2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
Thermal Runaway in Chain-Addition Polymerizations and Copolymerizations JOSEPH A. BIESENBERGER Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 The objectives of this presentation are to discuss the general behavior of nonisothermal chain-addition polymerizations and copolymerizations and to propose dimensionless c r i t e r i a for e s t i mating nonisothermal reactor performance, in particular thermal runaway and instability, and its effect upon polymer properties. Most of the results presented are based upon work (1-8), both theoretical and experimental, conducted in the author's laboratories at Stevens Institute of Technology. Analytical methods i n clude a Semenov-type theoretical approach (1,2,9) as well as computer simulations similar to those used by Barkelew (3,4,6,7,10). Analyses of reactor performance are limited to rate functions
and thermal energy balances
of the forms shown in equations 1 and 2. Polymer property analyses are limited to chain-addition polymerizations
and copolymerizations
0-8412-0506-x/79/47-104-015$07.00/0 © 1979 American Chemical Society Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
16
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
with termination, whose general characteristics are shown in equations 3,4,5 and 6. It should be noted that equations 3 and 5 are written in general form to encompass many different chain mechanisms and therefore do not necessarily represent elementary reactions steps. Experimental results quoted herein are limited to polymerizations and copolymerizations of styrene (S) and acrylonitrile (AN) monomers via free-radical intermediates for which the following specific reactions obtain. For homopolymerizations we have
Termination scheme 11 applies to the geometric mean and phi factor models and scheme 12 is required for the penultimate effect model. All the above reaction models were used in attempts to simulate kinetic data. Parameters and Variables Reaction rate functions expressing rate of polymerization R generally depend upon the molar concentrations of monomer and initiator, and temperature. R -
R([m], [m ],T) Q
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(13)
2.
BIESENBERGER
Thermal
17
Runaway
D u r i n g p o l y m e r i z a t i o n , when i n i t i a t o r i s i n t r o d u c e d c o n t i n u o u s l y f o l l o w i n g a p r e d e t e r m i n e d f e e d s c h e d u l e , o r when h e a t removal i s c o m p l e t e l y c o n t r o l l a b l e so t h a t t e m p e r a t u r e c a n be programmed w i t h a p r e d e t e r m i n e d t e m p e r a t u r e p o l i c y , we may r e g a r d f u n c t i o n s [ r o o ( t ; ] , or T ( t ) , as r e a c t i o n parameters. A common s p e c i a l case of T ( t ) i s t h e i s o t h e r m a l mode, T = c o n s t a n t . In t h e p r e s ent a n a l y s i s , h o w e v e r , we t r e a t o n l y u n c o n t r o l l e d , b a t c h p o l y m e r i z a t i o n s i n which [ m ( t ) ] and T(t) are reaction variables, s u b j e c t t o v a r i a t i o n i n a c c o r d a n c e w i t h t h e c o n s e r v a t i o n laws (balances). Thus, o n l y t h e i r i n i t i a l (feed) v a l u e s , [ m ] andT , are t r u e parameters. In a d d i t i o n t o t h e s e , we have r e a c t o r d e s i g n p a r a m e t e r s : o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t U, r a t i o o f r e a c t i o n v o l u m e t o heat t r a n s f e r area I = V/A and h e a t e x c h a n g e r e s e r v o i r t e m p e r a t u r e TR . W h i l e t h e r m o d y n a m i c p r o p e r t i e s (-AH, p C ) and k i netic properties (r,Ap,E ,A ,Et) a r e d e t e r m i n e d f o r t h e most p a r t by t h e monomers b e i n g p o l y m e r i z e d , i n i t i a t o r c h o i c e (Ad,Ed) i s v i e w e d a s a p a r a m e t e r a s w e l l a s i n i t i a l monomer c o n c e n t r a t i o n [ m ] , w h i c h c a n be a d j u s t e d t h r o u g h t h e u s e o f d i l u e n t s . I twill be shown t h a t runaway (R-A) and i g n i t i o n (IG) phenomena a r e d e t e r mined by t h e v a l u e s o f c e r t a i n d i m e n s i o n l e s s g r o u p i n g s , w h i c h a r e made up o f t h e a f o r e m e n t i o n e d p a r a m e t e r s . T h u s , i f R-A i s s e n s i t i v e t o o n e o f t h e s e g r o u p i n g s , f o r i n s t a n c e , i t w i l l a l s o be s e n s i t i v e t o a l l o t h e r parameters i n t h a t grouping. Frequently function R c a n be w r i t t e n a s a s i n g l e t e r m having t h e s i m p l e f o r m o f e q u a t i o n 1. For i n s t a n c e , w i t h the a i d o f t h e l o n g c h a i n a p p r o x i m a t i o n (LCA) and t h e q u a s i - s t e a d y s t a t e a p p r o x i m a t i o n (QSSA), t h e r a t e o f monomer c o n v e r s i o n , i . e . , t h e r a t e o f p o l y m e r i z a t i o n , f o r many c h a i n - a d d i t i o n p o l y m e r i z a t i o n s c a n be w r i t t e n a s 0
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
0
0
Q
p
p
t
Q
R
where
k
=
a p
k
a
p
[ / [ , /
=
A
a
p
[ ]P[ m
m
o
]
q
exp(-E R T) a p
i s a lumped o r c o m p o s i t e r a t e c o n s t a n t .
