Thermodynamic Properties of Ionic Liquids in ... - ACS Publications

Guillermo Reyes , Marcela Cartes , Carlos Rey-Castro , Hugo Segura , and Andrés Mejía ..... René A. Clará , Ana C. Gómez Marigliano , Horacio N. ...
1 downloads 0 Views 109KB Size
600

J. Chem. Eng. Data 2007, 52, 600-608

Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K Ana B. Pereiro and Ana Rodrı´guez* Chemical Engineering Department, Vigo University, 36210, Vigo, Spain

Densities, speeds of sound, and refractive indices of the binary mixtures of BMIM PF6 (1-butyl-3-methyl imidazolium hexafluorophosphate), HMIM PF6 (1-hexyl-3-methylimidazolium hexafluorophosphate), OMIM PF6 (1-methyl-3-octylimidazolium hexafluorophosphate), and MMIM CH3SO4 (1,3-dimethylimidazolium methyl sulfate) with 2-butanone, ethylacetate, and 2-propanol were determined from (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility were calculated for the above systems. The liquid-liquid equilibrium data of the binary mixtures ionic liquid + 2-propanol were carried out, and they were compared with the correlated values obtained by means of the NRTL and UNIQUAC equations.

Introduction Ionic liquids (ILs) are a group of organic salts that result from the combination of several organic cations and inorganic anions, and they may be liquid at room temperature. The most commonly studied ILs contain the imidazolium cation with varying heteroatom functionality. In this paper, we have considered the use of the following ILs formed by 1-alkyl-3methylimidazolium (CnMMIM) as cation and hexafluorophosphate (PF6-) and methyl sulfate (CH3SO4-) as anions. The ILs based on the (PF6-) anion are considered historically the most important and commonly investigated, despite that this anion can undergo hydrolysis producing HF in contact with water1 and at high temperatures;2 however, the CH3SO4- anion ILs represent halogen-free and relatively hydrolysis-stable3 compunds. They could be an interesting alternative for industrial application due to the fact that they avoid the liberation of toxic and corrosive HF into the environment. This paper is a continuation of the thermodynamic study of ILs with imidazolium cation in the physical properties on mixing4-7 with organic solvents and their dependency with the temperature since they are necessary to determine the liquidliquid equilibria (LLE) and then designing extractive process involving ILs on an industrial scale for azeotropic mixtures. As the ILs are relatively new, experimental measurements of physical properties are extremely scarce but clearly needed. In this paper, the densities, refractive indices, and speeds of sound of the binary mixtures BMIM PF6 or MMIM CH3SO4 + 2-butanone or ethylacetate or 2-propanol, HMIM PF6 + 2-propanol, and OMIM PF6 + ethylacetate from (293.15 to 303.15) K and atmospheric pressure were measured. Excess and derived properties have been calculated from the experimental data. A function of the mole fraction and temperature polynomial equation8 was used to fit these quantities. The standard deviations between experimental and calculated values are shown. LLE data of the binary mixtures BMIM PF6 or HMINPF6 + 2-propanol in the range from (278.15 to 343.15) K and from (278.15 to 328.15) K were determined, respectively. The LLE for the binary mixture BMINPF6 + 2-propanol was * Corresponding author. Tel.: +34 986 81 23 12. Fax: +34 986 81 23 80. E-mail: [email protected].

Figure 1. Schematic structures of MMIM CH3SO4 and RMIM PF6 where R can be B (butyl), H (hexyl), or O (octyl). Table 1. Density G and Refractive Index nD for Pure Components at 298.15 K and Comparison with Literature Data F/g‚cm-3 component

nD

exptl

lit

exptl

lit

2-butanone ethylacetate 2-propanol BMIM PF6

0.7997 0.8944 0.7810 1.3673

0.79974a

1.37618 1.36977 1.37496 1.40937

1.37685b 1.3704c 1.3752d nam

HMIM PF6 OMIM PF6

1.2937 1.2357

1.41787 1.42302

na 1.423i

MMIM CH3SO4

1.3272

1.48270

na

0.8940c 0.7810d 1.36745e 1.36788f 1.2935g 1.23684h 1.2245j 1.3290k 1.328l

a Ref 11. b Ref 12. c Ref 13. d Ref 14. e Ref 15. f Ref 16. g Ref 17. h Ref 18. i Ref 19. j Ref 20. k Ref 21. l Ref 22. m na, not applicable.

determined until 343.15 K in order to prevent hydrolysis. Moreover, the experimentally obtained LLE data were correlated by applying the NRTL9 and UNIQUAC10 equations.

Experimental Section Chemicals. The chemicals were supplied by Merck for 2-butanone and 2-propanol (99.5 % and 99.7 % mass fraction, respectively), by Fluka for ethylacetate (99.8 % mass fraction), and by Green Solutions Chemicals S. L. the ILs with a certified purity higher than 98 % mass fraction. Chromatographic tests of the organic solvents showed purities that fulfilled purchaser specifications. Before using, the reagents were degassed ultrasonically, dried over freshly activated molecular sieves (types

10.1021/je060497d CCC: $37.00 © 2007 American Chemical Society Published on Web 01/25/2007

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007 601 Table 2. Density G, Excess Molar Volume VEm, Refractive Index nD, Changes of Refractive Index on Mixing ∆nD, Speed of Sound u, Isentropic Compressibility Ks, and Deviation in Isentropic Compressibility ∆Ks for the Binary Mixtures at (293.15, 298.15 and 303.15) K

