Thermochemical Radii of Complex Ions - Journal ... - ACS Publications

Nov 1, 1999 - Internally Consistent Ion Volumes and Their Application in Volume-Based Thermodynamics. Leslie Glasser and H. Donald Brooke Jenkins...
0 downloads 0 Views 102KB Size
Research: Science and Education

Thermochemical Radii of Complex Ions Helen K. Roobottom and H. Donald B. Jenkins* Department of Chemistry, University of Warwick, Coventry CV4 7AL, West Midlands, UK; *[email protected] Jack Passmore Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 6E2, Canada Leslie Glasser Centre for Molecular Design, Department of Chemistry, University of Witwatersrand, Johannesburg, P.O. WITS 2050, South Africa

Thermochemical radii (1–3) can be used in the Kapustinskii equation (1) for binary salts or in the more recent Glasser generalization of this equation (4 ) for more complex salts, to predict lattice potential energies and stabilities of new inorganic materials (see, for example, refs 5, 6 ). They also provide parameters of molecular size to correlate with other ion properties (see, for example, ref 7). Our previous “reappraisal” (3) of these magnitudes is widely cited in the literature and is quoted in inorganic textbooks (8–11) and many others. Our present work offers the largest self-consistent set of thermochemical radii yet produced. These tables include (i) ions previously not considered, (ii) estimates for complex ions of recent and evolving topical interest, and (iii) estimates to update the values of the radii for the more conventional ions where necessary. Estimation of Thermochemical Radii Bartlett et al. (12) demonstrated a linear correlation of lattice enthalpy against the inverse cubic root of the volume per molecule, V, for simple MX salts. We have generalized this correlation and have studied crystals containing complex anions partnered with alkali-metal counter ions of known radius, and have extended the correlation (13) to include complex salts of the type Mp X q . Thus for a crystal Mp X q containing pM q+ ions and q complex anions X p { whose thermochemical radius is to be assigned, we use the unit cell parameters (a, b, c, α , β, and γ ) derived from the crystal-structure data for the salts to calculate the volume per molecule, V :