homopolymerization
i s an e x a m p l e
(p = 1, q = 1/2)
g
(14)
Free-radical a s seen i n
T a b l e I . F r e e - r a d i c a l c o p o l y m e r i z a t i o n , on t h e o t h e r h a n d , l e a d s t o a sum o f t e r m s , e a c h o f w h i c h i s more c o m p l e x t h a n e q u a t i o n \k, a s seen i n T a b l e II ( N o t e t h e p r e s e n c e o f f u n c t i o n H , g i v e n i n T a b l e I I I f o r v a r i o u s t e r m i n a t i o n m o d e s ) . To remedy t h i s s i t u a t i o n , approximate rate functions f o r copolymerization of the form o f e q u a t i o n 1 a r e used i n s t e a d . In s u c h c a s e s t h e d i m e n s i o n l e s s r a t e f u n c t i o n R' = R/(R)
o
(15)
c a n be v i e w e d a s a p r o d u c t o f s e p a r a t e f u n c t i o n s R' = f ( t ) g ( T ' ) where
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(16)
18
POLYMERIZATION REACTORS AND PROCESSES TABLE I RATE FUNCTIONS FOR FREE-RADICAL
R. - k.[m ] = 2 f . l c . I l ] i i o d d
HOMOPOLYMERIZATIONS
k. = f k . i d
QSSA 1/2 R - k [P][ra] = k [ m ] [ l ] P P ap 1
/
k
0
ap
= k
[ m l= 2[l] o
(2fk,/kJ p d' V
1 / 2
x
n
2
k
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
V
k
•
P
t
[
m
]
2
k
s
p*
k
/
p
k
t
LCA w R
R = R. + R i p
p
QSSA
R. « i
R„ t
LCA
R » P
R. i
TABLE I I RATE FUNCTIONS FOR FREE-RADICAL COPOLYMERIZATIONS R.. = k f . [ m ] = 2 f k . f . [ l ] IJ iJ o d J
j = 1,2
L
R
=
R
E
=
ij
k
\
[ m
o
=
]
2
f
k
d
[
,
]
E
f
J R
pjk
= k .. [ P . ] [ m J pjk j k
J
= k [m.][m.][l] apjk j k ]
0
pk
R p
"
1
j
/
k ., = k k . ( 2 f k . / k ..k ) apjk p j k p&j d t j j til
R
=
j
X) J
R
1
H
k = 1,2
I = 1,2
0
I * j
PJk
= R » ( Y Y \ pk ^f^f
R = R. + R « i p Symmetry
Q
1 / 2
k
R p a p j k
a
PJ
k
[m.][m,])[l] J
1 / 2
H
k
f r o m LCA = k^.
R
p j |
Factor
k
H = L
p21
[ m
]
l
k
+
2
(
, / 2
(k 22)
k
p21 p12 k
[ m
l
] [ m
2
k
]
[ m
)'/2
k
t
]
2 1/2
k
V K
Penultimate
pl2
< t11>
K
t22 tir
effect
,1/2 r , [m
k
[ m
1
(k ) t22'
,
H =
p21
]
/
z
til/ r j Lm J + l m J 1
2
2
V K
/k
\
1 / 2
r [m ] + 2
.
k
p12
[ m
2
2
]
r [m J o T T V K
where
7
2
2
"
2
+ [mj]
tir
k ^ -
k t
n
l
2
>
k
k
t
2r t2112
;
k
tl2
k
tl221
;
k
k
t22~ t2222
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
20
POLYMERIZATION REACTORS AND PROCESSES
n j
(k
(R ) = (k ) ir [ C . ] o ap o . J o
(17) '
) = IK exp(-E; ) ap o ap ap
(18)
N
E ' = E /R T ap ap g o
(19)
n
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
f ( t ) = ir C j J
(20)
and g(T') Frequently
= e x p E ' T V ( 1 + T') ap
(21)
i t i s convenient t o w r i t e g ( 6 ) = e x p 0/(1 + e6)
(22)
i n l i e u o f e q u a t i o n 21 where e = 1/E' ap
(23)
We n o t e t h a t u n d e r f e e d c o n d i t i o n s g(o) = l .
(R') = 1 0
since
f(0) = 1
C h a r a c t e r i s t i c Times B a l a n c e e q u a t i o n s f o r b a t c h r e a c t o r s may a l l be v i e w e d a s special cases o f the f o l l o w i n g general equation
j where p i s a n i n t e n s i v e p r o p e r t y ( m o l a r c o n c e n t r a t i o n o r temp e r a t u r e ) and p j i s t h e r a t e w i t h w h i c h p r o c e s s j c a u s e s p t o i n c r e a s e i n v a l u e . When q u a n t i t i e s p and p j a r e made d i m e n s i o n l e s s t h r o u g h d i v i s i o n by t h e i r c o r r e s p o n d i n g f e e d v a l u e s V'
=
p/(p)
Pj
~
W
Q
o
(25)
U
6
)
t h e a f o r e m e n t i o n e d b a l a n c e e q u a t i o n s become p a r t l y d i m e n s i o n l e s s , h a v i n g d i m e n s i o n s o f r e c i p r o c a l t i m e o n l y , and t a k e on t h e f o l lowing g e n e r a l form
3f • E»J' »i
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(27)
2.