x1

F

VEm

g‚cm-3

cm3‚mol

nD

∆nD

u

κS

∆κS

m‚s-1

T‚Pa-1

T‚Pa-1

x1

F

VEm

u

κS

∆κS

g‚cm-3

cm3‚mol

nD

∆nD

m‚s-1

T‚Pa-1

T‚Pa-1

BMIM PF6 (1) + 2-Butanone (2) 0 0.0533 0.1058 0.2081 0.2992 0.4044 0.4926

0.8056 0.8777 0.9388 1.0362 1.1045< 1.1679 1.2116

0 -0.742 -1.249 -1.816 -1.984 -1.929 -1.742

1.37879 1.38660 1.39154 1.39807 1.40183 1.40475 1.40661

0 0.0061 0.0094 0.0126 0.0135 0.0131 0.0121

1212 1242 1265 1301 1331 1360 1380

845 739 666 570 511 463 433

T ) 293.15 K 0 0.5943 -80 0.7085 -126 0.8093 -171 0.9013 -184 0.9491 -180 1 -165

1.2541 1.2939 1.3239 1.3483 1.3597 1.3716

-1.456 -1.036 -0.647 -0.333 -0.141 0

1.40795 1.40900 1.40971 1.41019 1.41042 1.41069

0.0102 0.0076 0.0051 0.0026 0.0014 0

1399 1418 1433 1444 1449 1455

407 385 368 356 350 344

-140 -106 -72 -38 -20 0

0 0.0533 0.1058 0.2081 0.2992 0.4044 0.4926

0.7997 0.8726 0.9340 1.0313 1.0995 1.1632 1.2073

0 -0.846 -1.390 -1.940 -2.082 -2.038 -1.877

1.37618 1.38487 1.39004 1.39642 1.39987 1.40296 1.40505

0 0.0069 0.0103 0.0133 0.0138 0.0134 0.0125

1192 1224 1248 1286 1317 1348 1369

880 765 687 586 524 473 442

T ) 298.15 K 0 0.5943 -87 0.7085 -136 0.8093 -184 0.9013 -197 0.9491 -193 1 -177

1.2501 1.2898 1.3198 1.3440 1.3555 1.3673

-1.603 -1.140 -0.723 -0.356 -0.165 0

1.40645 1.40757 1.40833 1.40888 1.40911 1.40937

0.0105 0.0079 0.0053 0.0028 0.0014 0

1390 1408 1421 1433 1438 1443

414 391 375 362 357 351

-152 -114 -77 -41 -22 0

0 0.0533 0.1058 0.2081 0.2992 0.4044 0.4926

0.7949 0.8676 0.9291 1.0268 1.0953 1.1590 1.2030

0 -0.845 -1.412 -2.013 -2.185 -2.133 -1.950

1.37355 1.38273 1.38810 1.39466 1.39814 1.40149 1.40357

0 0.0073 0.0109 0.0139 0.0143 0.0140 0.0130

1163 1195 1220 1260 1292 1322 1349

931 807 724 614 547 494 457

T ) 303.15 K 0 0.5943 -93 0.7085 -147 0.8093 -198 0.9013 -212 0.9491 -206 1 -192

1.2457 1.2855 1.3156 1.3397 1.3512 1.3630

-1.650 -1.183 -0.764 -0.367 -0.168 0

1.40517 1.40617 1.40668 1.40753 1.40779 1.40808

0.0111 0.0082 0.0052 0.0029 0.0015 0

1374 1393 1408 1419 1425 1431

426 401 384 370 364 358

-165 -124 -84 -44 -23 0

BMIM PF6 (1) + Ethylacetate (2) 0 0.0520 0.0979 0.1980 0.2939 0.3968 0.4883

0.9005 0.9563 0.9990 1.0776 1.1382 1.1914 1.2307

0 -0.734 -1.134 -1.702 -1.944 -1.980 -1.853

1.37241 1.37948 1.38419 1.39206 1.39736 1.40129 1.40391

0 0.0051 0.0080 0.0121 0.0137 0.0137 0.0128

1162 1182 1200 1240 1280 1319 1350

822 749 695 603 536 482 446

T ) 293.15 K 0 0.5936 -49 0.7000 -80 0.8146 -124 0.8997 -145 0.9499 -150 1 -143

1.2687 1.3010 1.3309 1.3506 1.3615 1.3716

-1.567 -1.171 -0.710 -0.379 -0.206 0

1.40599 1.40788 1.40911 1.40991 1.41046 1.41069

0.0109 0.0087 0.0055 0.0031 0.0017 0

1379 1399 1421 1438 1447 1455

414 393 372 358 351 344

-124 -95 -61 -34 -17 0

0 0.0520 0.0979 0.1980 0.2939 0.3968 0.4883

0.8944 0.9506 0.9934 1.0722 1.1331 1.1868 1.2266

0 -0.783 -1.193 -1.772 -2.029 -2.099 -2.011

1.36977 1.37726 1.38208 1.39005 1.39538 1.39946 1.40230

0 0.0054 0.0084 0.0124 0.0140 0.0140 0.0132

1141 1162 1180 1228 1272 1310 1338

859 780 723 618 545 491 455

T ) 298.15 K 0 0.5936 -53 0.7000 -86 0.8146 -140 0.8997 -164 0.9499 -166 1 -156

1.2647 1.2970 1.3266 1.3463 1.3573 1.3673

-1.712 -1.290 -0.757 -0.402 -0.229 0

1.40451 1.40638 1.40768 1.40855 1.40915 1.40937

0.0112 0.0089 0.0057 0.0032 0.0018 0

1366 1391 1412 1427 1436 1443

424 399 378 365 358 351

-134 -105 -67 -37 -19 0

0 0.0520 0.0979 0.1980 0.2939 0.3968 0.4883

0.8882 0.9446 0.9877 1.0670 1.1280 1.1820 1.2220

0 -0.812 -1.254 -1.875 -2.124 -2.204 -2.116

1.36712 1.37520 1.38016 1.38819 1.39346 1.39774 1.40065

0 0.0059 0.0090 0.0130 0.0143 0.0144 0.0135

1111 1137 1160 1207 1247 1291 1323

912 819 752 643 570 508 468

T ) 303.15 K 0 0.5936 -64 0.7000 -106 0.8146 -159 0.8997 -180 0.9499 -185 1 -174

1.2603 1.2926 1.3222 1.3420 1.3529 1.3630

-1.812 -1.360 -0.792 -0.427 -0.224 0

1.40301 1.40490 1.40632 1.40723 1.40793 1.40808

0.0116 0.0091 0.0058 0.0033 0.0019 0

1354 1378 1401 1415 1420 1431

433 407 386 372 367 358

-151 -117 -76 -42 -20 0

BMIM PF6 (1) + 2-Propanol (2) 0 0.0008 0.0011 0.7136

0.7850 0.7863 0.7869 1.2985

0 -0.004 -0.012 -0.350

1.37707 1.37717 1.37726 1.40727

0 0.0001 0.0002 0.0062

1156 1156 1157 1409

953 951 950 388

T ) 293.15 K 0 0.8175 -1 0.8945 -2 0.9542 -131 1

1.3282 1.3476 1.3615 1.3716

-0.183 -0.075 -0.020 0

1.40833 1.40869 1.40976 1.41069

0.0038 0.0015 0.0006 0

1429 1441 1449 1455

369 358 350 344

-86 -51 -22 0

0 0.0008 0.0011 0.7136

0.7810 0.7823 0.7829 1.2943

0 -0.008 -0.014 -0.370

1.37496 1.37509 1.37521 1.40584

0 0.0001 0.0002 0.0063

1139 1139 1140 1397

986 985 984 396

T ) 298.15 K 0 0.8175 -1 0.8945 -2 0.9542 -138 1

1.3240 1.3434 1.3572 1.3673

-0.206 -0.092 -0.027 0

1.40689 1.40738 1.40844 1.40937

0.0038 0.0016 0.0007 0

1417 1429 1437 1443

376 365 357 351

-91 -54 -24 0

0 0.0008 0.0011 0.7136

0.7766 0.7780 0.7785 1.2900

0 -0.009 -0.017 -0.401

1.37278 1.37301 1.37312 1.40450

0 0.0002 0.0003 0.0065

1121 1121 1122 1385

1025 1022 1021 404

T ) 303.15 K 0 0.8175 -2 0.8945 -3 0.9542 -145 1

1.3198 1.3393 1.3530 1.3630

-0.236 -0.120 -0.039 0

1.40562 1.40595 1.40721 1.40808

0.0040 0.0016 0.0008 0

1405 1417 1425 1431

384 372 364 358

-96 -57 -25 0

602

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007

Table 2 (Continued)