V=

abc

Table 1. Anionic Thermochemical Radii of Ions in Salt Type MX (1:1) Anion

No. of Salts

Radius/nm

Ref 3

Anion

Radius/nm

Ref 3

AgF4 {

1

0.231 ± 0.019



2

0.242 ± 0.019



AlBr4 {

3

0.321 ± 0.023



IrF6{

4

0.220 ± 0.019

0.229

AlCl4 {

1

0.317 ± 0.019

0.295

MnO4{

4

0.241 ± 0.019



AlF4 {

4

0.214 ± 0.023



MoF6{

2

0.241 ± 0.019



AlH4

1

0.226 ± 0.019



MoOF5-

3

0.180 ± 0.019

0.195

AlI4 {

1

0.374 ± 0.019



N3{

5

0.254 ± 0.019



AsF6{

4

0.243 ± 0.019



NbF6{

0.194 ± 0.019

0.170

1

0.266 ± 0.019



NbO3{

1

Au(CN)2{

NCO{

3

0.193 ± 0.019

0.203

AuCl4{

1

0.288 ± 0.019



4

0.168 ± 0.019



AuF4{

1

0.240 ± 0.019



NH2{

0.190

1

0.229 ± 0.019



NH2CH2COO{ 1

0.252 ± 0.019

B(OH)4{

3

0.187 ± 0.019

0.192

BF4{

4

0.205 ± 0.019

0.232

NO2{

5

0.200 ± 0.019

0.179

BH4{

4

0.205 ± 0.019

0.193

NO3{

4

0.165 ± 0.019

0.158

Br{

4

0.190 ± 0.019

0.188

O2{

2

0.199 ± 0.034

0.177

BrF4{

2

0.231 ± 0.019



O3{

OH{

3

0.152 ± 0.019

0.133

BrO3{

4

0.214 ± 0.019

0.154

3

0.252 ± 0.020



CH3CO2{

1

0.194 ± 0.019

0.162

OsF6{

0.249 ± 0.019



3

0.168 ± 0.019

0.172

PaF6{

4

Cl{

1

0.252 ± 0.019



ClO2{

1

0.195 ± 0.019



PdF6{

5

0.242 ± 0.019



ClO3{

5

0.208 ± 0.019

0.171

PF6{

4

0.204 ± 0.019



ClO4{

6

0.225 ± 0.019

0.240

PO3{

1

0.247 ± 0.019



CN{

4

0.187 ± 0.023

0.191

PtF6{

1

0.239 ± 0.019



Cr3O8{

2

0.276 ± 0.019



PuF5{

4

0.240 ± 0.019

0.277

CuBr4{

1

0.315 ± 0.019



ReF6{

5

0.227 ± 0.019



F{

4

0.126 ± 0.019

0.126

ReO4{

0.242 ± 0.019



1

0.317 ± 0.019



RuF6{

3

FeCl4{

1

0.305 ± 0.019



GaCl4{

1

0.328 ± 0.019

0.289

S6{

1

0.320 ± 0.019



H{

4

0.148 ± 0.019

0.173

SbCl6{

5

0.252 ± 0.019



H2AsO4{

2

0.227 ± 0.019



SbF6{

1

0.205 ± 0.019



H2PO4{

2

0.213 ± 0.019



SbO3{ SCN{

2

0.209 ± 0.019

0.213

HCO2{

1

0.200 ± 0.019

0.169

SeCN {

1

0.230 ± 0.019



HCO3{

2

0.207 ± 0.019

0.156

SeH {

2

0.195 ± 0.019

0.205

HF2{

5

0.172 ± 0.019

0.172

SH {

5

0.191 ± 0.019

0.207

HSO4{

2

0.221 ± 0.019



3

0.214 ± 0.019



I{

4

0.211 ± 0.019

0.210

SO3F {

0.352 ± 0.019



1

0.261 ± 0.019



TaCl6{

1

I2Br {

4

0.250 ± 0.019



I3{

1

0.272 ± 0.019

0.294

TaF6{

1

0.192 ± 0.019

0.168

IBr2{

1

0.251 ± 0.019



TaO3{

3

0.301 ± 0.019



ICl2{

1

0.235 ± 0.019



UF6{

0.235 ± 0.019



1

0.307 ± 0.019



VF6{

2

ICl4{

4

0.201 ± 0.019



IO2F2{

1

0.233 ± 0.019

0.177

VO3{

1

0.337 ± 0.019



IO3{

6

0.218 ± 0.019

0.122

WCl6{

3

0.246 ± 0.019



IO4{

5

0.231 ± 0.019



WF6{

WOF5{

1

0.241 ± 0.019



{

1 – cos2 α – cos2 β– cos2 γ + 2cos α cos β cos γ z

where z is the number of molecules per unit cell. 1570

No. of Salts

Using our correlation between the total lattice potential energy, UPOT (taken from the tabulation [14 ] and Kapustinskii estimated values), and the inverse cubic root of the volume per molecule, V {1/3, for salts of type Mp X q enables the esti-

Journal of Chemical Education • Vol. 76 No. 11 November 1999 • JChemEd.chem.wisc.edu

Research: Science and Education

mation of UPOT(Mp X q); and via the Kapustinskii equation (using eq 2 of ref 3) a thermochemical radius for Xp { can then be established. These results are tabulated (along with the number of salts considered in obtaining the particular radius cited and previously assigned radii where possible) in Table 1 for MX (1:1) salts, Table 2 for M2X-type (2:1) salts, and Table 3 for Mp X q-type salts. In a similar manner we can derive cationic thermochemical radii by selecting halide salts that have, therefore, known anionic thermochemical radii. The corresponding cationic radii are tabulated in Table 4 for MX- and MX2-type salts. We can now use our thermochemical radii generated in Table 1 to generate further cationic radii and vice versa. The results of these estimates are found in Table 5 for MXtype salts, Table 6 for MX2-type salts, and Table 7 for Mp X q-type salts. Errors are assigned taking into consideration the correlation coefficient of the relationship between U POT (14 ) and V { 1/3 (which are found to range from .99 for salts of type MX and .98 for M2X to .90 for MX2) and the uncertainty in the value generated for UPOT and hence for the radius. Discussion Radii for planar ions (CO32{), “V ”-shaped ions (NO2{), and linear ions (CNS{, HF2{, etc.) are less representative of size than in typically spherical moieties. The trends in ion size observed in our previous study (3) are maintained. The thermochemical radii calculated here correlate well with the theoretically computed effective radii of Mingos et al. (7) and also with other radii that have been quoted for some of these ions (11). Our extended calculations now offer a vast and consistent range of thermochemical radii for ions and include new and relatively uncharted ions such as the polyatomic halogen and chalcogen cations as well as more familiar ions. Such radii can also be used to obtain estimates of the lattice potential energy, U POT (M p X q ), for the complex salt Mp X q , which is a key thermochemical quantity. Thus us-