BIESENBERGER
Thermal
in which a c h a r a c t e r i s t i c f i n e d as
time
Xj
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
21
Runaway
s
(CT)
f o r e a c h p r o c e s s may
(P> /(Pj) 0
be
de-
(28)
0
We n o t e t h a t e q u a t i o n 15 i s an e x a m p l e o f e q u a t i o n 26. I t c a n be shown t h a t a l l d i m e n s i o n l e s s p a r a m e t e r s , a r r i v e d a t i n t h e c o n v e n t i o n a l manner by w r i t i n g e q u a t i o n s o f t y p e 24 i n c o m p l e t e l y d i m e n s i o n l e s s f o r m , c a n be e x p r e s s e d a s q u o t i e n t s o f CT's. T a b l e s IV and V c o n t a i n a p p r o p r i a t e b a l a n c e e q u a t i o n s f o r n o n i s o t h e r m a l f r e e - r a d i c a l p o l y m e r i z a t i o n s and c o p o l y m e r i z a t i o n s , w h i c h a r e seen t o c o n f o r m t o e q u a t i o n 24. Following the proced u r e o u t l i n e d a b o v e , we o b t a i n t h e CT's f o r h o m o p o 1 y m e r i z a t i o n s l i s t e d i n T a b l e V I . C o r r e s p o n d i n g CT's f o r c o p o l y m e r i z a t i o n s c a n be. o b t a i n e d i n a s i m i l a r way, and i n d e e d t h e f i r s t and f o u r t h l i s t e d i n T a b l e V I I w e r e . The r e m a i n i n g o n e s , h o w e v e r , were d e r i v e d v i a an a l t e r n a t e r o u t e based upon t h e d e f i n i t i o n s i n T a b l e VI l a b e l e d " e q u i v a l e n t " t o g e t h e r w i t h a p p r o x i m a t e f o r m s f o r p j , w h i c h w e r e n e c e s s i t a t e d by a p p l i c a t i o n o f t h e Semenov-type r u n away a n a l y s i s t o c o p o l y m e r i z a t i o n s , and w h i c h w i l l s u b s e q u e n t l y be d e s c r i b e d . Some u s e f u l d i m e n s i o n 1 e s s p a r a m e t e r s d e f i n e d i n terms o f t h e s e CT's a p p e a r i n T a b l e s V I I I , IX and X. Reactor
Performance
The c o n d i t i o n o f t h e r m a l runaway (R-A) i n p o l y m e r i z a t i o n and c o p o l y m e r i z a t i o n r e a c t o r s has been c h a r a c t e r i z e d (1,7) by a r a p i d l y r i s i n g temperature dT/dt » 0 t o g e t h e r w i t h an a c c e l e r a t i o n of the r i s e d T/dt > 0 . When R-A a d d i t i o n a l l y e x h i b i t s p a r a m e t r i c s e n s i t i v i t y i t i s termed i g n i t i o n ( I G ) . Beyond i t s r o l e as a p o t e n t i a l c a u s e o f i n s t a b i l i t y , R-A c a n a l s o a f f e c t conversion e f f i c i e n c y . S p e c i f i c a l l y , t h e w e l l - k n o w n phenomenon o f d e a d - e n d i n g ( D - E ) , i n w h i c h c o n v e r s i o n o f monomer t o p o l y m e r i s a b o r t e d by p r e m a t u r e d e p l e t i o n o f i n i t i a t o r , i s e x a c e r b a t e d by r i s i n g t e m p e r a t u r e s . T h i s i s so b e c a u s e h i g h t e m p e r a t u r e s a c c e l e r a t e i n i t i a t o r d e p l e t i o n r a t e s much more t h a n monomer c o n v e r sion rates. The phenomenon c a n o b v i o u s l y be m i t i g a t e d by i n c r e a s i n g i n i t i a t o r c o n c e n t r a t i o n , but t h i s has an a d v e r s e e f f e c t on d e g r e e o f p o l y m e r i z a t i o n ( D P ) . The c r i t e r i o n f o r D-E, shown i n T a b l e X I , was f o r m u l a t e d i n t e r m s o f d i m e n s i o n l e s s p a r a m e t e r , shown i n T a b l e V I I I , w h i c h c o r r e c t l y r e f l e c t s t h e e f f e c t s o f feed parameter T as w e l l a s [l] , since k has a n e g a t i v e temperature c o e f f i c i e n t . C r i t e r i a f o r R-A and IG, a l s o shown i n T a b l e X I , w e r e f o r m u l a t e d i n terms o f d i m e n s i o n l e s s p a r a m e t e r s e, a , B and b. They a p p l y t o b o t h h o m o p o l y m e r i z a t i o n s and c o p o l y m e r i z a t i o n s f o r v a r i ous i n i t i a t o r s y s t e m s a t o r n e a r t h e c o n d i t i o n TR = T , and w e r e d e v e l o p e d t h r o u g h m o d i f i e d Semenov-type a n a l y s e s (1,JL>Z) a n c * numerous c o m p u t e r s i m u l a t i o n s ( 3 j 4 ^ 6 ) . Owing t o t h e f a c t t h a t the dimensionless r a t e f u n c t i o n f o r homopolymerization c o n t a i n s 2
Q
2
Q
a x
Q
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
22
POLYMERIZATION REACTORS AND PROCESSES TABLE IV BATCH MATERIAL BALANCE EQUATIONS FOR FREE-RADICAL POLYMERIZATIONS AND COPOLYMERIZATIONS
In 1 1 I a t o r _ d[ml
. 2
dt
m
dt
f
v
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
Monomer d[m.]
