9 Trace Elements by Instrumental Neutron Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
Activation Analysis for Pollution Monitoring DEAN W. SHEIBLEY Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio 44135
Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene,filteredair particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was ±25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.
' T ' h e c o m b u s t i o n of fuels, p a r t i c u l a r l y c o a l , is a major source of trace A
element p a r t i c u l a t e s e m i t t e d i n t o the atmosphere.
I n 1970 alone, over
0.5 b i l l i o n tons of c o a l , over 100 b i l l i o n gallons of m o t o r f u e l , a n d n e a r l y 60 b i l l i o n gallons of f u e l o i l w e r e b u r n e d i n the U n i t e d States ( 1 ).
Trace
levels of elements that are present i n these fuels represent a p o t e n t i a l l y l a r g e c o n t r i b u t i o n to the e n v i r o n m e n t a l b u r d e n , e v e n i f o n l y a p o r t i o n is i n j e c t e d i n t o air. Methods and technology
were developed
a n d u s e d at the
NASA
P l u m B r o o k R e a c t o r ( P B R ) to a n a l y z e trace elements i n p o l l u t i o n - r e l a t e d samples b y i n s t r u m e n t a l n e u t r o n a c t i v a t i o n analysis ( I N A A ). T h i s w o r k is significant b e c a u s e i t demonstrates that I N A A is a u s e f u l a n a l y t i c t o o l f o r m o n i t o r i n g trace elements i n a v a r i e t y of s a m p l e m a t r i c e s r e l a t e d to environmental protection.
I n a d d i t i o n to c o a l , other samples
analyzed
f o r trace elements i n c l u d e d fly ash, b o t t o m ash, c r u d e o i l , f u e l o i l , r e s i d u a l o i l , gasoline, jet f u e l , kerosene, filtered a i r p a r t i c u l a t e s , v a r i o u s ores, stack 98 Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
SHEiBLEY
Instrumental
Neutron
Activation
99
Analysis
s c r u b b e r w a t e r , c l a m tissue, c r a b shells, r i v e r s e d i m e n t a n d w a t e r , cement, limestone, a n d c o r n . F o u r goals w e r e established for t h e I N A A p r o g r a m at P B R .
These
goals w e r e t o :
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
1. D e v e l o p t h e t e c h n o l o g y a n d m e t h o d s to a n a l y z e a l a r g e n u m b e r of samples p e r y e a r e n c o m p a s s i n g a v a r i e t y of s a m p l e matrices. 2.
D e t e r m i n e a n d r e p o r t o n as m a n y elements as possible
3.
E s t a b l i s h a n d m a i n t a i n a h i g h degree of a c c u r a c y a n d p r e c i s i o n
4. P e r f o r m t h e w o r k w i t h m i n i m u m m a n p o w e r a n d e q u i p m e n t , b a s i c a l l y as a p a r t - t i m e effort. T o a c h i e v e these goals, t h e analysis scheme w h i c h i n v o l v e d s a m p l e preparation, irradiation, sample counting, a n d data reduction was opti m i z e d to achieve m a x i m u m s a m p l e o u t p u t w i t h m i n i m u m
manpower
expended. Procedure and System
Description
Capability Development.