x1

F

VEm

u

κS

∆κS

F

VEm

g‚cm-3

cm3‚mol

m‚s-1

T‚Pa-1

T‚Pa-1

g‚cm-3

cm3‚mol

nD

∆nD

x1

u

κS

∆κS

nD

∆nD

m‚s-1

T‚Pa-1

T‚Pa-1

0.119 0.231 0.109 0

1.41602 1.41766 1.41900 1.41923

0.0048 0.0015 0.0001 0

1408 1427 1437 1438

400 383 373 372

-83 -33 -3 0

HMIM PF6 (1) + 2-Propanol (2) 0 0.0011 0.0019 0.6123 0.6958

0.7850 0.7870 0.7884 1.2135 1.2360

0 -0.031 -0.041 -0.230 -0.118

1.37707 1.37727 1.37764 1.41255 1.41425

0 0.0002 0.0005 0.0097 0.0078

1156 1157 1158 1370 1388

953 949 946 439 420

T ) 293.15 K 0 0.8110 -3 0.9260 -6 0.9933 -158 1 -129

1.2618 1.2839 1.2962 1.2979

HMIM PF6 (1) + 2-Propanol (2) 0 0.0011 0.0019 0.0024 0.4893 0.6123

0.7810 0.7828 0.7842 0.7854 1.1687 1.2094

0 -0.010 -0.022 -0.043 -0.402 -0.262

1.37496 1.37513 1.37534 1.37542 1.40818 1.41101

0 0.0001 0.0003 0.0004 0.0122 0.0098

1139 1140 1141 1141 1325 1358

986 983 979 978 487 448

T ) 298.15 K 0 0.6958 -2 0.8110 -6 0.9260 -7 0.9933 -203 1 -167

1.2320 1.2577 1.2799 1.2922 1.2937

-0.156 0.087 0.193 0.073 0

1.41282 1.41451 1.41628 1.41766 1.41787

0.0080 0.0047 0.0016 0.0001 0

1375 1396 1413 1423 1424

429 408 391 382 381

-136 -87 -35 -3 0

0 0.0011 0.0019 0.0024 0.4893 0.6123

0.7766 0.7785 0.7800 0.7811 1.1646 1.2053

0 -0.023 -0.036 -0.061 -0.454 -0.300

1.37278 1.37296 1.37319 1.37337 1.40669 1.40962

0 0.0001 0.0003 0.0005 0.0126 0.0101

1121 1122 1124 1124 1313 1346

1025 1020 1015 1014 498 458

T ) 303.15 K 0 0.6958 -4 0.8110 -8 0.9260 -9 0.9933 -216 1 -178

1.2279 1.2538 1.2759 1.2883 1.2896

-0.192 0.047 0.176 0.036 0

1.41139 1.41312 1.41490 1.41624 1.41643

0.0082 0.0049 0.0017 0.0001 0

1363 1383 1401 1410 1411

438 417 399 390 389

-145 -93 -37 -3 0

OMIM PF6 (1) + Ethylacetate (2) 0 0.0547 0.0964 0.1996 0.2941 0.3939 0.4944

0.9005 0.9543 0.9878 1.0523 1.0955 1.1306 1.1583

0 -0.729 -1.063 -1.540 -1.673 -1.641 -1.482

1.37241 1.38271 1.38868 1.39940 1.40596 1.41079 1.41443

0 0.0075 0.0112 0.0166 0.0183 0.0179 0.0163

1162 1189 1209 1255 1288 1315 1337

822 741 692 604 550 511 483

T ) 293.15 K 0 0.6046 -58 0.7033 -89 0.8019 -134 0.9033 -147 0.9952 -144 1 -130

1.1827 1.2001 1.2153 1.2287 1.2390 1.2396

-1.249 -0.907 -0.625 -0.336 0.001 0

1.41759 1.41968 1.42153 1.42308 1.42431 1.42440

0.0137 0.0107 0.0074 0.0037 0.0002 0

1358 1375 1391 1408 1423 1424

458 441 425 411 398 398

-108 -83 -57 -28 -2 0

0 0.0547 0.0964 0.1996 0.2941 0.3939 0.4944

0.8944 0.9486 0.9823 1.0472 1.0908 1.1261 1.1539

0 -0.762 -1.114 -1.614 -1.754 -1.719 -1.554

1.36977 1.38058 1.38636 1.39757 1.40405 1.40900 1.41271

0 0.0079 0.0115 0.0172 0.0186 0.0183 0.0166

1141 1168 1189 1236 1271 1299 1323

859 773 720 625 567 526 495

T ) 298.15 K 0 0.6046 -61 0.7033 -95 0.8019 -144 0.9033 -159 0.9952 -155 1 -141

1.1785 1.1962 1.2113 1.2248 1.2352 1.2357

-1.313 -0.983 -0.649 -0.351 -0.008 0

1.41599 1.41820 1.42008 1.42168 1.42294 1.42302

0.0140 0.0110 0.0076 0.0038 0.0002 0

1344 1361 1377 1393 1408 1408

470 451 435 421 409 408

-117 -91 -62 -31 -2 0

0 0.0547 0.0964 0.1996 0.2941 0.3939 0.4944

0.8882 0.9429 0.9768 1.0422 1.0860 1.1216 1.1496

0 -0.805 -1.174 -1.698 -1.843 -1.807 -1.634

1.36712 1.37906 1.38508 1.39557 1.40226 1.40728 1.41112

0 0.0090 0.0127 0.0176 0.0191 0.0187 0.0170

1111 1147 1169 1218 1253 1284 1309

912 807 750 647 586 541 507

T ) 303.15 K 0 0.6046 -78 0.7033 -115 0.8019 -167 0.9033 -181 0.9952 -177 1 -161

1.1744 1.1922 1.2074 1.2209 1.2313 1.2319

-1.381 -1.044 -0.694 -0.363 -0.009 0

1.41437 1.41663 1.41862 1.42027 1.42155 1.42165

0.0143 0.0112 0.0078 0.0039 0.0002 0

1330 1348 1364 1379 1393 1393

481 462 445 431 419 418

-133 -103 -71 -36 -2 0

MMIM CH3SO4 (1) + 2-Butanone (2) 0 0.0006 0.0012 0.0029 0.7074

0.8056 0.8065 0.8073 0.8095 1.2440

0 -0.037 -0.072 -0.140 -1.498

1.37879 1.37993 1.38040 1.38130 1.47023

0 0.0011 0.0015 0.0022 0.0171

1212 1214 1215 1217 1703

845 841 839 834 277

T ) 293.15 K 0 0.7983 -4 0.9284 -5 0.9743 -9 1 -129

1.2738 1.3106 1.3235 1.3309

-1.033 -0.225 -0.053 0

1.47479 1.48045 1.48218 1.48392

0.0121 0.0040 0.0010 0

1750 1803 1819 1826

256 235 228 225

-94 -35 -13 0

0 0.0006 0.0012 0.0029 0.7074

0.7997 0.8007 0.8015 0.8039 1.2403

0 -0.052 -0.075 -0.170 -1.587

1.37618 1.37720 1.37762 1.37841 1.46925

0 0.0010 0.0013 0.0019 0.0177

1192 1194 1195 1196 1689

880 876 874 869 283

T ) 298.15 K 0 0.7983 -3 0.9284 -5 0.9743 -8 1 -137

1.2701 1.3071 1.3199 1.3272

-1.099 -0.255 -0.060 0

1.47366 1.47914 1.48086 1.48270

0.0124 0.0041 0.0009 0

1737 1791 1806 1813

261 239 232 229

-100 -37 -14 0

0 0.0006 0.0012 0.0029 0.7074

0.7949 0.7960 0.7967 0.7991 1.2365

0 -0.069 -0.082 -0.172 -1.639

1.37355 1.37467 1.37513 1.37600 1.46782

0 0.0011 0.0015 0.0021 0.0181

1163 1164 1165 1168 1676

931 927 925 917 288

T ) 303.15 K 0 0.7983 -3 0.9284 -5 0.9743 -11 1 -149

1.2664 1.3035 1.3163 1.3237

-1.138 -0.273 -0.072 0

1.47229 1.47781 1.47945 1.48129

0.0127 0.0042 0.0009 0

1724 1778 1794 1801

266 243 236 233

-108 -40 -15 0

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007 603 Table 2 (Continued)