LCA R
-TT-- !k -
+
R
pk
= R = R. i
dt
+
w
V
R p
~
p
Moment
4lip-=
dt
" -
[(2 - r)/2]R.
R
(1 + r ) R . + (3 + 2 r ) R
p
+ (2 +
r)R
p t
TABLE V BATCH ENERGY BALANCE EQUATIONS FOR FREE-RADICAL POLYMERIZATIONS AND COPOLYMERIZATIONS Homo po 1 y me r i z a t i o n s LCA pC
Q
p
*
-AHR
- (UA/V)(T - T )
p
R
C o p o l y m e r i z a t i ons P C
p
£
L
"
(-AH j
j k
)R
p l k
- (UA/VMT - T ) R
k
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2.
BIESENBERGER
Thermal
23
Runaway
TABLE VI CHARACTERISTIC TIMES FOR HOMOPOLYMERIZATIONS
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
Definitions CT
Original
X.
2f[l] /(R,) o
initiator
o
n
heat g e n e r a t i o n
PC T / ( - A H ) ( R ) p o o
o 3G
ad
X
R
C
T
P p o
pC
/ (
-
consumption
monomer c o n v e r s i o n
W„/(R) o p o
A
Process
Equ i v a l e n t v-1
A H ) ( R )
VI adiabatic
E
o ap
heat
£/U
induction
removal
P
TABLE VI I CHARACTERISTIC TIMES FOR CT
Original
COPOLYMERIZATIONS Equivalent
X. o
PJ
k
o
1
(-£) X
Gjk (G ) e o 3G \~1 ad
P
I
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
-1 Gjk
24
POLYMERIZATION REACTORS AND PROCESSES
TABLE V I I I DIMENSIONLESS PARAMETERS FOR HOMOPOLYMERIZATIONS Defini tion Parameter
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
a
x
k V
For I n t e r p r e t a t i o n
N
ap
B
b
a d
V
A
/X
R
ad
x,/X
" Vo o
/ a
f I , ]
a d
J
/ 2
k _
X ,/X. ad G X
B/b
X
"
e E
=
V i
For Evaluation
1
(E' ) ap' E /R T ap g o (^)V(-AH)(k
(-
A H
E
) ;
^H)(k
a x
[ m ]
o
P
a p
/ p C
) E; [m] [l] o
p
p
T
o
/ 2 o
/pC T
TABLE IX DIMENSIONAL PARAMETERS FOR COPOLYMERIZATIONS Pa r a m e t e r ak \
Def i n i t i on A /X. m A
( x
o
x
Q
< 2Vl
+ ( x
+
x
2
+
P
+
£l
x
T
r
E'T' •
x
r
x
2
0
2
o
2
2
)
2
0
2
( r
r
X
2m
2
E
)
o
+
T
_
«* >o< 2'o 2> 2
_ ( x
+
2
e
x
2
p
0
J>
2
o
2
2?TirT
£1
E
2
T
1
Q
2
0
2
o
2
I
T
)
2
E
n
+ ( x ^
l
T
' P2 ' nx ) A m exp- Tr (x ) (r ) m exp ^ r
T W )
; Dtl2 ' (x ) (r ) m exp (x ) (r ) X m exp^Hfn
X
2 1
Jjl
< 2>o< 2»o 2
x
^£1
lVl' 2»Q' 2^ 2 lV P 2(m')
0
* » ( » i > ( r i V i ( » 2 > o < 2 > o 2 + » 2>o< 2>o 2>
"< l>cAl>o
( r
2
IFFTT
p ( i t r i 2^iy PuTr) E' T' (x ) (r ) m ex r + (x ) m
r
t iW i>o i
X
*' l'o
( l>o< l>o l
x
X
E X P
» l'o''-l'o l'
t*zWo fr
x
^ o ^ o ^
iWrj*
2 1
p
£.
fery
r
( l>o< lVl
o< l'o l> l
x
P enultimate Effect
H'
=
Phi Factor
Q
( i»o« i»o*i"i
Geometric Mean
H'
Dimensionless Termination Function
TABLE X EXPRESSIONS FOR H"
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
§
5*
to
^
|
H
JSCS
§
2
g
§
B S S
w
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
POLYMERIZATION REACTORS AND PROCESSES
TABLE XI DIMENSIONLESS CRITERIA FOR REACTOR PERFORMANCE ( p o l y m e r i z a t i o n s and C o p o l y m e r i z a t i o n s ) Phenomena
Criteria
D-E
a
R-A
e « 1 a < 2
IG/ERA
B > 20 b > 100
k
> 1
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2.
BIESENBERGER
Thermal
Runaway
27
only one simple term R' H
=
n
1
1 / 2
exp
E'T'/O dp
+ T-)
and t h u s c o n f o r m s t o e q u a t i o n 16, i t c a n be shown by t h e p r o c e d u r e l e a d i n g t o e q u a t i o n 27 t h a t t h e p a r t l y monomer b a l a n c e e q u a t i o n
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
-3?