T h e w o r k of D a m s et al. ( 2 ) a n d Z o l l e r
a n d G o r d o n ( 3 ) w a s the basis f o r b u i l d i n g t h e I N A A c a p a b i l i t y . T h e I N A A p r o c e d u r e t h e y u s e d i n v o l v e d t h e f o l l o w i n g steps. T h e s a m p l e a l i q u o t s w e r e e n c a p s u l a t e d i n p o l y e t h y l e n e vials f o r t h e i r r a d i a t i o n p e r i o d . T w o aliquots of the s a m p l e p l u s t w o standards w e r e i r r a d i a t e d i n a p n e u m a t i c transfer i r r a d i a t i o n system, o n e set ( s a m p l e p l u s standards ) f o r a l o n g t i m e p e r i o d ( 1 2 - 2 4 hrs ) a n d t h e other for a short t i m e p e r i o d ( 5 m i n ) . A f t e r i r r a d i a t i o n the samples w e r e i m m e d i a t e l y r e m o v e d f r o m t h e v i a l s . T h e short-time s a m p l e w a s c o u n t e d after d e c a y intervals of 3 m i n , 30 m i n , a n d 24 hrs. T h e l o n g - t i m e s a m p l e w a s c o u n t e d after a d e c a y i n t e r v a l o f 3 w k s ; sometimes the d e c a y i n t e r v a l s w e r e 7 - 1 0 days. T h e t y p i c a l n e u t r o n flux w a s 1 0 neutrons/cm /sec. C o u n t i n g d a t a w e r e processed t h r o u g h c o m p u t e r i z e d d a t a r e d u c t i o n codes. T w e n t y t o t h i r t y elements w e r e r e p o r t e d . 1 3
Several major
differences
existed b e t w e e n
2
this scheme
a n d one
compatible w i t h the P B R facilities. T h e P B R d i d not have an operating p n e u m a t i c transfer i r r a d i a t i o n f a c i l i t y , n o r w a s there a s o p h i s t i c a t e d γ-ray s p e c t r u m analysis a n d d a t a r e d u c t i o n c o m p u t e r p r o g r a m a v a i l a b l e . I r r a d i a t i o n f a c i l i t i e s at P B R w e r e h y d r a u l i c . A l u m i n u m capsules
(rabbits)
w e r e u s e d to c o n t a i n a n d transfer samples to a n d f r o m t h e core. T h e use o f a l u m i n u m r a b b i t s m e a n t that d a t a o n t h e s h o r t - l i v e d elements o b t a i n e d f r o m t h e 5 - m i n d e c a y c o u n t w o u l d b e lost. S i g n i f i c a n t p e r s o n n e l r a d i a t i o n exposures w e r e o b t a i n e d f r o m h a n d l i n g the a l u m i n u m r a b b i t (•—50 g ) d i r e c t l y f r o m t h e reactor core b e c a u s e of the 1780 k e V g a m m a of 2 . 2 - m i n
2 8
A l a n d a remote m e t h o d u s e d to o p e n the r a b b i t t o o k
too m u c h t i m e ( i n excess of 20 m i n ). H i g h d e n s i t y p o l y e t h y l e n e p r o v e d to b e a n a c c e p t a b l e r a b b i t m a t e rial.
W i t h a 2 . 5 - m m t h i c k w a l l , i t a d e q u a t e l y w i t h s t o o d t h e 1.1 Χ 1 0
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
6
100
TRACE
newton/m
ELEMENTS
IN FUEL
( 160 l b / i n . ) h y d r a u l i c pressure of the P B R i r r a d i a t i o n t r a n s
2
2
fer system. T h e m a t e r i a l d i d not s i g n i f i c a n t l y d e g r a d e i n the P B R c o r e for p e r i o d s u p to 1 h r . T h e i m p u r i t y l e v e l of the p o l y e t h y l e n e w a s l o w . A s a result, r a d i a t i o n levels r e s u l t i n g f r o m a c t i v a t i o n of the i m p u r i t i e s was s l i g h t , a n d these r a b i b t s c o u l d b e o p e n e d m a n u a l l y w h e n r e t u r n e d f r o m the reactor core. Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
W e n o w h a d a c c e p t a b l e r a b b i t s for the s h o r t - t e r m and long-term (aluminum)
(polyethylene)
i r r a d i a t i o n s . S i n c e the i n t e r n a l v o l u m e
this r a b b i t d e s i g n w a s c o o l e d b y p r i m a r y c o o l i n g w a t e r
flowing
of
through
the r a b b i t , samples w e r e p r o t e c t e d b y e n c a p s u l a t i o n i n p o l y e t h y l e n e a n d q u a r t z vials for the short- a n d l o n g - t e r m i r r a d i a t i o n s , r e s p e c t i v e l y . D e c a y t i m e w a s c r i t i c a l to the d e t e r m i n a t i o n of elements f r o m the 5- a n d 3 0 - m i n d e c a y counts, so w e d e c i d e d to use t h e r a b b i t i r r a d i a t i o n facilities w i t h the h i g h e s t t h e r m a l n e u t r o n flux ( 1 0 u p the specific a c t i v i t y of s h o r t - l i v e d isotopes.
