12 Ternary System Phase Diagram Determinations Concerning Potassium Electrolyte Influence on Aqueous Solutions of Dioxane or Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
Tetrahydrofuran JOHN A. McNANEY Department of Chemistry, Fitchburg State College, Fitchburg, MA 01420 HOWARD K. ZIMMERMAN and PAUL H. GROSS Department of Chemistry, University of the Pacific, Stockton, CA 95211
Phase diagrams, at 25°C, were determined for potassium acetate-water-dioxane, potassium acetate-water-tetrahydrofuran, and potassium chloride-water-tetrahydrofuran. Po tassium acetate exceeded potassium chloride in its capacity to stratify aqueous solutions of either dioxane or tetrahydro furan. Kobsev's (1) investigations revealed that the greater the solubility of an alkali metal salt, the greater its salting -out effect. The relative order of the water solubilities of the salts studied are potassium acetate >> potassium chloride. More potassium acetate is required to cause stratification in aqueous dioxane than is necessary to obtain the same results in aqueous tetrahydrofuran. It is proposed that, in com parison to dioxane, tetrahydrofuran forms a weaker associa tion with water and, hence, the cations can more easily break these bonds causing liquid-phase separation.
H p h e p h e n o m e n a w h i c h gave rise to this s t u d y w e r e first b r o u g h t to t h e χ
a t t e n t i o n of Η . K . Z i m m e r m a n , D i r e c t o r o f C a r b o h y d r a t e R e s e a r c h a t
t h e U n i v e r s i t y o f t h e Pacific, b y r e s e a r c h w o r k e r s i n p e p t i d e c h e m i s t r y w h e r e t h e p o t a s s i u m h y d r o x i d e - w a t e r - d i o x a n e system w a s u s e d i n t h e saponification o f esters.
H e d i r e c t e d that this m e t h o d b e u s e d b y h i s
0-8412-0428-4/79/33-177-177$05.00/l © 1979 American Chemical Society In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
178
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
staff to s a p o n i f y suger acetates
a n d benzoates.
T h e y also f o u n d
a m i n o s u g a r d e r i v a t i v e s , e v e n h y d r o c h l o r i d e s of a m i n o s u g a r could
be
extracted
from
concentrated
aqueous
II
that
glycosides,
potassium
chloride
solutions. I n u s i n g this s a p o n i f i c a t i o n p r o c e d u r e a salting-out of d i o x a n e often was observed.
S i n c e s u c h a s a l t i n g - o u t effect c a n b e q u i t e t r o u b l e s o m e ,
it b e c a m e necessary to i n i t i a t e a s t u d y of t h e t h r e e - c o m p o u n d system i n o r d e r to l e a r n h o w s u c h a c o m p l i c a t i o n m i g h t be a v o i d e d . It w a s also h i g h l y d e s i r a b l e to l e a r n h o w to better c o n t r o l the s a l t i n g o u t effect i n w a t e r - t e t r a h y d r o f u r a n systems so t h a t extractions i n this Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
p a i r of m i x e d solvents c o u l d b e p e r f o r m e d .