Table 2. Anionic Thermochemical Radii of Ions in Salt Type M2 X (2:1) Anion

No. of Salts

Radius/nm

Ref 3

Anion

No. of Salts

Radius/nm

Ref 3

AmF6 2{

1

0.255 ± 0.019



3

0.421 ± 0.026



CdCl4 2{

1

0.307 ± 0.019



ReI62{

3

0.240 ± 0.019

0.264

CeCl6 2{

1

0.352 ± 0.019

0.353

RhF62{

1

0.336 ± 0.019

0.332

CeF6 2{

1

0.249 ± 0.019



RuCl62{

4

0.248 ± 0.019



CO3 2{

3

0.189 ± 0.019

0.178

RuF62{ S2{

4

0.189 ± 0.019

0.191

CoCl4 2{-

1

0.306 ± 0.019

0.319

1

0.251 ± 0.019



CoF4 2{

2

0.209 ± 0.019



S2 O3 2{

1

0.262 ± 0.019



CoF6 2{

1

0.256 ± 0.019

0.244

S2 O4 2{

1

0.270 ± 0.019



Cr2O72{

2

0.292 ± 0.019



S2 O5 2{

4

0.283 ± 0.019



CrF6 2{

3

0.253 ± 0.019

0.252

S2 O6 2{

1

0.275 ± 0.019



CrO4 2{

5

0.229 ± 0.019

0.256

S2 O7 2{

2

0.291 ± 0.019



CuCl4 2{

1

0.304 ± 0.019

0.321

S2 O8 2{

1

0.302 ± 0.019



CuF4 2{

3

0.213 ± 0.019



S3 O6 2{

1

0.325 ± 0.019



GeCl6 2{

1

0.335 ± 0.019

0.328

S4 O6 2{

1

0.382 ± 0.019



GeF6 2{

3

0.244 ± 0.019

0.265

S6 O6 2{

2

0.374 ± 0.019



HfF6 2{

3

0.248 ± 0.019

0.271

SbBr6 2{

1

0.276 ± 0.019



HgI4 2{

1

0.377 ± 0.019



ScF6 2{ Se2{

1

0.181 ± 0.019

0.209

IrCl6 2{

1

0.332 ± 0.019

0.335

1

0.363 ± 0.019

0.358

MnCl6 2{

3

0.314 ± 0.031

0.322

SeBr6 2{

2

0.336 ± 0.019

0.326

MnF4 2{

2

0.219 ± 0.019

0.256

SeCl6 2{

4

0.229 ± 0.019

0.249

MnF6 2{

3

0.241 ± 0.019

0.256

SeO4 2{

4

0.248 ± 0.019

0.259

MoBr6 2{

2

0.364 ± 0.019



SiF6 2{

2

0.195 ± 0.019



MoCl6 2{

3

0.338 ± 0.019

0.340

SiO3 2{

1

0.218 ± 0.019



MoF6 2{

1

0.274 ± 0.019



SmF4 2{

2

0.279 ± 0.020



MoO4 2{

3

0.231 ± 0.019



Sn(OH)6 2{

3

0.374 ± 0.019

0.363

MoOCl5 2{

1

0.334 ± 0.019



SnBr6 2{

3

0.345 ± 0.019

0.349

NbCl6 2{

1

0.343 ± 0.019

0.343

SnCl6 2{

2

0.265 ± 0.019



NbOCl5 2{

2

0.335 ± 0.019



SnF6 2{

2

0.427 ± 0.019

0.396

NbOF5 2{

1

0.280 ± 0.019



SnI6 2{

1

0.204 ± 0.019



NH2{

1

0.128 ± 0.019



SO3 2{

6

0.218 ± 0.019

0.258

Ni(CN)4 2{

1

0.322 ± 0.019



SO4 2{

2

0.363 ± 0.019



NiF4 2{

3

0.211 ± 0.019



TcBr6 2{

2