14
n / c m / s e c ) to b u i l d 2
T h e h i g h e r flux also p r o
v i d e d a greater sensitivity. Evaluation of P B R Capability. T o evaluate o u r o v e r a l l c a p a b i l i t y at this p o i n t , 10 p a r t i c u l a t e samples c o l l e c t e d o n W h a t m a n - 4 1 filter p a p e r were
encapsulated,
irradiated, and counted.
Results o n
16
elements
w e r e m a n u a l l y c a l c u l a t e d . T h e average t i m e e x p e n d e d p e r s a m p l e w a s 10 hrs. T h e entire process was t h e n e x a m i n e d to i d e n t i f y those parts w h i c h could be improved.
T h i s r e s u l t e d i n significant m a n p o w e r savings a n d
m o r e elements r e p o r t e d . T h e analysis scheme for the 10 e v a l u a t i o n samples u s e d t w o a l i q u o t s (.—
25 c m
2
polyethylene
of filter p a p e r / a l i q u o t ) .
O n e aliquot was encapsulated i n
a n d i r r a d i a t e d i n a p o l y e t h y l e n e r a b b i t for 5 m i n i n a
t h e r m a l n e u t r o n flux of a p p r o x i m a t e l y 1 0
1 4
n/cm /sec.
T h i s sample was
2
c o u n t e d at d e c a y times of 5 m i n , 30 m i n , a n d 24 hrs. T h e other a l i q u o t was e n c a p s u l a t e d i n h i g h p u r i t y s y n t h e t i c q u a r t z a n d i r r a d i a t e d i n a n a l u m i n u m r a b b i t 1 2 - 2 4 hrs.
T h e s e samples w e r e c o u n t e d t w i c e , after
d e c a y p e r i o d s of 10 days a n d 3 w k s . S a m p l e c o u n t i n g e q u i p m e n t i n c l u d e d one 4 0 9 6 - c h a n n e l γ-ray spectrometer a n d a G e ( L i )
detector.
T h e c r y s t a l of the G e ( L i ) detector was 35 m m i n d i a m e t e r a n d 27 m m l o n g . It h a d a n o m i n a l a c t i v e v o l u m e of 20 c m
3
a n d resolutions of
t h e 1332.5 k e V photons of 2.18 ( f u l l w i d t h — h a l f m a x i m u m ) a n d 4.09 k e V (full width—0.1 maximum). about
C o u n t i n g losses at 2 0 %
dead time were
6%.
T h e d a t a i n the m e m o r y of the γ-ray spectrometer was p u n c h e d o n 8 - c h a n n e l p a p e r tape, c o n v e r t e d to p u n c h e d cards, a n d processed t h r o u g h a rather primitive computer program w h i c h provided both a count per c h a n n e l o u t p u t p l u s a not too r e l i a b l e r o u t i n e for p e a k finding a n d i n t e g r a t i n g net area. A l l results w e r e h a n d c a l c u l a t e d f r o m net p e a k areas a n d
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
SHEiBLEY
Instrumental
Neutron
Activation
Analysis
101
t h e o r e t i c a l n u c l e a r d a t a parameters. Standards w e r e not u s e d since they i n c r e a s e d the n u m b e r of items to b e i r r a d i a t e d a n d c o u n t e d .
Sixteen
elements w e r e r e p o r t e d . Manpower
Analysis.