T h i s present s t u d y of the
p h a s e r e l a t i o n s h i p s i n some of the solvent systems u s e d i n a m i n o s u g a r r e s e a r c h i n c l u d e s t h e d e t e r m i n a t i o n of the phase d i a g r a m s of t h e systems potassium
acetate-water-dioxane,
potassium
acetate-water-tetrahydro-
f u r a n , a n d p o t a s s i u m c h l o r i d e - w a t e r - t e t r a h y d r o f u r a n , a n d a n a t t e m p t to p r o v i d e a t h e o r e t i c a l e x p l a n a t i o n for the e x p e r i m e n t a l results. Experimental Chemicals. P o t a s s i u m acetate f r o m J . T . B a k e r C h e m i c a l C o m p a n y ( B a k e r A n a l y z e d R e a g e n t , 9 9 . 0 % assay) w a s u s e d i n C 0 - f r e e d i s t i l l e d w a t e r a n d w a s s t a n d a r d i z e d w i t h s t a n d a r d p e r c h l o r i c a c i d i n g l a c i a l acetic a c i d , u s i n g m e t h y l v i o l e t i n d i c a t o r (2). P o t a s s i u m c h l o r i d e of B a k e r A n a l y z e d R e a g e n t , 9 9 . 9 % assay, w a s u s e d as r e c e i v e d . 1,4-Dioxane of technical grade from J. T . B a k e r C o m p a n y was purified by distillation o v e r m e t a l l i c s o d i u m as d e s c r i b e d b y V o g e l ( 3 ) . Tetrahydrofuran ( T H F ) of B a k e r A n a l y z e d R e a g e n t , d e n s i t y 0.881 g c m " , b o i l i n g r a n g e 6 5 . 8 ° - 6 6 . 4 ° C , w a s u s e d as r e c e i v e d . K a r l F i s c h e r R e a g e n t , o b t a i n e d f r o m A l l i e d C h e m i c a l C o m p a n y , w a s s t a n d a r d i z e d to 1 m L of r e a g e n t to react w i t h at least 5 m g of w a t e r . F i s h e r c e r t i f i e d s t a n d a r d w a t e r i n methanol (1 m L = 1 m g H 0 ) , used for standardizing K a r l F i s c h e r R e a g e n t , w a s o b t a i n e d f r o m F i s h e r Scientific C o m p a n y . 2
3
2
Apparatus. A c i r c u l a t i n g c o n s t a n t - t e m p e r a t u r e w a t e r b a t h e q u i p p e d w i t h a micro-set t h e r m o r e g u l a t o r w a s u s e d to s u p p l y the w a t e r f o r the jacket of a P y r e x w a t e r - j a c k e t e d r e a c t i o n flask t h a t w a s e q u i p p e d w i t h a m a g n e t i c stirrer. B u r e t s u s e d — a u t o m a t i c a n d c o n v e n t i o n a l — w e r e of Class-Α g r a d e a n d e q u i p p e d w i t h T e f l o n stopcocks. General Procedure. T h e s e l e c t e d e l e c t r o l y t e s o l u t i o n w a s p l a c e d i n the j a c k e t e d r e a c t i o n flask w h i c h w a s h e l d at constant t e m p e r a t u r e b y the c o n n e c t e d c i r c u l a t i n g w a t e r b a t h . T h e t i p of a b u r e t c o n t a i n i n g the c y c l i c ether w a s i n t r o d u c e d t h r o u g h a stopper i n t o t h e m o u t h of t h e r e a c t i o n flask. W i t h the electrolyte s o l u t i o n u n d e r g o i n g constant s t i r r i n g the c y c l i c ether w a s d e l i v e r e d s l o w l y f r o m the b u r e t into the r e a c t i o n flask to the p o i n t of t u r b i d i t y or p r e c i p i t a t i o n , a n d t h e d e l i v e r e d v o l u m e of c y c l i c ether w a s n o t e d . T h e densities of the c y c l i c ethers ( d i o x a n e a n d T H F ) a n d of the electrolyte solutions u s e d h a d b e e n d e t e r m i n e d p r e v i o u s l y ; t h e n o r m a l i t i e s o f t h e electrolyte solutions w e r e k n o w n . W i t h these d a t a , t h e v o l u m e m e a s u r e m e n t of e a c h of the c o m p o n e n t s of the m i x t u r e w a s
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
MCNANEY E T AL.
Phase Diagram
179
Determinations
c o n v e r t e d to w e i g h t d a t a . T i e - l i n e s w e r e e s t a b l i s h e d b y s e l e c t i n g m i x t u r e s w h o s e c o m p o n e n t c o m p o s i t i o n s w o u l d l i e i n a m u l t i p h a s e r e g i o n of t h e p h a s e d i a g r a m , a n d t h e n a n a l y z i n g e a c h p h a s e of t h e m i x t u r e f o r its c o m p o n e n t s after e q u i l i b r i u m h a d b e e n a c h i e v e d Specific Procedure. T a b l e I p r o v i d e s a c h a r a c t e r i s t i c e x a m p l e of t h e d a t a f o r t h e e x p e r i m e n t a l observations i n t h e system p o t a s s i u m a c e t a t e w a t e r - d i o x a n e , w h i c h d a t a w e r e u s e d i n p l o t t i n g s o l u b i l i t y c u r v e s at 25 ° C and 85°C on a three-component, equilateral triangular g r a p h ( F i g u r e 1 ) .
Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
Table I . Solubility C u r v e and Tie-Line Data for the System Potassium Acetate—Water—Dioxane in Weight Percentage Solubility
Curve
Data
25°C
KC H Og t
Η,Ο
s
0.33 0.53 5.14 8.68 15.50 24.35 29.93 72.00 71.00 ' 74.00 72.93 ° 20
>c
300
21.45 23.00 24.15 25.60 26.80 26.34 (20)
71.50 70.70 72.10 73.00 72.90
Liquid-Liquid
HO
Less Dense
7.90 13.20 16.20
68.40 73.60 73.30
CiHsO
t
23.70 13.20 10.50 Original
HO
KCl
HO
5.00 10.05 9.97
50.00 59.95 50.05
HO
0.01 0.00 0.00
13.80 9.95 8.72
23.20 24.10 24.95
71.10 71.50 71.70
45.00 30.00 39.98 Equilibrium
8
5.70 4.40 3.35
H0
34.99 31.10 37.00
60.04 65.00 59.98
22.60 22.70
71.00 70.93
CH0
t
k
s
4.97 3.90 3.02
Equilibrium Less Dense
CiHsO
t
Complex
KCl
Denser Layer HO
86.19 90.05 91.28
s
Solid-Liquid-Liquid
KCl
8
CiH O
Original t
CiH 0
t
t
CH 0
t
Layer
KCl
Solution
KCl
7.05 6.30 3.75 1.40 0.00
Mixture
Solid-Liquid Saturated
CiHsO
Equilibrium
Layer
KCl
Equilibrium
6.40 6.37 Original
Layer
KCl
HO
C # 0
0.00 0.00 0.00 0.00
6.00 6.10
94.00 93.90
t
4
Complex
KCl
HO
35.05 25.00
49.93 50.03
t
CiHsO 15.02 24.97
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8
184
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
.KOAc
TETRAHYDROFURAN
HO H Figure 2.
Isotherm of potassium acetate-water-THF
in weight percent
W h e n e x t r a p o l a t e d , a l l o f these straight lines m e t , a p p r o x i m a t e l y , i n a p o i n t , t h e c o m p o s i t i o n of t h e d i s s o l v e d p o t a s s i u m c h l o r i d e i n t h e s a t u r a t e d s o l u t i o n ( 6 ) . T h e s e plots are s h o w n i n F i g u r e 3. T h e m o d i f i c a t i o n of S c h r e i n e m a k e r s w e t r e s i d u e m e t h o d w h i c h w a s u s e d i n this p a r t o f the i n v e s t i g a t i o n is that i n s t e a d o f a n a l y z i n g t h e w e t r e s i d u e , a c o m p l e x is p r e p a r e d o f k n o w n c o m p o s i t i o n a n d t h e s o l u t i o n o n l y is a n a l y z e d . T h i s a g a i n gives t w o p o i n t s o n the d i a g r a m : t h e s o l u t i o n p o i n t o n the c u r v e a n d the c o m p l e x p o i n t w h i c h replaces the w e t r e s i d u e p o i n t . H i l l a n d R i c c i ( 7 ) c l a i m that the c o m p l e x m e t h o d i s as a c c u r a t e or more accurate than t h e residue method i f algebraic extrapolation of t h e tie-lines is u s e d . A s s u m e the s y n t h e t i c c o m p l e x t o b e : C o m p o u n d A — 2 0 % , C o m p o u n d Β
(Water)—30%,
dioxane—50%.
T h e solution
o n analysis
Compound A — 4 % , Compound B — 1 6 % , dioxane—80%. dioxane contain 4 A +
gives:
T h e 80 p a r t s
1 6 B a n d 50 parts dioxane contain 2.5A - f 10B.
T h i s a m o u n t o f s o l u t i o n is s u b t r a c t e d f r o m the c o m p l e x g i v i n g : 20 30 -
2.5 — 17.5A 10.0 = 2 0 . 0 B
ι
37.5 t o t a l
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
McNANEY ET AL.
