Thin Films Studied by Nile Red Single Molecule Fluorescence

Mar 9, 2012 - Optical Spectroscopy and Molecular Physics Group, Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz,. Germany...
0 downloads 0 Views 876KB Size
Supporting Information

Cage Effect in Poly (alkyl-methacrylate) Thin Films Studied by Nile Red Single Molecule Fluorescence Spectroscopy Beatriz Araoz1, Daniela Täuber2, Christian von Borczyskowski2* and Pedro F. Aramendía1*

1

INQUIMAE and Departamento de Química Inorgánica, Analítica y Química Física.

Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Pabellón 2. Ciudad Universitaria. C1428EHA. Buenos Aires 2

Optical Spectroscopy and Molecular Physics Group, Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany

1

Figure 1 SI: Accumulated spectra (dots) of all measured single molecules and the ensemble spectrum (solid line) measured in a fluorometer for a NR sample in (A) PMMA film of 200 nm thickness at 296 K and (B) PBMA film of 25 nm thickness at 323 K. Spectra were collected at the same excitation wavelength, thickness and temperature but different concentration. [NR] (Ensemble) = 1x10-5 mol NR/kg polymer and [NR] (Accumulated) = 1x10-12 mol NR/kg polymer.

Table 1 SI: Summary of literature data of NR emission maximum, either in wavelength or in wavenumber, in different solvents together with the corresponding fluorescence energy and the polarity scale ET(30).

Solvent n-hexane

ET(30)10 Reported Value 31.0

Energy Value [eV]

Ref.

19050 cm

-1

2.36

6

-1

2.36

8

n-hexane

31.0

19000 cm

n-dodecane

31.1

531 nm

2.33

1

n-heptane

31.1

529 nm

n-heptane cyclohexane

31.1 31.2

2.34

1

19047 cm

-1

2.36

2

18484 cm

-1

2.29

2

-1

2.33

9

cyclohexane carbon tetrachloride carbon tetrachloride carbon tetrachloride

31.2

18750 cm

32.5

17985 cm-1

2.23

2

32.5

17985 cm-1

2.23

2

32.5

18200 cm-1

2.25

6

xylene

33.1

565 nm

2.19

1

toluene

33.9

17574 cm-1

2.18

2

toluene

33.9

570 nm

2.18

4

toluene

33.9

570 nm

2.17

5

2

1,4-dioxane

36.0

17152 cm-1

2.13

2

THF

37.4

16806 cm-1

2.08

2

chloroform

39.1

595 nm

chloromethane

39.1

2.08

1

16800 cm

-1

2.05

6

-1

2.06

2

dichloromethane

40.7

16638 cm

dichloromethane

40.7

16600 cm-1

2.06

6

ethyl acetate

41.1

16806 cm-1

2.08

2

acetone

42.2

608 nm

2.04

1

2.05

2

-1

acetone

42.2

16556 cm

acetone

42.2

615 nm

2.02

3

DMSO

45.1

15898 cm-1

1.97

2

DMSO

45.1

637 nm

1.95

4

DMSO

45.1

650 nm

1.91

5

1.95

6

1.95

3

2.01

2

-1

DMSO

45.1

15800 cm

DMSO

45.1

635 nm -1

acetonitrile

46.0

16260 cm

acetonitrile

46.0

627 nm

1.98

3

acetonitrile

46.0

610 nm

2.03

9

2-propanol

48.4

628 nm

1.97

3

1.97

2

-1

1-butanol

49.7

15923 cm

1-butanol

49.7

633 nm

1.96

3

ethanol

51.9

650 nm

1.91

5

ethanol

51.9

629 nm

1.97

1

1.95

2

-1

ethanol

51.9

15748 cm

ethanol

51.9

635 nm

1.95

3

ethanol

51.9

637 nm

1.95

4

methanol

55.5

15576 cm-1

1.93

2

methanol

55.5

642 nm

1.93

3

methanol

55.5

625 nm

1.98

7

1.96

8

-1

methanol

55.5

15800 cm

ethylene glycol

56.3

654 nm

1.90

4

ethylene glycol

56.3

652 nm

1.90

3

glycerol

57.0

654 nm

1.90

4

water

63.1

657 nm

1.89

1

1.86

2

1.86

3

-1

water

63.1

15037 cm

water

63.1

665 nm

3

Figure 2 SI: Solvatochromic plot correlating energy maximum of NR emission in different solvents as a function of ET(30). The two linear correlations are indicated for the emission energy in eV and correspond: circles, solvents with ET(30) < 36; triangles, solvents with ET(30) > 36.

4

Figure 3 SI: Schematic representations of polar and non-polar environments for NR location in PBMA or PPMA and comparison with non-polar environment in hexane (lower right scheme) and in chloroform (lower left scheme) as representative liquid environments for type A and B-C emission spectra, respectively.

Figure 4 SI: Time traces of emission energy for (left) a simulated system with two exchangeable conformations with distinctive emission energies and for (middle) a single molecule experimentally observed in a PBMA film of 200 nm thickness at 278 K.

5

The logarithm (right) of the complementary cumulative distribution function, Φc(∆E2), for the left panel (black triangles) and the central panel (hollow circles).

Figure 5 SI: Φc(∆E2) of type A SM spectral fluctuations of NR embedded in PBMA (left column) and PPMA (right column) of 200 nm and 25 nm thickness. Hollow circles: 278 K, hollow squares: 296 K and hollow triangles: 323 K.

Figure 6 SI: Position of the emission maximum in successive frames of all the type A emitting molecules measured in 25 nm PBMA at 323 K and the corresponding assignment to A or B type emission with 2.37 eV as the threshold value.

References 1. Greenspan, P; Fowler, S. D. J. Lipid Res. 1985, 26, 781-789. 6

2. Ghanadzadeh Gilani, A.; Moghadam M.; Zakerhamidi, M.S. Dyes and Pigments 2012, 92, 1052-1057. 3. Sackett, D. L.; Wolff, J. Anal. Biochem. 1987,167, 228-234. 4. Hungerford, G. ; Ferreira, J. A. J. Lumin. 2001, 93,155-165. 5. Viseu, T. M. R.; Hungerford, G.; Coelho, A. F.; Ferreira, M. I. C. J. Phys. Chem. B 2003, 107, 13300 -13312. 6. Boldrini, B.; Cavalli, E.; Painelli, A.; Terenziani, F. J. J. Phys. Chem. A 2002,106, 6286-6294. 7. Dutta, A. K.; Kamada, K.; Ohta, K. J. Photochem. Photobiol. A 1996, 93, 57-64. 8. Hou, Y.; Bardo, A. M.; Martinez, C.; Higgins D. A. J. Phys. Chem. B 2000, 104, 212-219. 9. Kawski, A.; Bojarski, P.; Kuklinski, B. Chem. Phys. Lett. 2008, 463, 410–412. 10. Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; John Wiley & Sons; U.S.A., 2010.

7