0.337 ± 0.019



NiF6 2{

3

0.249 ± 0.019

0.249

TcCl6 2{

2

0.244 ± 0.019



O2{

5

0.141 ± 0.019

0.149

TcF6 2{

1

0.260 ± 0.019



O2 2{

5

0.167 ± 0.019

0.173

TcH9 2{

2

0.419 ± 0.019



OsBr6 2{

2

0.365 ± 0.019



TcI6 2{ Te2{

1

0.220 ± 0.019

0.220

OsCl6 2{

2

0.336 ± 0.019

0.324

3

0.383 ± 0.019

0.359

OsF6 2{

1

0.276 ± 0.019



TeBr6 2{

3

0.353 ± 0.019

0.366

PbCl4 2{

1

0.279 ± 0.019



TeCl6 2{

1

0.430 ± 0.019

0.383

PbCl6 2{

2

0.347 ± 0.019

0.348

TeI6 2{

2

0.238 ± 0.019



PbF6 2{

2

0.268 ± 0.019



TeO4 2{

1

0.424 ± 0.019



PdBr6 2{

3

0.354 ± 0.019



Th(NO3 )6 2{

1

0.360 ± 0.019



PdCl4 2{

1

0.313 ± 0.019



ThCl6 2{

3

0.263 ± 0.019



PdCl6 2{

3

0.333 ± 0.019

0.319

ThF6 2{

2

0.356 ± 0.019

0.352

PdF6 2{

4

0.252 ± 0.019



TiBr6 2{

3

0.335 ± 0.019

0.331

PoBr6 2{

1

0.380 ± 0.019



TiCl6 2{

4

0.252 ± 0.019

0.289

PoI6 2{

1

0.428 ± 0.019



TiF6 2{

1

0.354 ± 0.019

0.337

Pt(NO2 )3 Cl3 2{ 1

0.364 ± 0.019



UCl6 2{

3

0.256 ± 0.019



Pt(NO2 )4 Cl2 2{ 1

0.383 ± 0.019



UF6 2{

1

0.204 ± 0.019



Pt(OH)2 2{

1

0.333 ± 0.019



VO3 2{

3

0.363 ± 0.019

0.336

Pt(SCN)6 2{

2

0.451 ± 0.019



WBr6 2{

3

0.339 ± 0.019

0.336

PtBr4 2{

1

0.324 ± 0.019



WCl6 2{

2

0.237 ± 0.019



PtBr6 2{

3

0.363 ± 0.019

0.342

WO4 2{

1

0.334 ± 0.019



PtCl4 2{

3

0.307 ± 0.019

0.293

WOCl5 2{

1

0.335 ± 0.019

0.299

PtCl6 2{

2

0.333 ± 0.019



ZnBr4 2{

1

0.306 ± 0.019

0.286

PtF6 2{

2

0.245 ± 0.019

0.296

ZnCl4 2{

2

0.219 ± 0.019



PuCl6 2{

1

0.349 ± 0.019

0.354

ZnF4 2{

1

0.384 ± 0.019

0.323

ReBr6 2{

3

0.371 ± 0.019

0.360

ZnIs 2{

1

0.334 ± 0.019

0.299

ReCl6 2{

3

0.337 ± 0.019

0.324

ZrBr4 2{

1

0.306 ± 0.019

0.286

ReF6 2{

3

0.256 ± 0.019

0.277

ZrCl4 2{

2

0.348 ± 0.019

0.358

ReF8 2{

2

0.276 ± 0.019



ZrCl6 2{

2

0.258 ± 0.019



ReH9 2{

1

0.257 ± 0.019



ZrF6 2{

JChemEd.chem.wisc.edu • Vol. 76 No. 11 November 1999 • Journal of Chemical Education

1571

Research: Science and Education Table 3. Anionic Thermochemical Radii of Ions in Salt Type Mp Xq Anion No. of Salts Radius/nm AlH6 3{