"
dt
(29) following dimensionless
(30)
X
'JK m
p
c o n t a i n s o n l y a s i n g l e f u n c t i o n on t h e RHS and t h e p a r t l y s i o n l e s s e n e r g y b a l a n c e e q u a t i o n t a k e s on a f o r m
G
R
e
dimen-
e
w h i c h i s a m e n a b l e t o Semenov-type a n a l y s i s ( 1 ) . P e r t i n e n t d i m e n s i o n l e s s p a r a m e t e r s w e r e d e f i n e d i n t e r m s o f r e s u l t i n g CT's and are l i s t e d in Table V I I I . D u r i n g t h e d e v e l o p m e n t o f t h e s e c r i t e r i a t h e Semenov a n a l y s i s was e x t e n d e d t o s y s t e m s w i t h h e a t - e x c h a n g e r r e s e r v o i r t e m p e r a t u r e s d i f f e r e n t from feed temperatures (TR < T ) and w i t h d e l a y e d runaway ( l a r g e r v a l u e o f e ) , w h i c h r e s u l t e d i n s i g n i f i c a n t c o n c e n t r a t i o n d r i f t p r i o r t o runaway. S i n c e v a l u e s o f e for c h a i n - a d d i t i o n p o l y m e r i z a t i o n s a r e n o t n e a r l y a s s m a l l as t h o s e f o r t h e g a s e o u s e x p l o s i o n s i n v e s t i g a t e d by Semenov, R-A i s n o t as s e n s i t i v e nor i s i t as e a r l y i n terrrs o f e x t e n t o f r e a c t i o n . T h u s , t h e c r i t i c a l v a l u e o f R-A p a r a m e t e r 'a' i s n o t t h e same n o r i s i t as c l e a r l y d e f i n e d . M o r e o v e r , i t i s p o s s i b l e t o e x p e r i e n c e i n s e n s i t i v e ( p o t e n t i a l l y s t a b l e ) R-A. Sample e x p e r i m e n t a l r e s u l t s s h o w i n g s e n s i t i v e and i n s e n s i t i v e R-A have been p l o t t e d i n F i g u r e s 1 and 2, r e s p e c t i v e l y . In t h e c o m p u t e r s i m u l a t i o n s i t was n e c e s s a r y t o s t u d y r e a c t i o n s e q u e n c e s more c o m p l e x t h a n t h o s e s t u d i e d by B a r k e l e w , which consequently led to r a t e f u n c t i o n s having double r a t h e r than s i n g l e c o n c e n t r a t i o n dependence. Numerous r e s u l t s f r o m b o t h t h e o r e t i c a l and c o m p u t a t i o n a l a n a l y s e s , i n c l u d i n g t h e e f f e c t s o f e and TR , have been d e s c r i b e d e l s e w h e r e ( s e e e s p e c i a l l y F i g u r e 8 of reference 1). C r i t e r i a f o r s e n s i t i v i t y , B and b , are also c r i t e r i a f o r v a l i d i t y o f t h e e a r l y R-A a p p r o x i m a t i o n (ERA), w h i c h s a y s t h a t R-A o c c u r s v i r t u a l l y when m = 1 = I . W h i l e B f o r most f r e e r a d i c a l p o l y m e r i z a t i o n s l i e s w i t h i n a narrow range, which exceeds the c r i t i c a l v a l u e , b v a r i e s w i d e l y from s u b c r i t i c a l t o c r i t i c a l v a l u e s , d e p e n d i n g s t r o n g l y u p o n c h o i c e o f i n i t i a t o r and f e e d p a r a meters [ l ] and T . Decreasing values of b generally depress the c r i t i c a l v a l u e of 'a' slightly. Computed R-A Q
0
Q
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure
T
R
\}/jt
a
1.
A A
Experimental
O R A O
O D
O
o
o •
0
A
•
o
0
A
LJ
o •
o
A
o LJ n
o
o
o 0
0
A A A A A A A A A &
o •
o °
•
o
•
•
o o a
o°
6
o
8
d
o
o
o
show-
Polymer Engineering and Science
°
O
A A ^ A A A A A A A
data from styrene polymerization initiated with benzoyl peroxide ing R-A sensitivity to parameter U/l (5)
0
A 0
u n O • o •
44 0 43 A 42 • 34 O
RUN
on o g °
07 975 -0035 0032 0029 .0027
•o
ofia
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure
& o
6°
•
2.
120
Experimental
•
• •
A
A
360
\
m
*
A
m m
m
•
TIME
SEC.