E x a m i n a t i o n of
the
10
man-hours/sample
s h o w e d the f o l l o w i n g b r e a k d o w n :
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
1. O n e - h a l f h o u r was r e q u i r e d to cut filter a l i q u o t s , l o a d into vials, seal, a n d c h e c k the vials for leaks. 2. O n e h o u r was n e e d e d for the 5 - m i n i r r a d i a t i o n a n d c o u n t i n g after d e c a y intervals of 5 a n d 30 m i n . 3. O n e - q u a r t e r h o u r w a s necessary i n t e r v a l s of 24 hrs, 10 days, a n d 3 w k s .
for
4. T h e l o n g - t e r m i r r a d i a t i o n o p e r a t i o n o n e - q u a r t e r h o u r for seven samples.
each
count
procedure
after
decay
required
only
5. E i g h t hrs w e r e r e q u i r e d to h a n d c a l c u l a t e the d a t a o n 16 elements f r o m c o m p u t e r - c a l c u l a t e d net areas. T h e h a n d calculations w e r e p e r f o r m e d o n p r o g r a m m a b l e electronic calculators. E v i d e n t s h o r t c o m i n g s of the process w e r e that the n u m b e r of shortt e r m i r r a d i a t i o n s p e r w e e k w a s a p p a r e n t l y l i m i t e d b y the a v a i l a b l e a n a l y z e r c o u n t i n g t i m e a n d the m a n p o w e r n e e d e d for d a t a r e d u c t i o n . T h e s e t w o parts of t h e s c h e m e w e r e s t u d i e d to i m p r o v e efficiency b y i n c r e a s i n g the n u m b e r of s h o r t - t e r m i r r a d i a t i o n s a n d c o u n t i n g i n a n 8-hr shift as w e l l as significantly r e d u c i n g the m a n - h o u r s for d a t a r e d u c t i o n . T h e s o l u t i o n to i n c r e a s i n g the n u m b e r of s h o r t - t e r m i r r a d i a t i o n s w a s s i m p l e a n d also i m p r o v e d a n a l y z e r use efficiency.
B y irradiating
two
samples i n the same r a b b i t , w e c o u l d take a d v a n t a g e of the h i g h e r specific a c t i v i t y d u r i n g l o n g e r d e c a y times. T h e first s a m p l e w a s c o u n t e d
after
5 m i n d e c a y a n d the s e c o n d s a m p l e was c o u n t e d i m m e d i a t e l y after the first at 10—12 m i n decay.
T h e 3 0 - m i n d e c a y counts w e r e p e r f o r m e d after
a d e c a y t i m e of 2 2 - 2 5 m i n o n the first s a m p l e a n d 4 0 - 4 5 m i n o n the s e c o n d s a m p l e . T h u s , s h o r t - t e r m i r r a d i a t i o n s a m p l e o u t p u t was
doubled
w h i l e a d d i n g o n l y a p p r o x i m a t e l y 0.25 h r to the o r i g i n a l t i m e i n t e r v a l of 1 h r / s a m p l e . A l l c o u n t i n g was p e r f o r m e d o n the same a n a l y z e r . Data
Reduction The
data reduction
problem
required a reliable computer
data
r e d u c t i o n p r o g r a m c o m p a t i b l e w i t h a n existing I B M m o d e l 67 c o m p u t e r facility.
T h e l i t e r a t u r e i d e n t i f i e d various c o d e s : I N V E N b y D a m s a n d
Robbins ( 4 ) , G A M A N A L b y G u n n i c k and N i d a y (5, 6 ) , and S P E C T R A b y B o r c h a r d t et al. ( 7 ) .
I N V E N c o u l d not b e o b t a i n e d i n c o m p l e t e f o r m .