x1

F

VEm

u

κS

∆κS

F

VEm

u

κS

∆κS

g‚cm-3

cm3‚mol

m‚s-1

T‚Pa-1

T‚Pa-1

g‚cm-3

cm3‚mol

nD

∆nD

m‚s-1

T‚Pa-1

T‚Pa-1

nD

∆nD

x1

MMIM CH3SO4 (1) + Ethylacetate (2) 0 0.8549 0.8746 0.9072

0.9005 1.2966 1.3011 1.3083

0 -0.804 -0.640 -0.381

1.37241 1.47633 1.47752 1.47884

0 0.0086 0.0076 0.0053

1162 1765 1775 1792

822 247 244 238

T ) 293.15 K 0 0.9294 -65 0.9491 -56 1 -43

1.3133 1.3177 1.3309

-0.224 -0.093 0

1.48008 1.48086 1.48392

0.0040 0.0026 0

1801 1808 1826

235 232 225

-33 -24 0

0 0.8549 0.8746 0.9072

0.8944 1.2930 1.2975 1.3047

0 -0.850 -0.697 -0.415

1.36977 1.47553 1.47640 1.47750

0 0.0092 0.0079 0.0053

1141 1752 1765 1778

859 252 247 243

T ) 298.15 K 0 0.9294 -69 0.9491 -61 1 -45

1.3098 1.3142 1.3272

-0.261 -0.129 0

1.47876 1.47955 1.48270

0.0040 0.0026 0

1789 1795 1813

239 236 229

-35 -25 0

0 0.8549 0.8746 0.9072

0.8882 1.2893 1.2938 1.3010

0 -0.896 -0.730 -0.440

1.36712 1.47440 1.47522 1.47618

0 0.0097 0.0082 0.0055

1111 1739 1746 1764

912 256 254 247

T ) 303.15 K 0 0.9294 -75 0.9491 -64 1 -49

1.3062 1.3107 1.3237

-0.290 -0.154 0

1.47752 1.47822 1.48129

0.0043 0.0027 0

1777 1782 1801

243 240 233

-38 -27 0

MMIM CH3SO4 (1) + 2-Propanol (2) 0 0.0490 0.0981 0.1987 0.2961 0.4055 0.5043

0.7850 0.8397 0.8888 0.9757 1.0458 1.1120 1.1624

0 -0.258 -0.433 -0.670 -0.810 -0.892 -0.886

1.37707 1.38865 1.39897 1.41695 1.43085 1.44372 1.45335

0 0.0063 0.0114 0.0186 0.0221 0.0233 0.0224

1156 1177 1205 1269 1338 1431 1525

953 859 775 636 534 439 370

T ) 293.15 K 0 0.5987 -58 0.6937 -106 0.7992 -172 0.9042 -204 0.9502 -219 1 -216

1.2040 1.2399 1.2742 1.3048 1.3175 1.3309

-0.819 -0.641 -0.340 -0.093 -0.031 0

1.46137 1.46768 1.47404 1.47881 1.48087 1.48392

0.0203 0.0165 0.0116 0.0051 0.0023 0

1611 1684 1743 1791 1807 1826

320 284 258 239 232 225

-197 -164 -113 -56 -29 0

0 0.0490 0.0981 0.1987 0.2961 0.4055 0.5043

0.7810 0.8359 0.8848 0.9718 1.0420 1.1085 1.1590

0 -0.287 -0.449 -0.701 -0.850 -0.958 -0.956

1.37496 1.38617 1.39708 1.41521 1.42948 1.44245 1.45208

0 0.0059 0.0116 0.0188 0.0226 0.0238 0.0228

1139 1167 1198 1271 1352 1444 1534

986 878 788 637 525 433 367

T ) 298.15 K 0 0.5987 -72 0.6937 -124 0.7992 -199 0.9042 -237 0.9502 -247 1 -238

1.2003 1.2363 1.2707 1.3014 1.3140 1.3272

-0.852 -0.675 -0.375 -0.129 -0.052 0

1.46001 1.46641 1.47250 1.47743 1.47960 1.48270

0.0205 0.0167 0.0114 0.0050 0.0023 0

1605 1670 1729 1777 1797 1813

324 290 263 243 236 229

-209 -171 -118 -58 -31 0

0 0.0490 0.0981 0.1987 0.2961 0.4055 0.5043

0.7766 0.8316 0.8808 0.9679 1.0383 1.1047 1.1550

0 -0.306 -0.501 -0.764 -0.928 -1.017 -0.984

1.37278 1.38391 1.39509 1.41455 1.42882 1.44156 1.45073

0 0.0058 0.0117 0.0202 0.0239 0.0248 0.0232

1121 1166 1207 1292 1370 1459 1534

1025 884 779 619 513 425 368

T ) 303.15 K 0 0.5987 -102 0.6937 -168 0.7992 -249 0.9042 -277 0.9502 -278 1 -258

1.1967 1.2327 1.2674 1.2979 1.3104 1.3237

-0.909 -0.720 -0.437 -0.155 -0.058 0

1.45836 1.46482 1.47103 1.47603 1.47820 1.48129

0.0206 0.0168 0.0115 0.0051 0.0023 0

1602 1662 1720 1768 1785 1801

326 294 267 246 239 233

-225 -182 -125 -62 -33 0

3 Å and 4 Å, supplied by Aldrich) for several weeks, and kept in an inert argon atmosphere as soon as the bottles were opened. To reduce the ILs water content to negligible values (mass fraction lower than 0.03 %, determined using a 756 Karl Fisher coulometer), vacuum (2 × 10-1 Pa) and moderate temperature (343.15 K) were applied for RMIM PF6 and MMIM CH3SO4 for several days, respectively, always immediately prior to their use. They were submitted to NMR and positive FABMS (FISONS VG AUTOSPEC mass spectrometer) to ensure purity. The RMIM PF6 and MMIM CH3SO4 structures are shown in Figure 1. The physical properties of the pure ILs and organic solvents at 298.15 K are listed in Table 1, together with recent literature11-22 values. Procedure. The samples were prepared by filling glass vials with the IL and the organic solvents. Vials are closed with screw caps to ensure a secure seal. The sample is taken from the vial with a syringe through a silicone septum and is immediately put into the apparatus. The mass of the chemicals was determined using a Mettler AX-205 Delta Range balance with a precision of ( 10-5 g. The estimated uncertainty of the composition of the mixtures was ( 10-4 mole fraction. The density and speed of sound of the pure liquids and mixtures were measured with an Anton Paar DSA 48 digital