Phase Diagram
185
Determinations
T h u s , i f a l l the d i o x a n e c o u l d b e r e m o v e d f r o m the c o m p l e x as s o l u t i o n , the residue w o u l d be: 4 6 . 7 % A a n d 5 3 . 3 % B . T h i s point, w h e n m a r k e d o n t h e e d g e of the d i a g r a m , gives t h e correct e x t r a p o l a t i o n of the c o m p l e x p o i n t . I t does n o t necessarily represent a n y e x i s t i n g s o l i d phases, b u t the l i n e j o i n i n g this p o i n t to t h e s o l u t i o n p o i n t m u s t pass t h r o u g h t h e t r u e solid phase ( 8 ) .
I n t h i s i n v e s t i g a t i o n , h o w e v e r , a l l extrapolations e n d e d
w i t h the s o l i d p h a s e as p u r e p o t a s s i u m c h l o r i d e at one c o r n e r , i.e., A 100%, Β =
=
0%.
Invariant Point Confirmation. T h e w e i g h t percentages
of t h e p r e
p a r e d complexes, a r b i t r a r i l y c h o s e n w i t h i n t h e three-phase, s o l i d - l i q u i d Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
l i q u i d r e g i o n , are t a b u l a t e d i n T a b l e I I I . T a b u l a t e d i n t h e same t a b l e are the w e i g h t percentages of the denser l i q u i d layers a n d those of t h e less dense layers. P l o t s of e a c h set of d a t a — p r e p a r e d c o m p l e x , denser l a y e r , a n d less dense l a y e r — w e r e m a d e
o n the g r a p h w h i c h a l r e a d y c o n t a i n e d
the
s o l u b i l i t y c u r v e a n d tie-lines. A s t r a i g h t l i n e w a s d r a w n f r o m the p r e p a r e d c o m p l e x p o i n t to its denser l a y e r p o i n t a n d , s i m i l a r l y , f r o m the c o m p l e x
Figure
3.
Isotherm of potassium chloride-water-THF in weight (invariant point: 22.6% KCl, 71.0% H 0, 6.4% THF) 2
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
percent
186
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
p o i n t to the less dense l a y e r p o i n t . T h i s f o r m e d a n a n g l e w i t h the c o m p l e x p o i n t as the vertex. T h e ends of t h e t w o sides, denser l a y e r p o i n t a n d less dense l a y e r p o i n t , f e l l o n the s o l u b i l i t y c u r v e w i t h t h e denser
point
a p p r o x i m a t e l y o n t h e i n v a r i a n t p o s i t i o n . A p l o t of the other set of d a t a g a v e s i m i l a r results. T h i s denser l a y e r p o i n t also c o i n c i d e d w i t h
the
i n v a r i a n t p o i n t , c o n f i r m i n g i t , w h i l e the less dense l a y e r p o i n t f e l l almost e x a c t l y o n the p r e v i o u s l y p l o t t e d less dense l a y e r p o i n t . T h e s e plots m a y b e f o u n d i n F i g u r e 3.
Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
Discussion of
Results
D i o x a n e i n a n aqueous s o l u t i o n is associated w i t h w a t e r also
(9,10,11,
E v i d e n c e that T H F behaves i n a l i k e m a n n e r has b e e n r e p o r t e d
12,13).
(14). A c c o r d i n g to G o d n e v a a n d K l o c h o (13),
w h e n a n electrolyte is a d d e d
to w a t e r - d i o x a n e or w a t e r - T H F , t w o phases result. I n o r d e r to b r i n g a b o u t this s e p a r a t i o n , the w a t e r - c y c l i c ether association m u s t b e b r o k e n d o w n . T h e s e authors b e l i e v e t h a t t h e h y d r a t i o n of t h e e l e c t r o l y t e cations is a c c o m p l i s h e d b y the d e h y d r a t i o n of the c y c l i c ether m o l e c u l e s , c a u s i n g stratification. Salting-Out Effects O w i n g to Potassium Acetate. T h e system p o t a s sium acetate-water-dioxane
( F i g u r e 1, T a b l e I )
t e m p e r a t u r e s of 2 5 ° C a n d 8 5 ° C .