G A M A N A L was w r i t t e n for the C D C 6600 c o m p u t e r a n d w o u l d r e q u i r e a n extensive r e w r i t e for the I B M 360. S P E C T R A , a l t h o u g h not too sophist i c a t e d , w a s q u i t e a d e q u a t e for this w o r k . T h e p e a k find, p e a k i n t e g r a t i o n , a n d p e a k i d e n t i f i c a t i o n properties w e r e u s e d as w r i t t e n . W e i n s e r t e d
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
102
TRACE
ELEMENTS
IN F U E L
SAMPLE ENCAPSULATION ALIQUOT IN ALIQUOT IN (A) (B) POLYETHYLENE QUARTZ
(0 ..RRADIATION 12 HR;
(D)
IRRADIATION, 5 MINUTES; FLUX 1 . 5 x l 0 1 4 N/CM 2 -SEC
(F)
COUNTING: 5 M l Ν - 1 0 M l Ν DECAY 20 - 40 MIN DECAY
FLUX, 1 . 5 x l O l 4 N / C M 2 - S E C
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
(E)
COUNTING: 18 - 25 DAYS DECAY
(G)
(H)
COUNTING: 24 HOURS DECAY
PAPER TAPE TO MAGTAPE CONVERSION ADD PREDATA INFO
(I) LOAD MAG TAPE INTO IBM-360
(1) (I)
(I)
EXECUTE "SPECTRA" ANALYSIS IBM-360 (RESULTS)
X-Y PLOTS OF γ - R A Y SPECTRUM
Figure 1.
ONLY
STORE RESULTS IN IBM-360
PROGRAM LISTING
CHECK INPUT; VERIFY RESULT
(K)
RESULTS
PREPARE FOR ERO DATA EDIT
TRANSMIT DATA TO EPA AND OTHERS
(J)
EDIT STORED DATA
(J)
FILE EDITED DATA FOR FUTURE DATA ANALYSIS BY ERO
Flow chart showing scheme for irradiation, and data reduction of various samples
counting,
the e q u a t i o n s f o r h a n d c a l c u l a t i o n s , since t h e c o d e c a l c u l a t e d results b a s e d o n c o m p a r i s o n s w i t h standards.
O u r equations also p e r m i t t e d
a c c u r a t e corrections f o r d e a d t i m e losses, d e c a y d u r i n g c o u n t i n g t i m e , etc. A l i b r a r y o f s t a n d a r d s w a s a d d e d to t h e c o d e b a s e d o n elements f o u n d i n the various sample matrices. T h e standard library eventually i n c l u d e d 56 elements c a l c u l a t e d f r o m a p p r o x i m a t e l y 80 isotopes.
T h e rewrite,
p r o g r a m d e b u g g i n g , a n d i r r a d i a t i o n s o f s t a n d a r d s f o r t h e l i b r a r y took 7 m o n t h s to c o m p l e t e .
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
Instrumental
SHEiBLEY
Neutron
Activation
103
Analysis
The Optimum Capability at P B R . T w e n t y - t w o a i r p a r t i c u l a t e s a m ples w e r e a n a l y z e d to a g a i n e v a l u a t e the analysis scheme.
T h e total time
for s a m p l e analysis a v e r a g e d 4.5 h r s / s a m p l e . T w o hrs of the t o t a l w e r e u s e d to c h e c k reported.
computer
i n p u t a n d results.
U p to 56 elements
A t this p o i n t a n i n i t i a l g o a l h a d b e e n a c h i e v e d .