1

0.256 ± 0.042

2

0.237 ± 0.042

CdBr6 4{

2

0.374 ± 0.038

CdCl6 4{

2

0.352 ± 0.038

CeF6 3{

1

0.278 ± 0.038

CeF7 3{

1

0.282 ± 0.038

2

Anion MnCl6 4{

1

0.349 ± 0.038

N

3

0.180 ± 0.042

Ni(NO2 )6 3{

1

0.342 ± 0.038

Ni(NO2 )6 4{

1

0.383 ± 0.038

NiF6 3{

1

0.250 ± 0.042

O3{

1

0.288 ± 0.038

0.349 ± 0.038

P3{

3

0.224 ± 0.042

Co(NO2 )6 3{ 3

0.343 ± 0.038

3

0.299 ± 0.042

1

0.320 ± 0.038

PaF8 3{

1

0.230 ± 0.042

CoF6 3{

4

0.258 ± 0.042

1

0.281 ± 0.038

1

0.351 ± 0.038

PrF6 3{

3

0.345 ± 0.038

CrF6 3{

1

0.254 ± 0.042

1

0.428 ± 0.042

Cu(CN)4 3{

1

0.312 ± 0.038

Rh(SCN)6 3{

1

0.284 ± 0.042

Fe(CN)6 3{

4

0.347 ± 0.038

TaF8 3{

0.290 ± 0.038

5

0.298 ± 0.042

TbF7 3{

4

FeF6 3{

1

0.410 ± 0.042

HfF7 3{

1

0.277 ± 0.042

Tc(CN)6 5{

1

0.282 ± 0.042

3

0.268 ± 0.038

ThF7 3{

0.315 ± 0.038

1

0.347 ± 0.038

TiBr6 3{

2

Ir(CN)6 3{

3

0.271 ± 0.038

3{

1

0.338 ± 0.038

TlF6 3{

4

0.285 ± 0.042

Mn(CN)6 3{

1

0.350 ± 0.038

UF7

3{

3

0.275 ± 0.038

1

0.401 ± 0.042

YF6 3{

3

0.273 ± 0.038

AsO 4

3{

Co(CN)6 3{ CoCl5 3{

Cr(CN)6 3{

InF6 3{

Ir(NO2)6

Mn(CN)6 5{

3{

PO4 3{

Rh(NO2 )6 3{

ZrF7 3{

Table 4. Cationic Thermochemical Radii of Ions in Salt of Type MX (1:1) and MX 2 (1:2)

Cation

No. of Salts Radius/nm

Ref 3

N(CH3)4+

3

0.234 ± 0.019

0.201

N2H5+

1

0.158 ± 0.019



N2H62+

2

0.158 ± 0.029



NH(C2H5)3+

2

0.274 ± 0.019



NH3C2H5+

1

0.193 ± 0.019



NH3C3H7+

3

0.225 ± 0.019



NH3CH3+

2

0.177 ± 0.019



NH3OH+

2

0.147 ± 0.019



NH4+

3

0.136 ± 0.019

0.137

NH3C2H4OH+

2

0.203 ± 0.019



ing the above radii for Xp{ coupled with, for example, the appropriate thermochemical (Goldschmidt [15, 16 ]) radius for simple counter ions in the Kapustinskii equation, UPOT(MpXq ) can be found. Such values can be further used via the Born–Fajans–Haber cycle (Fig. 1) to estimate other thermodynamic parameters. Acknowledgment Helen Roobottom thanks the EPSRC for the provision of a studentship. Literature Cited 1. Kapustinskii, A. F. Q. Rev. 1956, 10, 283–294. 2. Smith, D. W. J. Chem. Educ. 1977, 54, 540–541. 3. Jenkins, H. D. B.; Thakur, K. P. J. Chem. Educ. 1979, 56, 576– 577. 4. Glasser, L. Inorg. Chem. 1995, 34, 4935–4936. 5. Jenkins, H. D. B.; Sharman, L.; Finch, A.; Gates, P. N. Inorg. Chem. 1996, 35, 6316–6326.

1572

pM(standard state) + qX(standard state)

No. of Salts Radius/nm

B

A ∆f Hº(MpXq, c)

[p ∆f Hº(Mq , g) + +

q ∆f Hº(Xp , g)] –

MpXq(c) D

∆UPOT(MpXq) +

C

+

E [p ∆hydHº(M , g) +

q ∆hydHº(Xp , g)] –

q+

p–

pM (aq) + qX (aq) H ∆trHº(MpXq, c; aq s)

∆solnHº(MpXq, c)



q+

∆solnHº(MpXq, c)

G

pMq (g) + qXp (g)

[p(nM+/2 - 2) + q(nX–/2 - 2)]RT

[p ∆f Hº(Mq , aq) + +

F

q ∆f Hº(Xp , aq)] –

[p ∆solvHº(Mq , g) + +

q ∆solvHº(Xp , g)] –

q+

p–

pM (s) + qX (s)

