, 2017 | http://pubs.acs.org Publication Date: August 29, 1980 | doi: 10.1021/bk-1980-0130.ch046
3
CONVERSION OF SOLID WASTES AND BIOMASS
900 4
<