We
were could
a n a l y z e 12 s a m p l e s / w k i n a p p r o x i m a t e l y 54 hrs. Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
W e c o n t i n u e d o u r efforts for a m o r e efficient o p e r a t i o n . interference
corrections,
A l l isotope
except for the a l u m i n u m c o r r e c t i o n o n
nesium, were computerized.
mag
T h i s saved more manpower i n data reduc
t i o n . B y u s i n g r o u t i n e s c h e d u l i n g of b o t h l o n g - a n d s h o r t - t e r m i r r a d i a t i o n s and counting, w e eventually achieved
an o p t i m u m situation on
both
manpower and counting equipment availability. This o p t i m u m situation p e r m i t t e d analysis of 2 0 - 2 4 s a m p l e s / w k w i t h a t o t a l m a n p o w e r of 3 to 3.5 h r s / s a m p l e e x p e n d e d . F i g u r e 1 shows the final s c h e m e u s e d for a l l s a m p l e types w h e n t h e p r o g r a m was t e r m i n a t e d . ( T h e P B R ceased o p e r a t i o n i n J a n . 1973. ) E a c h o p e r a t i o n is i d e n t i f i e d b y a letter i n parentheses.
Table I provides infor
m a t i o n o n the m a n p o w e r b r e a k d o w n for e a c h i d e n t i f i e d o p e r a t i o n .
Re
sults o n t h e p o l l u t i o n - r e l a t e d samples w e n t to the E n v i r o n m e n t a l P r o t e c tion Agency
( E P A ) , D i v i s i o n of A i r S u r v e i l l a n c e at R e s e a r c h T r i a n g l e
P a r k , N . C . a n d the E n v i r o n m e n t a l R e s e a r c h Office ( E R O ) , N A S A L e w i s Research Center, Cleveland, Ohio. A few comments should make F i g u r e 1 more understandable.
The
s a m p l e a l i q u o t u s e d for the 5 - m i n i r r a d i a t i o n w a s sealed i n a p o l y e t h y l e n e v i a l , tested for leaks, a n d i r r a d i a t e d 5 m i n . T h e other a l i q u o t w a s
flame
sealed i n the q u a r t z v i a l , tested for leaks, a n d i r r a d i a t e d 3 - 1 2 h r s , d e p e n d i n g o n the s a m p l e t y p e . T h e c o u n t i n g d a t a f r o m e a c h a l i q u o t w e r e
Table I.
Optimum Manpower Breakdown for 20 Samples/Wk
Operation Preparation, encapsulation Preparation, encapsulation Irradiation Irradiation Counting Counting Counting D a t a handling D a t a reduction D a t a handling D a t a handling a
Identification
a
A Β C D Ε F G H I S J 1 or Κ
Average Manhours/ Sample 0.25 0.25 0.1 0.1 0.25 0.55 0.25 0.1 0.8 S 0.8 i or 0.3 T o t a l 3.0-3.5
See Figure 1.
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
104
TRACE
ELEMENTS
IN
FUEL
p u n c h e d o n p a p e r t a p e w h i c h was a p e r m a n e n t r e c o r d of t h e c o u n t e d aliquot.
I n p u t d a t a , i n c l u d i n g the s a m p l e n u m b e r a n d the requestor's
i d e n t i f i c a t i o n n u m b e r , w e r e c o m p i l e d . T h e i n p u t d a t a a n d c o u n t i n g data w e r e t r a n s f e r r e d onto m a g n e t i c tape after c o n v e r s i o n to a f o r m a t p a t i b l e w i t h the I B M 360 c o m p u t e r .
T h e o u t p u t f r o m the
com
SPECTRA
c o d e consisted of a l i s t i n g of a l l i n p u t d a t a , c o u n t i n g d a t a , a n d results, Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
p l u s plots of the γ-ray s p e c t r u m of e a c h s a m p l e count. E P A d a t a listings c o n t a i n e d a s u m m a r y sheet of i n p u t d a t a a n d results for d a t a t r a n s m i t t a l . U s i n g a c o m p u t e r t e r m i n a l t h e E R O results w e r e s t o r e d i n d a t a sets i n the I B M - 3 6 0 m e m o r y , w h e r e they w e r e e d i t e d for errors a n d r e f i l e d i n m e m o r y for use i n other E R O d a t a r e d u c t i o n c o m p u t e r p r o g r a m s .