I

J

[p ∆f Hº(Mq , s) + q ∆f Hº(Xp , s)] +



Figure 1. Thermochemical cycle for a salt, Mp X q , involving its dissolution in water and in a nonaqueous solvent. Limb A represents the standard enthalpy of formation of the crystalline salt, limb B represents the combined standard enthalpies of formation of the p gaseous cations Mq + and the q gaseous anions Xp{, and limb C is the total lattice enthalpy: that is, the sum of the lattice energy UPOT(Mp Xq ) and {p [n (M+)/2 – 2] + q [n(X {)/2 – 2]}RT, where n(M +) and n (X{) are equal to 3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. Limb D represents the standard enthalpy of solution of Mp Xq in water, and limb G that in the nonaqueous solvent, s. Limb E represents the combined standard hydration enthalpies of the gaseous cations Mq+ and the gaseous anions Xp { in water, and limb I the corresponding solvation enthalpy of these ions in s. Limbs F and J are, respectively, the standard enthalpies of formation of the aqueous and nonaqueous cations Mq + and anions X p{, and limb H represents the combined standard enthalpies of transfer of the p cations Mq+ and the q anions Xp{ from water to the solvent s.

6. Burford, N.; Passmore, J.; Sanders, J. C. P. In From Atoms to Polymers: Isoelectronic Analogies; Liebman, J. F.; Greenberg, A., Eds.; VCH: Boca Raton, FL, 1989; Chapter 2. 7. Mingos, D. M. P.; Rohl, A. L.; Burgess, J. J. Chem. Soc., Dalton Trans. 1993, 423–426. 8. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins College Publishers: New York, 1993; p 118. 9. Porterfield, W. W. Inorganic Chemistry, A Unified Approach; Academic: New York, 1993; p 85. 10. Wulfsberg, G. Principles of Descriptive Inorganic Chemistry; University Science Books: Sausalito, CA, 1991; p 34. 11. Marcus, Y. Ion Properties; Dekker: New York, 1997; p 43. 12. Mallouk, T. E.; Rosenthal, G. L.; Muller, G.; Busasco, R.; Bartlett, N. Inorg. Chem. 1984, 23, 3167–3173. 13. Roobottom, H. K.; Jenkins, H. D. B.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609–3620. 14. Jenkins, H. D. B. In Handbook of Chemistry and Physics, 79th ed.; Lide, D. R., Ed.; CRC: Boca Raton, FL, 1998–99; pp 1222–12-33 ff. 15. Goldschmidt, V. M. Skrifter Norske Videnskaps-Akad. Oslo. Mat. Nat. v Kl., 1926, 1, 2. 16. Dasent, W. E. Inorganic Energetics, 2nd ed.; Cambridge University Press: Cambridge, 1982.

Journal of Chemical Education • Vol. 76 No. 11 November 1999 • JChemEd.chem.wisc.edu

Research: Science and Education Table 5. "Novel" Cationic and Anionic Thermochemical Radii of Ions in Salt Type MX (1:1)