vibrating-tube densimeter. The uncertainty in the measurement of the samples has been found to be lower than ( 10-4 g‚cm-3 for the density and ( 1 m‚s-1 for the speed of sound. The apparatus was calibrated by measuring the density of Millipore quality water and ambient air according to instructions. The calibration was checked with pure liquids with known density and speed of sound. The refractive indices were determined by the automatic refractometer ABBEMAT-WR Dr. Kernchen with an uncertainty in the experimental measurements of ( 4 × 10-5. The apparatus was calibrated by measuring the refractive index of Millipore quality water and tetrachloroethylene (supplied by the company) before each series of measurements according to instructions. The calibration was checked with pure liquids with known refractive index. The tie lines were determined in a jacketed glass vessel containing a magnetic stirrer connected to a temperaturecontrolled circulating bath (controlled to ( 0.01 K). The vessel was closed to moisture and could be flushed with dry argon. The temperature in the cell was measured with a F200 ASL digital thermometer with an uncertainty of ( 0.01 K. The measurements were started with the addition of 100 mL of the immiscible binary mixture of known composition. The temper-

604

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007

Table 3. Fitting Parameters Aij Calculated from Equation 4 and Standard Deviations (σ) VEm/cm3‚mol-1 ∆nD

∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

A11 ) -6.923 A12 ) -1.3210 A13 ) 0.505 A11 ) 0.0478 A12 ) 0.0019 A13 ) 0.0019 A61 ) -0.0213 A11 ) -655 A12 ) -94 A13 ) -12

BMIM PF6 (1) + 2-Butanone (2) A21 ) 5.196 A31 ) -2.064 A41 ) 1.467 A22 ) -1.554 A32 ) 1.661 A42 ) 5.879 A23 ) 1.636 A33 ) -1.895 A43 ) -4.829 A21 ) -0.0319 A31 ) 0.0134 A41 ) -0.0069 A22 ) 0.0035 A32 ) -0.0011 A42 ) -0.0152 A23 ) -0.0019 A33 ) -0.0058 A43 ) -0.0079 A62 ) -0.0191 A63 ) 0.0273 A21 ) 397 A31 ) -201 A41 ) 288 A22 ) 87 A32 ) -35 A42 ) -25 A23 ) -55 A33 ) 2.9 A43 ) 130

A11 ) -7.334 A12 ) -1.439 A13 ) 0.408 A11 ) 0.0505 A12 ) 0.0031 A13 ) -0.0001 A11 ) -567 A12 ) -75 A13 ) -46

A51 ) -0.560 A52 ) -5.873 A53 ) 5.470 A51 ) 0.0234 A52 ) 0.0342 A53 ) -0.0100

σ ) 0.006

A51 ) -271 A52 ) -24 A53 ) -32

σ ) 0.9

BMIM PF6 (1) + Ethylacetate (2) A21 ) 4.360 A31 ) -0.004 A41 ) 1.652 A22 ) -0.930 A32 ) 3.675 A42 ) 2.151 A23 ) 0.792 A33 ) -2.602 A43 ) -1.011 A21 ) -0.0289 A31 ) 0.0138 A41 ) -0.0102 A22 ) 0.0016 A32 ) -0.0070 A42 ) -0.0084 A23 ) -0.0010 A33 ) 0.0020 A43 ) -0.0014 A21 ) 289 A31 ) -31 A41 ) 68 A22 ) 201 A32 ) -392 A42 ) -348 A23 ) -139 A33 ) 294 A43 ) 445

A51 ) -3.124 A52 ) -4.830 A53 ) 3.454 A51 ) 0.0088 A52 ) 0.0145 A53 ) 0.0036 A51 ) -131 A52 ) 635 A53 ) -627

σ ) 0.009

A11 ) -2.875 A12 ) 0.210 A13 ) -0.914 A11 ) -0.0107 A12 ) -0.0241 A13 ) -0.0236 A11 ) -797 A12 ) -87 A13 ) -23

BMIM PF6 (1) + 2-Propanol (2) A21 ) 3.984 A31 ) -5.103 A22 ) -0.600 A32 ) -1.322 A23 ) 2.958 A33 ) -1.409 A21 ) 0.1732 A31 ) -0.1170 A22 ) 0.1036 A32 ) -0.0813 A23 ) 0.0989 A33 ) -0.0824 A21 ) 552 A31 ) -779 A22 ) 70 A32 ) 135 A23 ) 17 A33 ) 4.9

A41 ) 5.861 A42 ) 2.195 A43 ) -3.913 A41 ) -0.2362 A42 ) -0.1191 A43 ) -0.0627 A41 ) 1043 A42 ) -492 A43 ) 81

A51 ) -1.995 A52 ) -0.677 A53 ) 3.077 A51 ) 0.2056 A52 ) 0.1345 A53 ) 0.0699 A51 ) -525 A52 ) 354 A53 ) -111

σ ) 0.001

A11 ) -1.661 A12 ) 0.506 A13 ) -0.595 A11 ) 0.0474 A12 ) 0.0008 A13 ) 0.0012 A11 ) -765 A12 ) -54 A13 ) -32

HMIM PF6 (1) + 2-Propanol (2) A21 ) 4.335 A31 ) -8.305 A22 ) -6.754 A32 ) 17.423 A23 ) 5.213 A33 ) -14.724 A21 ) -0.0390 A31 ) 0.0570 A22 ) 0.0115 A32 ) -0.0770 A23 ) -0.0086 A33 ) 0.0588 A21 ) 528 A31 ) -532 A22 ) -54 A32 ) 101 A23 ) 105 A33 ) -296