was investigated at
T h e s a l t i n g - o u t isotherms are b i n o d a l
curves a n d s h o w e d a v e r y s l i g h t d i s p l a c e m e n t t o w a r d the a q u e o u s c o r n e r w i t h a n increase i n t e m p e r a t u r e . The
l i q u i d layer formation
(at
25°C)
of t h e s y s t e m
a c e t a t e - w a t e r - T H F is also a b i n o d a l c u r v e ( F i g u r e 2 ) .
potassium
There is, h o w
ever, a s u b s t a n t i a l difference b e t w e e n the l a y e r i n g effect o n t h e w a t e r d i o x a n e b y p o t a s s i u m acetate c o m p a r e d w i t h its effect o n t h e w a t e r - T H F mixture. bring
I n the l a t t e r case, m u c h less p o t a s s i u m acetate is r e q u i r e d to
about
separation into two
liquid
phases
than with
the
same
p e r c e n t a g e c o m p o s i t i o n of w a t e r - d i o x a n e . E v e n w h e n p l o t t e d o n a m o l e p e r c e n t a g e c o m p o s i t i o n basis (see pronounced,
s t i l l exists.
F i g u r e 4 ) this difference, w h i l e less
O n e c o u l d c o n c l u d e t h a t the reason f o r this
b e h a v i o r rests i n the fact that T H F has o n e - h a l f as m a n y o x y g e n sites for h y d r o g e n b o n d i n g t h a n does d i o x a n e , a n d thus c a n h o l d less w a t e r i n association.
Previous experimenters, however,
have
produced
results
w h i c h seem to b e l i e this. It has b e e n p o s t u l a t e d b y different groups of investigators that the m o l e c u l a r r a t i o f o r w a t e r : T H F is 17:1 (15,16),
as
c o m p a r e d w i t h 2 : 1 , 3 : 1 , a n d 4:1 for the m o l e c u l a r r a t i o of w a t e r : d i o x a n e association, as p u t f o r t h b y others (10,11).
T h i s s t u d y has d e t e r m i n e d
that a b o u t three times as m u c h p o t a s s i u m acetate, i n m o l e
percentage,
is r e q u i r e d to cause stratification i n d i o x a n e t h a n is necessary to o b t a i n
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
Phase Diagram
McNANEY ET AL.
187
Determinations
Dioxane Q Tetrahydrofuran
Δ
Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
Mole % KOAc
HOH
10
30
20
40
Mole % D i o x a n e , Mole % T e t r a h y d r o f u r a n
»
Figure 4. Comparison of potassium acetate-water-dioxane and potassium acetate-water-THF plots: Θ, dioxane; Δ , THF
t h e same results i n T H F w h e n b o t h solvents are i n aqueous
solutions.
I f T H F associates w i t h m o r e w a t e r t h a n does d i o x a n e , i t w o u l d
seem
that the opposite should be true. T h e investigators i n v o l v e d i n t h i s s t u d y f e e l that i t is reasonable to c o n c l u d e t h a t c o m p a r e d w i t h d i o x a n e , T H F f o r m s a w e a k e r association w i t h w a t e r a n d , h e n c e , the cations c a n m o r e easily b r e a k these b o n d s c a u s i n g l i q u i d - p h a s e s e p a r a t i o n . T h e basis f o r this j u d g m e n t rests w i t h the a s s u m p t i o n t h a t 17 w a t e r m o l e c u l e s w o u l d b e h e l d less firmly b y one T H F m o l e c u l e t h a n f o u r w a t e r m o l e c u l e s b y one d i o x a n e m o l e c u l e . Salting-Out
Effect
Owing
to
Potassium Chloride.