0
0
3
initiated [I] (5)
• ft a M ^ A A a
A
m
data from styrene polymerization R-A sensitivity to parameter
m
A 5
l 0
R
5
T
*
with
0
4
0
[)/£ 5 1
0
2
6
*
5
4
56
•
"
•
A
O
O
55
53
52
RUN
1080
peroxide
less
Polymer Engineering and Science
* *
0
0027
.0028
.0029
.0035
0
benzoyl
840
l 0 2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
30
POLYMERIZATION REACTORS AND PROCESSES
b o u n d a r i e s f o r h o m o p o l y m e r i z a t i o n s a r e shown i n F i g u r e 3 From T a b l e s V I I I and XI we f i n d t h a t R-A may be i n d u c e d ('a r e d u c e d b e l o w c r i t i c a l v a l u e ) by r a i s i n g T , [ l ] o r E ( v i a Ed) a s w e l l a s by l o w e r i n g U/£ . We a l s o f i n d t h a t IG may be i n d u c e d (b i n c r e a s e d a b o v e c r i t i c a l v a l u e ) by r a i s i n g [l] , lowering T o r l o w e r i n g kd ( v i a l o w e r Ad o r h i g h e r Ed). Consequently, we must c o n c l u d e t h a t w h i l e a h i g h v a l u e o f T contributes to t h e o n s e t o f R-A, i t s i m u l t a n e o u s l y m i t i g a t e s i t s s e n s i t i v i t y . F u r t h e r m o r e , w h i l e i n i t i a t o r s a z o - b i s - i s o b u t y r o n i t r i l e (Ad ^ 1 0 ^ 5 s e c - 1 , Ed ^ 3 0 K c a l ) , b e n z o y l p e r o x i d e (Ad * loH sec" , Ed ^ 3 0 K c a l ) and d i - t e r t - b u t y l p e r o x i d e (Ad * 1 0 ^ 5 s e c " , Ed ^ 3 7 K c a l ) a r e g e n e r a l l y r e g a r d e d a s i n c r e a s i n g i n " s l o w n e s s " i n t h e d i r e c t i o n 1 i s t e d , b e c a u s e Ad d e c r e a s e s o r Ed i n creases, o r both, t h e i r value o f b increases i n the order shown, a l l o t h e r f a c t o r s r e m a i n i n g e q u a l . C o n s e q u e n t l y , we must c o n c l u d e t h a t ' s l o w ' i n i t i a t o r s a r e more l i k e l y t o p r o d u c e u n s t a b l e R-A's t h a n f a s t o n e s . The a b o v e c o n c l u s i o n s i n v o l v i n g T and i n i t i a t o r c h o i c e have been o b s e r v e d e x p e r i m e n t a l l y . 1
0
0
a p
0
0
Q
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
1
1
0
The r a t e f u n c t i o n f o r c o p o l y m e r i z a t i o n c o n t a i n s a summation o f t e r m s , each o f which R
pjk
=
» A
'
,
/
2
H- « p
E ;
p
J
k
T V ( l
i s more c o m p l e x t h a n e q u a t i o n 1 6 , and t h e r e s u l t i n g balance equation i s . dm
=
dt
y y L^tL-j
j The c o r r e s p o n d i n g e n e r g y
J
k
x
T
l
(
j k
} N
R
(32)
+T-) monomer
(33)
.
k'o p j k
k balance
G
R
e
e
i s c o n s e q u e n t l y n o t a m e n a b l e t o Semenov-type a n a l y s i s . The f u n c t i o n a l form o f f o r each o f t h e t h r e e t e r m i n a t i o n models c i t e d i s g i v e n i n T a b l e X. In o r d e r t o remedy t h i s s i t u a t i o n , e q u a t i o n s 3 2 , 3 3 and 3k w e r e f o r c e d t o c o n f o r m t o 2 9 , 3 0 and 31 by r e c o g n i z i n g a l t e r n a t i v e , e q u i v a l e n t d e f i n i t i o n s ( t h i r d column i n T a b l e V I ) o f CT's f o r homopolymer b a l a n c e s and s u b s e q u e n t l y a p p l y i n g them t o c o p o l y m e r b a l a n c e s . In t h i s way, a p p r o x i m a t e c o polymer b a l a n c e s
|S
-
1
A" m l m
1 / 2
e x p E ' T V O + T*)
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(35)
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
-
2 10
2.1
1
1
1
1 1
Figure
NON RUNAWAY
3.
Computed
3 10
1 1 1 1
RUNAWAY
IG boundaries
1
32
41
b
I I I
i
I
1
1
e=o.04
(4)
r=i.o
s
(/^n)o 3000
R
e «=o.O
I
I
1
I
Polymer Engineering and Science
I
6 E - * 1.467
4 10
I
for homopolymerizations
B = fiO
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
32
POLYMERIZATION REACTORS AND PROCESSES
m I
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
G
1/2
exp
E ' T V O + T') - X ^ ( T - T*)
(36)
R
e
e
w e r e d e v e l o p e d i n w h i c h CT's w e r e o b t a i n e d u s i n g e q u i v a l e n t d e f i n i t i o n s (second c o l u m n i n T a b l e VI l) and a l l i m p o r t a n t dimensionl e s s p a r a m e t e r s f o r c o p o l y m e r s ( T a b l e I X ) , i n c l u d i n g an o v e r a l l a c t i v a t i o n energy E', w e r e d e f i n e d i n a c c o r d a n c e w i t h t h e i r homopolymer c o u n t e r p a r t s ( T a b l e V I I I ) . I t was f o u n d t h a t n o t o n l y d i d p a r a m e t e r s a , B and b so d e f i n e d c h a r a c t e r i z e R-A and IG b e h a v i o r o f c o p o l y m e r i z a t i o n s , but a p p r o x i m a t e e q u a t i o n s 3 5 and 36 c l o s e l y t r a c k the exact balance equations over wide conversion and t e m p e r a t u r e r a n g e s , e x c e p t when one comonomer i s e x h a u s t e d o r when t h e s y s t e m i s n e a r IG ( 7 ) . V e r i f i c a t i o n of the a p p l i c a b i l i t y o f R-A b o u n d a r i e s t o c o p o l y m e r i z a t i o n s i s e v i d e n t i n F i g u r e 4 . C o m p a r i s o n s between " e x a c t " c o m p u t e r m o d e l s and c o p o l y m e r a p p r o x i mate f o r m s (CPAF) a p p e a r i n F i g u r e 5 . P o l y m e r and
Copolymer P r o p e r t i e s