A41 ) 11.270 A42 ) -13.878 A43 ) 13.974 A41 ) -0.0715 A42 ) 0.1333 A43 ) -0.1105 A41 ) 667 A42 ) -218 A43 ) 665

A51 ) 1.212 A52 ) -0.667 A53 ) -2.415 A51 ) 0.0210 A52 ) 0.0725 A53 ) 0.0659 A51 ) -360 A52 ) 229 A53 ) -526

σ ) 0.015

A11 ) -5.939 A12 ) -0.576 A13 ) -0.035 A11 ) 0.0649 A12 ) 0.0019 A13 ) 0.0012 A11 ) -515 A12 ) -57 A13 ) -65

OMIM PF6 (1) + Ethylacetate (2) A21 ) 4.078 A31 ) -1.117 A41 ) 1.865 A22 ) 0.039 A32 ) -0.448 A42 ) 0.816 A23 ) 0.128 A33 ) -0.120 A43 ) -0.123 A21 ) -0.0407 A31 ) 0.0246 A41 ) -0.0202 A22 ) -0.0022 A32 ) 0.0151 A42 ) 0.0039 A23 ) 0.0027 A33 ) -0.0213 A43 ) -0.0183 A21 ) 348 A31 ) -228 A41 ) 147 A22 ) 125 A32 ) 77 A42 ) -389 A23 ) -56 A33 ) -77 A43 ) 485

A51 ) -3.323 A52 ) 0.580 A53 ) -0.115 A51 ) 0.0121 A52 ) -0.0250 A53 ) 0.0519 A51 ) -16 A52 ) -90 A53 ) -93

σ ) 0.011

A11 ) -6.874 A12 ) -0.332 A13 ) 0.153 A11 ) 0.2139 A12 ) 0.0106 A13 ) 0.0124 A11 ) -740 A12 ) 2.4 A13 ) -149

MMIM CH3SO4 (1) + 2-Butanone (2) A21 ) -0.757 A31 ) -9.510 A41 ) 26.404 A22 ) -1.293 A32 ) -4.172 A42 ) 10.389 A23 ) -0.428 A33 ) 3.428 A43 ) -3.267 A21 ) -0.5687 A31 ) 0.6132 A41 ) 0.1449 A22 ) 0.0139 A32 ) -0.1089 A42 ) 0.1895 A23 ) -0.0882 A33 ) 0.1623 A43 ) -0.1048 A21 ) 421 A31 ) -682 A41 ) 1024 A22 ) -159 A32 ) 257 A42 ) -565 A23 ) 372 A33 ) -510 A43 ) 632

A51 ) -10.287 A52 ) -5.431 A53 ) -0.098 A51 ) -0.3843 A52 ) -0.1184 A53 ) 0.0271 A51 ) -547 A52 ) 503 A53 ) -444

σ ) 0.008

A11 ) -3.359 A12 ) -2.110 A13 ) -2.527 A11 ) 0.0513 A12 ) 0.0624 A13 ) 0.0253 A11 ) -690 A12 ) -49 A13 ) -11

MMIM CH3SO4 (1) + Ethylacetate (2) A21 ) -7.632 A31 ) -9.202 A41 ) 11.463 A22 ) 0.587 A32 ) 2.911 A42 ) 3.383 A23 ) 3.016 A33 ) 2.827 A43 ) -1.420 A21 ) 0.0189 A31 ) 0.0771 A41 ) -0.0589 A22 ) -0.0379 A32 ) -0.0445 A42 ) -0.0443 A23 ) -0.0460 A33 ) -0.0380 A43 ) 0.0398 A21 ) 506 A31 ) -875 A41 ) 1005 A22 ) 27 A32 ) 94 A42 ) -494 A23 ) -17 A33 ) -21 A43 ) 83

A51 ) 11.251 A52 ) -7.386 A53 ) -1.638 A51 ) -0.0502 A52 ) 0.0499 A53 ) 0.0437 A51 ) -430 A52 ) 407 A53 ) -75

σ ) 0.005

σ ) 0.0001

σ ) 0.0001 σ ) 0.5

σ ) 0.0001 σ ) 0.1

σ ) 0.0001 σ ) 0.3

σ ) 0.0001 σ ) 0.6

σ ) 0.0003 σ ) 0.6

σ ) 0.0001 σ ) 0.3

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007 605 Table 3 (Continued) MMIM CH3SO4 (1) + 2-Propanol (2) A21 ) 0.754 A31 ) 1.390 A41 ) 2.525 A22 ) 0.313 A32 ) 2.709 A42 ) -1.037 A23 ) -0.100 A33 ) -3.179 A43 ) 0.771 A21 ) -0.0313 A31 ) 0.0157 A41 ) -0.0194 A22 ) -0.0005 A32 ) -0.0047 A42 ) 0.0043 A23 ) -0.0132 A33 ) 0.0199 A43 ) 0.0155 A21 ) 238 A31 ) -49 A41 ) 164 A22 ) 332 A32 ) 123 A42 ) -419 A23 ) -30 A33 ) -345 A43 ) 568

A11 ) -3.596 A12 ) -0.573 A13 ) 0.162 A11 ) 0.0900 A12 ) 0.0024 A13 ) 0.0090 A11 ) -864 A12 ) -172 A13 ) -0.5

VEm/cm3‚mol-1 ∆nD ∆κs/T‚Pa-1

ature was adjusted, and the mixture was stirred vigorously during 1 h and left to settle for 4 h. Samples were taken by a syringe from the upper and lower layers. A series of LLE measurements were made by changing the temperature in the binary mixtures. Tie line phase compositions were determined by the measurement of density at 343.15 K from an Anton Paar DSA 48 digital vibrating-tube densimeter and the application of the corresponding fitting polynomials. The uncertainty of the phase composition is estimated to be ( 0.0005.