Ion

As3 S4

No. of Radius/nm Salts 2 0.244 ± 0.027

+

As3 Se4

+

AsCl4 +

1

0.253 ± 0.027

1

0.221 ± 0.027

1

0.235 ± 0.038

Br 2

+

1

0.155 ± 0.027

Br 3 +

1

0.204 ± 0.027

Br 3

{

1

0.238 ± 0.027

Br 5 +

2

0.229 ± 0.027

BrClCNH2 +

1

0.175 ± 0.027

+

1

0.183 ± 0.027

B rF 4 +

1

0.172 ± 0.027

C1 0 F8 +

1

0.265 ± 0.027

C6 F6 +

1

0.228 ± 0.027

Cl(SNSCN)2 +

1

0.347 ± 0.027

Cl2 C=NH2 +

1

0.173 ± 0.027

Cl2 F+

1

0.165 ± 0.027

Cl3 +

1

0.182 ± 0.027

ClF2 +

1

0.147 ± 0.027

1

0.118 ± 0.027

1

0.317 ± 0.038

1

0.185 ± 0.027

1

0.225 ± 0.027

1

0.263 ± 0.027

1

0.196 ± 0.027

4

0.175 ± 0.036

1

0.209 ± 0.027

1

0.258 ± 0.027

1

0.186 ± 0.027

1

0.246 ± 0.027

1

0.214 ± 0.027

1

0.156 ± 0.027

3

0.311 ± 0.038

5

0.145 ± 0.027

2

0.153 ± 0.027

4

0.140 ± 0.027

1

0.275 ± 0.027

1

0.200 ± 0.027

2

0.246 ± 0.038

AuF 6

B rF 2

{

ClO2 +

GaBr4 { I2 + I3 + I5 +

IBr2 +

ICl2 + IF 6 +

N(S3 N2 )2

+

N(SCl)2 +

N(SeCl)2 +

N(SF2 )2

+

N2 F+

Nb 2 F 1 1 { NO

+

NO 2 + O2

+

O2 (SCCF3 Cl)2 ONCH3 CF3 +

OsOF5

{

+

Ion

S3 N2

No. of Radius/nm Salts 1 0.201 ± 0.027

+

S3 N2 Cl

+

S3 N3 {

1

0.232 ± 0.027

1

0.231 ± 0.038

1

0.252 ± 0.038

+

2

0.231 ± 0.027

S4 N3 (Ph)2 +

1

0.316 ± 0.027

S4 N4 H

1

0.178 ± 0.027

S5 N5 +

2

0.257 ± 0.027

S7 I+

3

0.262 ± 0.027

S3 N3 O4 S4 N3

{

+

1

0.518 ± 0.027

Sb2 F1 1 {

4

0.312 ± 0.038

Sb3 F1 4 {

3

0.374 ± 0.038

SBr3 +

2

0.220 ± 0.027

SCH3 O2 +

1

0.183 ± 0.027

SCH3 P(CH3 )3 +

1

0.248 ± 0.027

SCH3 PCH3 Cl2 +

1

0.205 ± 0.027

SCl(C2 H5 )2 +

1

0.207 ± 0.027

SCl2 CF3 +

1

0.207 ± 0.027

1

0.204 ± 0.027

5

0.185 ± 0.027

1

0.253 ± 0.027

1

0.245 ± 0.027

1

0.163 ± 0.027

2

0.260 ± 0.027

1

0.182 ± 0.027

6

0.192 ± 0.027

2

0.258 ± 0.038

3

0.179 ± 0.027

Sb(NPPh3 )4

+

SCl2 CH3 + SCl3 +

Se3 Br3 +

Se3 Cl3 +

Se3 NCl2 + Se6 I+

SeBr3 +

SeCl3 + SeCl5

{

SeF3 +

2

0.238 ± 0.027

+

1

0.196 ± 0.027

SeNCl2 +

1

0.157 ± 0.027

1

0.406 ± 0.027

1

0.294 ± 0.027

2

0.198 ± 0.027

1

0.210 ± 0.027

4

0.172 ± 0.027

1

0.275 ± 0.027

1

0.210 ± 0.027

SN

1

0.158 ± 0.027

SNCl5 (CH3 CN){

1

0.290 ± 0.038

1

0.308 ± 0.027

SNSC(CH3 )N+

1

0.225 ± 0.027

1

0.209 ± 0.027

SeI3 +

SeN2 Cl

(SeNMe3 )3 + SF(C6 F5 )2

+

SF2 CF3 +

+

SF2 N(CH3 )2 SF3

+

SFS(C(CF3 )2 )2 + SH2 C3 H7

+

1

0.197 ± 0.027

P(CH3 )3 D+

1

0.196 ± 0.027

2

0.235 ± 0.027

ReOF5 {

1

0.245 ± 0.038

1

0.207 ± 0.027

1

0.439 ± 0.027

SNSC(Ph)N

1

0.251 ± 0.027

1

0.265 ± 0.027

0.327 ± 0.027

S2 (CH3 )2 CN+

1

0.223 ± 0.027

SNSC(Ph)NS3 N2 + 1

1

0.233 ± 0.027

S2 Br5 +

1

0.267 ± 0.027

(Te(N(SiMe3 )2 )2 +

3

0.159 ± 0.034

S2 N2 C2 H3 +

1

0.211 ± 0.027

S2 NC2 (PhCH3 )2 + 1

0.310 ± 0.027

S2 NC3 H4 +

1

0.218 ± 0.027

1

0.225 ± 0.027

1

0.239 ± 0.027

1

0.245 ± 0.027

1

0.199 ± 0.027

1

0.261 ± 0.027

1

0.263 ± 0.027

1

0.233 ± 0.027

P(CH3 )3 Cl

PCl4

+

+

S(CH3 )2 Cl+

S(N(C2 H5 )3 )3 S2 (CH3 )2 Cl+ S2 (CH3 )3

+

S2 N+

S2 NC4 H8 + S3 (CH3 )3 + S3 Br3 +

S3 C3 H7 + S3 C4 F6 +

S3 CF3 CN+ S3 Cl3 +

+

+

(SNPMe3 )3

+

SNSC(CN)CH+ +

Table 6. "Novel" Cationic and Anionic Thermochemical Radii of Ions in Salt Type MX2 (1:2) Ion

