Thermodynamics and Chemistry (DeVoe, Howard) - Journal of

Covers all important topics in chemical thermodynamics. ... For a more comprehensive list of citations to this article, users are encouraged to perfor...
0 downloads 0 Views 50KB Size
Chemical Education Today

Book & Media Reviews Thermodynamics and Chemistry by Howard DeVoe Prentice Hall: Upper Saddle River, NJ, 2001. 439 pp. ISBN 0-02-328741-1. $90.00. reviewed by Eric A. Gislason

Thermodynamics is a deceptively difficult subject that few people master in their first exposure (typically in the junior-level physical chemistry course). Because of this, a clear, well-written textbook is always welcome to help students and teachers master this material. Such a book is Thermodynamics and Chemistry, by Howard DeVoe of the University of Maryland. This book is written as a one-semester textbook for senior undergraduates and graduate students who have had a previous course on the topic. This is a long book (400 pages of text, 25 pages of appendices), and it is unlikely that an instructor can cover everything in one semester. On the other hand this length does allow the author to cover topics such as a “liquid solution in a centrifugal field” that shorter books would omit. All important topics in chemical thermodynamics are covered. After two introductory chapters, the three laws of thermodynamics are taken up in Chapters 3 and 4. Pure substances, including phase transitions, are treated in Chapters 5 and 6. Chapter 7, “Mixtures,” is a long chapter that covers, among other topics, partial molar quantities, activities, and activity coefficients. Chemical reactions are treated in Chapter 8 and there is a detailed discussion of equilibrium in various multicomponent systems in Chapter 9. The book is completed with a discussion of the phase rule (Chapter 10) and a brief chapter on galvanic cells. There are a number of things I like about this book. First, DeVoe takes great care in defining important thermodynamic words such as the thermodynamic state of a system. Similarly, he makes the distinction between process and path understandable, and this allows him to clearly define a reversible process as well as spontaneous and impossible processes. Section 4.1 then contains the sentence “An irreversible process is a spontaneous process whose reverse is an impossible process.” This is obviously true, but I never would have thought of it without the author’s help! DeVoe also takes great pains to discuss the subtleties in

1186

the definitions of heat and work when frictional forces are present, which of course they are in any real process. (This is a complicated topic, which I have written on myself in this Journal [Gislason, E. A.; Craig, N. C. J. Chem. Educ. 1987, 64, 660.]) I was particularly impressed by the appendix entitled “Forces, Energy, and Work”, which takes the fundamental principles of classical mechanics, applies them to a collection of particles in a closed system, and derives an expression for thermodynamic work. The author is also very good at giving clear qualitative explanations of thermodynamic concepts. For example, I found his presentation of the second law using Carnot engines (Section 4.2) remarkably understandable. Most thermodynamics books do not present this material as clearly. Similarly I enjoyed reading Section 4.7, “What is the ‘Meaning’ of Entropy”, where he shows how entropy can be thought of both as a “measure of unavailable work” and as a “measure of disorder”. A third thing I like very much about this book is that DeVoe shows how important thermodynamic quantities such as temperature are actually measured. A good example of this is the detailed descriptions of measuring heat capacities using either adiabatic calorimeters or isothermal-jacket calorimeters (Section 5.5.2). One of the real highlights of the book is the detailed description of how data from a bomb calorimeter experiment are used to obtain standard molar enthalpies of combustion. The many steps that are needed to go from a temperature change measured in the calorimeter to the desired standard enthalpy are spelled out in detail in Section 8.5.2. Then, to reinforce all of the concepts, there is a 16-part homework problem that worries about such things as the Washburn corrections and uses such data as second virial coefficients, Henry’s law constants, and partial molar volumes. Thermodynamics and Chemistry is well written and should be very useful to anyone interested in a rigorous development of thermodynamics. Each chapter contains a number of challenging homework problems at the end, and there is a lengthy bibliography of books on the topic for anyone wishing to read further. There is also an extensive index. Overall, this is an excellent textbook and belongs on the shelf of anyone who has a serious interest in chemical thermodynamics. Eric A. Gislason is in the Office of the Vice Chancellor for Research, University of Illinois at Chicago, Chicago, IL 60612-7727; [email protected].

Journal of Chemical Education • Vol. 78 No. 9 September 2001 • JChemEd.chem.wisc.edu