Results and Discussion The density, refractive index, speed of sound, excess molar volume, changes of refractive index on mixing, isentropic compressibility (determined by means of Laplace equation (κS ) F-1‚u-2), and deviations in isentropic compressibility of the binary mixtures BMIM PF6 (1) or MMIM CH3SO4 (1) + 2-butanone (2) or ethylacetate (2) or 2-propanol (2), HMIM PF6 (1) + 2-propanol (2), and OMIM PF6 (1) + ethylacetate (2) from (293.15 to 303.15) K are given in Table 2. Immiscibility intervals of the binary mixtures from x1 ) (0.0012 to 0.6820) for BMIM PF6 (1) + 2-propanol (2), from x1 ) (0.0024 to 0.5208) for HMIM PF6 (1) + 2-propanol (2), from x1 ) (0.0041 to 0.7036) for MMIM CH3SO4 (1) + 2-butanone (2). and from x1 ) (0 to 0.8397) for MMIM CH3SO4 (1) + ethylacetate (2) in the range (293.15 to 303.15) K were found. Excess molar volumes VEm, changes of refractive index on mixing ∆nD, and deviations in isentropic compressibility ∆κS were calculated from the experimental values, as follows:



xiMi(F-1 - F°i-1)

(1)

i)1

N

∑ x n°

∆nD ) nD -

i Di

(2)

i)1 N

∆κS ) κS -

∑ xκ

i S,i

(3)

i)1

In these equations, F and nD are the density and the refractive index of the mixture; F°i and n°Di are the density and the refractive index of the pure components; κS is the isentropic compressibility of the mixture; and κS,i is the isentropic compressibility of the pure component. The excess and derived quantities of the binary mixtures were fitted to a function of the mole fraction and temperature polynomial equation developed as follows: n

∆Q ) x1‚(1 - x1)

3

∑ ∑ A ‚10 ij

‚(2x1 - 1)i-1‚

1-j

i)1 j)1

(T/K - 293.15)j-1 (4) where ∆Q is the excess or derived property, x1 is the first

σ ) 0.007 σ ) 0.0001 σ ) 0.8

Table 4. Experimental Liquid-Liquid Equilibria for the Binary Mixtures 1-Alkyl-3-methylimidazolium Hexafluorophosphate (1) + 2-Propanol (2) x1 T K

IL-poor phase

x1 T K

IL-rich phase

IL-poor phase

IL-rich phase

278.15 283.15 288.15 293.15 298.15 303.15 308.15

BMIMPF6 (1) + 2-Propanol (2) 0.0008 0.7516 313.15 0.0027 0.0008 0.7309 318.15 0.0036 0.0009 0.7070 323.15 0.0044 0.0012 0.6820 328.15 0.0059 0.0014 0.6517 333.15 0.0081 0.0017 0.6238 338.15 0.0109 0.0022 0.5910 343.15 0.0133

0.5592 0.5335 0.4905 0.4661 0.4339 0.4057 0.3678

278.15 283.15 288.15 293.15 298.15 303.15

HMIMPF6 (1) + 2-Propanol (2) 0.0013 0.6218 308.15 0.0047 0.0014 0.5904 313.15 0.0064 0.0016 0.5574 318.15 0.0103 0.0024 0.5208 323.15 0.0215 0.0027 0.4856 328.15 0.0377 0.0035 0.4458

0.4054 0.3709 0.3141 0.2821 0.2106

component mole fraction, and Aij is the fitting parameter. Applying the Marquardt’s algorithm,23 the degree of polynomial expression was optimized. The correlation parameters are listed in Table 3 together with the standard deviations (σ). These deviations were calculated by applying the following expression:

(

∑ (z

)

1/2

nDAT

σ)

N

VEm )

A51 ) -0.777 A52 ) -4.234 A53 ) 4.189 A51 ) -0.0140 A52 ) -0.0124 A53 ) -0.0172 A51 ) -62 A52 ) -21 A53 ) -168

exp

- zpred)

i

nDAT

2

(5)

where property values and the number of experimental data are represented by z and nDAT, respectively. The excess molar volumes are negative over the entire composition range for all the binary mixtures except for the system HMIM PF6 (1) + 2-propanol (2), where the excess molar volumes present a maximum at approximately x1 ) 0.9 and negative values for x1 from (0.5 to 0.75), respectively. On the other hand, changes of refractive index on mixing for the binary mixtures are positive over the whole composition range. For the deviations in isentropic compressibility negative values are observed over the entire composition range. In general terms, the excess molar volumes and the deviations properties increase when the temperature is increased. For example, excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the binary mixtures BMIM PF6 (1) + 2-butanone (2) versus the mole fraction over the whole composition range and the fitted curve, obtained from the polynomial equation from (293.15 to 303.15) K, are shown in Figure 2. A comparison with the literature data in terms of excess molar volumes is made in Figure 3. LLE studied for the binary mixtures BMIM PF6 (1) + 2-propanol (2) and HMIM PF6 (1) + 2-propanol (2) are shown

606

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007

Figure 3. Comparison of VEm against mole fraction for the binary mixtures. (a) BMIM PF6 (1) + 2-butanone (2): O, T ) 298.15 K; b, ref 16. (b) BMIM PF6 (1) + ethylacetate (2): 0, T ) 298.15 K; 9, ref 16. Table 5. Parameters of the NRTL and UNIQUAC Equation for the Binary Mixtures NRTL (R ) 0.3) a12

a21

b12

b21

J‚mol-1

J‚mol-1

J‚mol-1‚K-1

J‚mol-1‚K-1

σ

24999

BMIMPF6 (1) + 2-Propanol (2) 20999 -79.11 -20.20

0.68

24999

HMIMPF6 (1) + 2-Propanol (2) 20999 -86.08 -25.23

0.79

UNIQUAC

Figure 2. (a) Excess molar volumes VEm of the binary mixtures against mole fraction x1 for BMIM PF6 (1) + 2-butanone (2), at O, T ) 293.15 K; 4, T ) 298.15 K; 0, T ) 303.15 K. Inset shows excess molar volumes of the binary mixtures against the temperature at equimolar composition. (b) Changes of refractive indices on mixing ∆nD of the binary mixtures against mole fraction for BMIM PF6 (1) + 2-butanone (2) at O, T ) 293.15 K; 4, T ) 298.15 K; 0, T ) 303.15 K. Inset shows changes of refractive indices of the binary mixtures against the temperature at equimolar composition. (c) Deviations in isentropic compressibility ∆κS of the binary mixtures against mole fraction for BMIM PF6 (1) + 2-butanone (2) at O, T ) 293.15 K; 4, T ) 298.15 K; 0, T ) 303.15 K. Inset shows deviations in isentropic compressibility of the binary mixtures against the temperature at equimolar composition.

in Table 4 from (278.15 to 343.15) K and from (278.15 to 328.15) K, respectively. Experimental phase diagrams of LLE investigated are shown in Figure 4. The LLE of the binary

a12

a21

b12

b21

J‚mol-1

J‚mol-1

J‚mol-1‚K-1

J‚mol-1‚K-1

-2871

BMIMPF6 (1) + 2-Propanol (2) -1470 24.65 6.816

1.77

-2871

HMIMPF6 (1) + 2-Propanol (2) -1470 25.24 7.231

1.26

σ

mixtures MMIM CH3SO4 (1) + 2-butanone (2) or ethylacetate (2) were published previously.24 Liquid-Liquid Equilibria Correlation. In this work, the NRTL and UNIQUAC equations with temperature-dependent interaction parameters are used to correlate the experimental binary LLE data. For the NRTL model, the third randomness parameter Rij was fixed at (0.3) and was not optimized. The volume Rk and surface area Qk parameters of the UNIQUAC equation were obtained from the literature.25

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007 607

equations are good to correlate the experimental data, and similar results are obtained using both equations.