2

0.230 ± 0.049

2

0.260 ± 0.049

Co2 S2 (CO)6 2 +

1

0.263 ± 0.035

FeW(Se)2 (CO)2 +

1

0.260 ± 0.035

I4 2 +

2

0.207 ± 0.035

Mo(Te3 )(CO)4 2 +

1

0.234 ± 0.035

NbCl6 {

2

0.338 ± 0.049

S1 9 2 +

1

0.292 ± 0.035

S2 (S(CH3 )2 )2 2 +

1

0.230 ± 0.035

S2 I4 2 +

1

0.231 ± 0.035

S3 N2 2 +

3

0.184 ± 0.035

S3 NCCNS3 2 +

1

0.220 ± 0.035

S3 Se2 +

1

0.326 ± 0.035

S4 N4 2 +

5

0.186 ± 0.035

S6 N4 2 +

1

0.232 ± 0.035

S8 2 +

2

0.182 ± 0.035

Se1 0 2 +

2

0.253 ± 0.035

Se1 7 2 +

1

0.236 ± 0.035

Se1 9 2 +

1

0.296 ± 0.035

Se2 I4 2 +

1

0.218 ± 0.035

Se3 N2 2 +

3

0.182 ± 0.035

Se4 2 +

1

0.152 ± 0.035

Se4 S2 N4 2 +

1

0.224 ± 0.035

Se8 2 +

2

0.186 ± 0.035

SeN2 S2 2 +

1

0.182 ± 0.035

(SNP(C2 H5 )3 )2 2 +

1

0.312 ± 0.035

TaBr6 {

3

0.351 ± 0.049

Te(trtu)4 2 +

1

0.328 ± 0.035

Te(tu)4 2 +

3

0.296 ± 0.035

Te2 (esu)4 Br2 2 +

1

0.356 ± 0.035

Te2 (esu)4 Cl2 2 +

1

0.361 ± 0.035

Te2 (esu)4 I2 2 +

1

0.342 ± 0.035

Te2 Se2 2 +

1

0.192 ± 0.035

Te2 Se4 2 +

4

0.222 ± 0.035

Te2 Se8 2 +

2

0.252 ± 0.035

Te3 S3 2 +

3

0.217 ± 0.035

Te3 Se2 +

1

0.193 ± 0.035

Te4 2 +

4

0.169 ± 0.035

Te8 2 +

1

0.187 ± 0.035

W(CO)4 (η3-Te)2 + 1

0.234 ± 0.035

W2 (CO)1 0 Se4 2 +

3

1

0.264 ± 0.027

1

0.371 ± 0.027

Te(N3 )3 +

1

0.226 ± 0.027

Te4 Nb3 OTe2 I6 +

1

0.407 ± 0.027

TeBr3 +

2

0.235 ± 0.027

TeCl3 +

8

0.216 ± 0.027

Ion

TeCl3 (15-crown-5)+ 1

0.282 ± 0.027

Bi2 Br8 2{

3

0.243 ± 0.027

1

0.266 ± 0.027

1

0.221 ± 0.027

XeF+

1

0.174 ± 0.027

XeF3 +

2

0.183 ± 0.027

3

0.186 ± 0.027

1

0.186 ± 0.027

Xe2 F1 1 + Xe2 F3 +

XeF5 +

XeOF3 +

Note: Values were calculated using crystal structures at varying temperatures. Ph = phenyl; Me = methyl.

0.290 ± 0.035

Note: Values were calculated using crystal structures at varying temperatures. trtu = trimethylthiourea; tu = thiourea; esu = ethyleneselenourea.

SNSC(PhCH3 )N+

TeI3 +

No. of Salts Radius/nm

ClS2 O6 {

CF3 SO3 {

Table 7. "Novel" Cationic and Anionic Thermochemical Radii of Ions in Salt Type Mp Xq No. of Salts Radius/nm 1

0.392 ± 0.055

Bi6 Cl2 0 2{

1

0.501 ± 0.073

I1 5 3 +

1

0.442 ± 0.051

Nb2 OCl1 0 2{

2

0.383 ± 0.055

Se3 N2 +

2

0.288 ± 0.042

SeS2 N2 +

1

0.282 ± 0.042

Te2 (su) 6 4 +

1

0.453 ± 0.034

Note: Values were calculated using crystal structures at varying temperatures. su = selenourea.

JChemEd.chem.wisc.edu • Vol. 76 No. 11 November 1999 • Journal of Chemical Education

1573