Kobzev
(I)
m a i n t a i n e d , i n a s t u d y of salts of p o t a s s i u m , s o d i u m , U t h i u m , r u b i d i u m , a n d c e s i u m ( a l l i n aqueous s o l u t i o n s ) , t h a t t h e s o l u b i l i t y of a salt i n w a t e r w a s r e l a t e d to its s a l t i n g - o u t effect. H e f o u n d t h a t salts w i t h t h e s o l u b i l i t y f r o m 6.4 to 2.8 g e q u i v w t p e r 100 m L of w a t e r at 2 5 ° C c a u s e d stratifica t i o n i n a l l systems e x c e p t w a t e r - m e t h a n o l a n d w a t e r - e t h a n o l . Salts w i t h s o l u b i l i t i e s b e l o w 2.82 g e q u i v w t d i d not cause s a l t i n g - o u t . T h e r e l a t i v e w a t e r s o l u b i l i t i e s of p o t a s s i u m acetate > >
the t w o
salts i n v e s t i g a t e d
are
p o t a s s i u m c h l o r i d e . A s one m i g h t expect, t h e n ,
p o t a s s i u m acetate has t h e greater c a p a c i t y to salt-out aqueous
solutions
of d i o x a n e a n d T H F . P o t a s s i u m c h l o r i d e c a n n o t b r i n g a b o u t s a l t i n g - o u t t h r o u g h t h e f u l l p e r c e n t a g e c o m p o s i t i o n r a n g e of the t e r n a r y m i x t u r e .
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
188
THERMODYNAMIC
Potassium chloride a n d potassium
BEHAVIOR
OF ELECTROLYTES
II
acetate w e r e i n s o l u b l e i n b o t h
d i o x a n e a n d T H F . T h e s o l u b i l i t y o f these salts i n w a t e r w a s a s c e r t a i n e d and compared
very closely w i t h the literature
values cited i n Tables
I and III. E . C h u l i k has assisted i n the f o r e g o i n g w o r k b y d e v e l o p i n g a n a l y t i c a l m e a n s f o r q u a n t i t a t i v e d e t e r m i n a t i o n o f acetate salts as m o d i f i c a t i o n s o f the m e t h o d o f D . C e a u s e s c u ( 1 7 ) .
Downloaded by UNIV OF ARIZONA on October 8, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch012
Literature Cited 1. Kobsev, V. V., Sb. Nauchn. Rab. Aspir. L'vov. Politekh. Inst. (1961) 21. 2. Fritz, J. S., "Acid Base Titrations in Nonaqueous Solvents," G. Frederick Smith Chemical Co., Columbus, Ohio, 1952. 3. Vogel, A. I., "A Text Book of Practical Organic Chemistry," 3rd ed., p. 177, Longmans, Green and Co., New York, 1957. 4. Mitchell, J., Smith, D. M., "Aquametry, Chemical Analysis," Vol. V, Interscience, New York, 1948. 5. Blaedel, W. J., Meloche, V. W., "Elementary Quantitative Analysis," p. 278, Row, Peterson and Co., White Plains, 1957. 6. Schreinemakers, F. Α. H., Z. Phys. Chem. Leipzig (1893) 11, 81. 7. Hill, A. E., Ricci, J. E., J. Am. Chem. Soc. (1931) 53, 4305. 8. Purdon, F. F., Slater, V. W., "Aqueous Solutions and the Phase Diagram," p. 65, Edward Arnold and Co., London, 1946. 9. Zimmerman, H. K., Bull. Soc. Chim., Beograd (1959) 24, 1. 10. Schott, H., J. Chem. Eng. Data (1961) 6, 19. 11. Tsypin, M. Z., Trifonov, Ν. Α., Tr. Kazan. Khim.-Tecknol.Inst.im S. M. Kirova (1958) 22, 120. 12. Grunwald, E., Proc. Int. Symp., Electrolytes, Trieste, 1959 (1962) 62. 13. Godneva, M. M., Klocho, Μ. Α., lzv. Karel'. Kol'sk. Fil. Akad. Nauk SSSR (1958) 5, 122. 14. Montgomery, D., et al., Proc. Okla. Acad. Sci. (1949) 30, 140. 15. Erva, J., Suom. Kemistil. (1956) 29B, 183. 16. Pinder, K. L., Can. J. Chem. Eng. (1965) 43(5), 271. 17. Ceausescu, D., Rev. Chim., Bucharest (1960) 11, 174. 18. "International Critical Tables," Vol. 4, p. 260, McGraw Hill, New York, 1926. 19. Abe, R., J. Tokyo Chem. Soc. (1911) 32, 980. 20. Shearman, R. W., J. Am. Chem. Soc. (1937) 59, 185. RECEIVED Feburary 6, 1978.
In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II; Furter, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.