Conclusions In this paper, density, refractive index, and speed of sound as a function of the temperature for the binary mixtures of four ILs (BMIM PF6, HMIM PF6, OMIM PF6, and MMIM CH3SO4) with three organic solvents (2-butanone, ethylacetate, and 2-propanol) are presented. LLE of the binary mixtures involving BMIM PF6 and HMIM PF6 with 2-propanol were determined experimentally at several temperatures. An increase in the alkyl chain length of the IL results a decrease in the UCST when the second component is 2-propanol. Besides, the addition of the methyl group to the IL increases the solubility between IL and 2-propanol. The binary systems were modeled using the NRTL and UNIQUAC equations with linear temperature-dependence, adjustable parameters, and good fit of the experimental data provided.

Literature Cited

Figure 4. Equilibrium temperature for LLE against IL mole fraction of (a) BMIM PF6 (1) + 2-propanol (2): 0; (b) HMIM PF6 (1) + 2-propanol (2): O. experimental tie-lines and correlated NRTL (solid) and UNIQUAC (dashed) curves.

In these equations the adjustable parameter was defined as a linear temperature dependence, described as follows for NRTL and UNIQUAC, respectively: ∆gij ) aij + bij‚T/K and ∆uij ) aij + bij‚T/K

(6)

The SOLVER function in Microsoft EXCEL was used to adjust the parameters so that the objective function was minimized, providing the set of temperature-dependent adjustable parameters for the binary systems. The objective function is defined as follows: 2

objective function )

∑ (x

l,exp i

- xl,calc )2 i

(7)

i)1

The calculated values of the equations are presented in Table 5. The standard deviation of the mole fraction and the temperature dependence of the correlative parameters are listed in Table 5. These deviations were calculated by applying the following expression for the binary mixtures: σ)

(∑ (

))

2

xl,exp - xl,calc i i

i)1

xl,exp i

2 0.5

(8)

where x is the mole fraction and the indexes i and l provide a designation for the component and the phase, respectively. The correlative results are shown in Figure 4. The correlative

(1) Swatloski, R. P.; Rogers, J. D.; Rogers, R. D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361-363. (2) Najdanovic-Visak, V.; Esperanca, J. M. S. S.; Rebelo, L. P. N.; Nunes da Ponte, M.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phase behaviour of room temperatura ionic liquid solutions: an unusually large co-solvent effect in (water + ethanol). Phys. Chem. Chem. Phys. 2002, 4, 1701-1703. (3) Wasserscheid, P.; van Hal, R.; Bo¨ssann, A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfatesan even “greener” ionic liquid. Green Chem. 2002, 4, 400-404. (4) Pereiro, A. B.; Tojo, E.; Rodriguez, A.; Canosa, J.; Tojo, J. Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates. J. Chem. Thermodyn. 2006, 38, 651-661. (5) Pereiro, A. B.; Santamarta, F.; Tojo, E.; Rodriguez, A.; Tojo, J. Temperature dependence of physical properties of ionic liquid 1,3dimethylimidazolium methyl sulfate. J. Chem. Eng. Data 2006, 51, 952-954. (6) Pereiro, A. B.; Tojo, E.; Rodriguez, A.; Canosa, J.; Tojo, J. HMImPF6 ionic liquid that separates the azeotropic mixture ethanol + heptane. Green Chem. 2006, 8, 307-310. (7) Pereiro, A. B.; Rodriguez, A. Study on the phase behavior and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures. J. Chem. Thermodyn. (in press). (8) Tovar, C. A.; Carballo, E.; Cerdeirina, C. A.; Romani, L. Excess molar volumes and excess molar heat capacities of mixtures containing (mono and poly)ethers + ethyl acetate. J. Chem. Eng. Data 1997, 42, 10851089. (9) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135-144. (10) Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: a new expression for the excess energy of partly or completely miscible systems. AIChE J. 1975, 21, 116-128. (11) Comelli, F.; Francesconi, R. Densities and excess molar volumes of propylene carbonate + linear and cyclic ketones at 298.15 K. J. Chem. Eng. Data 1995, 40, 808-810. (12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic SolVents; Wiley: New York, 1986. (13) Das, A.; Frenkel, M.; Gadalla, N. M.; Marsh, K.; Wilhoit, R. C. TRC Thermodynamic Tables; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994. (14) Ritzoulis, G.; Fidantsi, A. Relative permittivities, refractive indices, and densities for the binary mixtures N,N′-dimethylacetamide with methanol, ethanol, 1-butanol, and 2-propanol at 298.15 K. J. Chem. Eng. Data 2000, 45, 207-209. (15) Harris, K. R. H.; Woolf, L. A.; Kanakudo, M. Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 2005, 50, 1777-1782. (16) Wang, J.; Zhu, A.; Zhao, Y.; Zhuo, K. Excess molar volumes and excess logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with some organic compounds. J. Solution Chem. 2005, 34, 585-596. (17) Letcher, T. M.; Reddy, P. Ternary (liquid + liquid) equilibria for mixtures of 1-hexyl-3-methylimidazolium (tetrafluoroborate or hexaflu-

608

(18)

(19) (20) (21)

(22)

Journal of Chemical and Engineering Data, Vol. 52, No. 2, 2007 orophosphate) + benzene + an alkane at T ) 298.2 K and p ) 0.1 MPa. J. Chem. Thermodyn. 2005, 37, 415-421. Harris, K. R.; Kanakubo, M.; Woolf, L. A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-mehyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 2006, 51, 1161-1167. Chiappe, C.; Pieraccini, D. Review commentary. Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275297. Gu, Z.; Brennecke, J. F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 2002, 47, 339-345. Domanska, U.; Pobudkowska, A.; Wisniewska, A. Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem. 2006, 35, 311-334. Kato, R.; Gmehling, J. Activity coefficients at infinite dilution of varioussolutesintheionicliquids[MMIM]+[CH3SO4]-,[MMIM]+[CH3OC2H4SO4]-,

[C5H5NC2H5]+[(CF3S[MMIM]+[(CH3)2PO4]-, O2)2N]- and [C5H5NH]+[C2H5OC2H4OSO3]-. Fluid Phase Equilib. 2004, 226, 37-44. (23) Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431-435. (24) Pereiro, A. B.; Canosa, J.; Rodrı´guez, A. Liquid-liquid equilibria of 1,3-dimethylimidazolium methyl sulfate with ketones, dialkyl carbonates and acetates. Fluid Phase Equilib. (in press). (25) Banerjee, T.; Singhi, M. K.; Sahoo, R. K.; Khanna, A. Volume, surface and UNIQUAC interaction parameters for imidazolium based ionic liquids via polarizable continuum model. Fluid Phase Equilib. 2005, 234, 64-76. Received for review November 6, 2006. Accepted December 22, 2006. The authors thank the Ministerio de Educacio´n y Ciencia (Spain) for the financial support through Project CTQ 2004-00454.

JE060497D