Owing t o t h e c h a i n n a t u r e o f c h a i n - a d d i t i o n p o l y m e r i z a t i o n s and c o p o l y m e r i z a t i o n s w i t h t e r m i n a t i o n , o n l y a s m a l l f r a c t i o n o f t h e u l t i m a t e p r o d u c t m o l e c u l e s grow a t any i n s t a n t , but t h e y grow t o t h e i r f i n a l s i z e so r a p i d l y t h a t t h e y may be r e g a r d e d a s i n stantaneous product without a p p r e c i a b l e e r r o r . The f i n a l product i s an a c c u m u l a t i o n o f a l l i n s t a n t a n e o u s p r o d u c t s formed d u r i n g t h e c o u r s e o f p o l y m e r i z a t i o n , and i t s c u m u l a t i v e p r o p e r t i e s a r e c o m p o s i t e s o f t h e i n s t a n t a n e o u s p r o p e r t i e s . Examples a r e d e g r e e o f p o l y m e r i z a t i o n d i s t r i b u t i o n , DPD, c o p o l y m e r c o m p o s i t i o n d i s t r i b u t i o n , CCD, and t h e i r r e s p e c t i v e a v e r a g e v a l u e s , DP and CC (see T a b l e X I I ) . D i s p e r s i o n o f t h e s e d i s t r i b u t i o n s i s c o n s e quently the r e s u l t of the inherent d i s p e r s i o n of the molecular p r o c e s s e s a t e a c h i n s t a n t , termed s t a t i s t i c a l d i s p e r s i o n , t o g e t h e r w i t h t h e e f f e c t o f t i m e d r i f t s u p e r i m p o s e d upon i t , termed d r i f t d i s p e r s i o n , w h i c h i s a c h a r a c t e r i s t i c o f b a t c h r e a c t o r s and w h i c h can o n l y r e s u l t i n g r e a t e r d i s p e r s i o n i f a l l o w e d t o o c c u r . Thus, the response o f these p o l y m e r i z a t i o n s t o changes i n a p a r a m e t e r , s u c h a s t e m p e r a t u r e o r c o m p o s i t i o n , may be v i e w e d a s m a n i f e s t i n g i t s e l f i n two w a y s , i n s t a n t a n e o u s and d e l a y e d (3). I t i s w e l l known t h a t low v a l u e s o f T and [ l ] lead to h i g h DPs. T h i s i s a c c u r a t e l y r e f l e c t e d by p a r a m e t e r (v^) , the i n i t i a l k i n e t i c c h a i n length (Table X I l l ) , which i s a q u o t i e n t of feed composition r a t i o x and d i m e n s i o n l e s s p a r a m e t e r a ^ . T h u s , given x , a small v a l u e of w o u l d seem t o f a v o r h i g h i n i t i a l DP. On t h e o t h e r hand, c r i t e r i o n ak < 1 s i g n a l s a downward d r i f t o f i n s t a n t a n e o u s DP d u r i n g i s o t h e r m a l p o l y m e r i z a t i o n (3) w h i c h has the o p p o s i t e e f f e c t . F u r t h e r m o r e , u n d e r non i s o t h e r m a l c o n d i t i o n s , r i s i n g t e m p e r a t u r e s e x a c e r b a t e t h i s downward d r i f t . Consequently, we c o n c l u d e t h a t d r i f t r e s p o n s e and i n s t a n t a n e o u s r e s p o n s e may be Q
Q
Q
Q
Q
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
BIESENBERGER
Thermal
4
Runaway
Hoiflopolymer
A
Boundary
• •
8^41 €=0.025 • .26 S AN • .38 AN MMA
10
10
2
Figure 4.
Computed
3
b IG boundaries
™ for
4
1
copolymerizations
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
°
5
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
34
8 Ο
Ι ο ο
% V.
•a
•8 Ο V.
I I
ο 1 i t d r i f t s upward. We t h e r e f o r e c o n c l u d e t h a t t o a c h i e v e a t a r g e t c c h i g h i n comonomer 1, s a y , i n s t a n t a n e o u s r e s p o n s e c o n s i d e r a t i o n s ( T a b l e IX) s u g g e s t t h a t , g i v e n ( x j ) a l o w v a l u e f o r 3k »s r e q u i r e d , w h e r e a s e q u a t i o n 37 i n d i c a t e s t h a t 3^ < 1 w o u l d c a u s e t h e c o m p o s i t i o n t o d r i f t downward, o p p o s i t e t o t h e t a r g e t d i r e c t i o n . O b v i o u s l y , when 3k 1 > no d r i f t o c c u r s . I t c a n be shown t h a t h i g h t e m p e r a t u r e l e v e l s and R-A have v i r t u a l l y no b r o a d e n i n g e f f e c t on CCD d i s p e r s i o n b e c a u s e 3k has a s m a l l t e m p e r a t u r e c o e f f i c i e n t , w h i c h f r e q u e n t l y e v e n t a k e s on negative values causing d r i f t dispersion to a c t u a l l y lessen a t high temperatures. F i g u r e s 7 and 8 show t h e s m a l l n e s s and d i r e c t i o n ( i m p r o v e m e n t ) o f t e m p e r a t u r e e f f e c t on d r i f t , and t h e a b i l i t y o f 3k t o c h a r a c t e r i z e d i r e c t i o n ( s e e c r o s s o v e r i n F i g u r e 7 and c o r r e s p o n d i n g d r i f t s i n F i g * 8) a s w e l l a s m a g n i t u d e o f d r i f t * As a f i n a l n o t e i t s h o u l d be p o i n t e d o u t t h a t R-A p a r a m e t e r s f o r h o m o p o l y m e r i z a t i o n and c o p o l y m e r i z a t i o n c a n be e v a l u a t e d f r o m i n i t i a l k i n e t i c rate data using the i n t e r p r e t a t i o n s given to c h a r a c t e r i s t i c t i m e s i n T a b l e s VI and V I I . C o u p l i n g between c h a n g i n g r e a c t i o n v i s c o s i t y and k i n e t i c c o n s t a n t s and o t h e r t r a n s p o r t p r o p e r t i e s was n e g l e c t e d b e c a u s e runaway g e n e r a l l y o c c u r s e a r l y d u r i n g r e a c t i o n , and s u c h e f f e c t s a r e c o n s e q u e n t l y o f m i n o r importance. n s
0 >
=
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
400
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
-(XN)inst - C U M . XN C A S E S 7,8,9 300
TABLE REF.
17 3
/
ix
ISOTHERMAL
200
100 NON-ISOTHERMAL, ADIABATIC
0.05
0.10
0.15
0.20
0.25
Polymer Engineering and Science Figure
6.
Computed
drift curves for instantaneous
and cumulative
DPs (3)
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Thermal
Runaway
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
BIESENBERGER
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure
5*
O
CO
N
y
Nst
Computed
8.19
A Adiabatic
R Runaway
1 0.38
_
!
J 0.40
____
1
1 0.58
)
PHI
1 0.60
1
J 01.79
I QI
drift curves for instantaneous and cumulative CCs of styrene-methyl acrylate polymers initiated with AIBN
0.20
QiQuasi-Isothermal
0 = .598
8.
y
i Isothermal
&*.820
9
K
6 995
—-R
IQI
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
meth-
3
O
2
o
2.
BIESENBERGER
Thermal
41
Runaway
SYMBOLS NOT DEFINED IN TEXT pre-exponential c o e f f i c i e n t i n rate constant expressions w i t h a p p r o p r i a t e s u b s c r i p t s o r heat t r a n s f e r s u r f a c e area. Cj = g e n e r a l r e a c t i o n component j o r d i m e n s i o n l e s s c o n c e n t r a t i o n o f component j . E = a c t i v a t i o n energy i n r a t e constant e x p r e s s i o n s w i t h appropriate subscripts. E^ =s d i m e n s i o n l e s s a c t i v a t i o n e n e r g y f o r c o p o l y m e r i z a t i o n d e f i n e d i n T a b l e IX.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch002
A
E
=
=
rk
E
E
Dk f = fj = I = k =
rk
/ R
T
g o
E
E
/ R
T
( tjkkj " tkkkk) g o initiator efficiency factor i n i t i a t o r e f f i c i e n c y f a c t o r f o r comonomer j i n i t i a t o r o r dimensionless i n i t i a t o r concentration rate constant with appropriate subscript
kap " M
2 f k
/ k
d t>!£
kax - k p / ( 2 f k k ) l / 2 a p j k = kpjk k j ( 2 f k d / k j j k ) t = k + k m = monomer o r d i m e n s i o n l e s s monomer c o n c e n t r a t i o n mj = comonomer j o r d i m e n s i o n l e s s c o n c e n t r a t i o n o f comonomer j o generalized i n i t i a t o r o r dimensionless concentration of generalized i n i t i a t o r m = x-mer o r d i m e n s i o n l e s s c o n c e n t r a t i o n o f x-mer P = a c t i v e i n t e r m e d i a t e s o f a l l l e n g t h s and t y p e s P j = a c t i v e j - m e r i n t e r m e d i a t e s o f a l l l e n g t h s w i t h comonomer j as t e r m i n a l u n i t P = a c t i v e i n t e r m e d i a t e s o f a l l l e n g t h s and t y p e s x,j a c t i v e i n t e r m e d i a t e o f l e n g t h x w i t h comonomer j a s terminal u n i t P j = a c t i v e i n t e r m e d i a t e o f a n y l e n g t h w i t h comonomer j a s terminal u n i t P j P k = a c t i v e i n t e r m e d i a t e o f a n y l e n g t h w i t h comonomer j and k a s p e n u l t i m a t e and u l t i m a t e u n i t s , r e s p e c t i v e l y R = r a t e f u n c t i o n f o r t o t a l monomer c o n v e r s i o n ( r a t e o f p o l y m e r i z a t i o n ) o r any r a t e f u n c t i o n w i t h a p p r o p r i a t e s u b s c r i p t Rp = rate function defined i nTable I Rg = gas constant r = ktc/kt or reactivity ratio with appropriate subscript T - (T - T ) / T U = o v e r a l l heat t r a n s f e r c o e f f i c i e n t V = r e a c t o r volume xj^j = number a v e r a g e DP x = w e i g h t a v e r a g e DP x - [m]Q/[m ] Xj = [ m j j / [ m ] y = m o l e f r a c t i o n o f comonomer 1 i n c o p o l y m e r d
t
k
p A
t
M
]
/
Z
k
t c
m
t D
=
x
x
p
=
t
0
0
w
Q
0
0
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
42 A
POLYMERIZATION REACTORS AND PROCESSES
k
k
-( tjkkj k
/ k
tkkkk)o k
+ = k / tl11 t22 $ = 1 - m = f r a c t i o n monomer c o n v e r t e d 6 = E ' T" X.A = c h a r a c t e r i s t i c t i m e s w i t h a p p r o p r i a t e s u b s c r i p t s y k - |