The
56 elements r e p o r t e d are s h o w n i n T a b l e I I . T h e y are g r o u p e d a c c o r d i n g to t h e d e c a y t i m e g r o u p i n w h i c h t h e y w e r e d e t e r m i n e d . Alternatives to Optimum Sample Processing.
The 20-24
samples/
w k w e r e c o n s i d e r e d the o p t i m u m because that n u m b e r of samples c o u l d b e c o m p l e t e l y a n a l y z e d i n 5 days, w o r k i n g one 8^-hr s h i f t / d a y . A n o t h e r i r r a d i a t i o n scheme u s e d to r e d u c e s a m p l e b a c k l o g s r e q u i r e d performing 30-36 short-term irradiations d u r i n g 1 w k , w i t h the number of l o n g - t e r m i r r a d i a t i o n s p e r w k i n c r e a s e d a n d h e l d for c o u n t i n g 3 w k s later. T h i s a p p r o a c h i n v o l v e d l o n g e r r a n g e s c h e d u l i n g , w a s less r o u t i n e , a n d w a s less efficient w h e n u n e x p e c t e d reactor s h u t d o w n s o c c u r r e d . Problems Some
Encountered problems
developed
i n sample preparation and
irradiation
b e c a u s e of the v a r i e t y of s a m p l e m a t r i c e s s u b m i t t e d for I N A A .
Some
samples w e r e p a r t i c u l a t e s ( c o a l , fly ash, b o t t o m ash, o r e ) , some w e r e v o l a t i l e h y d r o c a r b o n s (gasoline, jet f u e l , etc.), s o m e w e r e solids.
some w e r e aqueous, a n d
O u r m e t h o d s of s a m p l e p r e p a r a t i o n w e r e r e f i n e d to
p r o v i d e a l l samples i n sealed q u a r t z a n d p o l y e t h y l e n e v i a l s for i r r a d i a t i o n (see
F i g u r e 1 ) . D e p e n d i n g o n the contents of the q u a r t z v i a l s , t h e l e n g t h
of i r r a d i a t i o n was v a r i e d f r o m 3 - 1 2 hrs to m i n i m i z e v i a l b r e a k a g e f r o m
Table II.
Elements Listed in D a t a Summary According to Decay G r o u p
< 15 min Al Rh S Ti V
>15 min < 100 min Ba Ca CI Dy Ge I In
Mg Mn Na Sr Te U
>100 min < 5000 min As Au Br Cd Cu Eu Ga
Gd Ir Κ La Mo Pt Re
Sm W
> 5000 min Ag Ce Co Cr Cs Fe Hf
Hg Lu Nd Ni Rb Sb Sc
Se Sn Ta Tb Th Yb
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Zn Zr
9.
SHEIBLEY
Instrumental
Table III.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
Element
Neutron
Activation
105
Analysis
Impurity Level of Whatman-41 Filter Paper μρ 125.8
Ag Al Ba Ca Ce Cl Co Cr Cu Dy
Element
cm
2
0.0088 1.03 0.049 3.5 0.026 3.23 0.0022 0.051 0.08 0.00009
μη 125.8
Fe Hg Mn Na Sb Sc Ti U Zn
pressure b u i l d u p c a u s e d b y r a d i o l y s i s of the samples.
cm
2
1.57 0.0046 0.018 3.38 0.0046 0.0016 0.15 0.00067 0.601
M i n i m u m break
age o c c u r r e d (less t h a n 5 s a m p l e s / 1 0 0 i r r a d i a t e d ) w h e n v o l a t i l e h y d r o carbons (gasoline, kerosene, jet f u e l ) w e r e i r r a d i a t e d for 3 hrs or less. L e s s v o l a t i l e h y d r o c a r b o n s a n d aqueous samples w e r e i r r a d i a t e d 6 hrs. S o l i d samples w e r e i r r a d i a t e d 12 hrs. A n o t h e r p r o b l e m e n c o u n t e r e d was the i m p u r i t y content of the
filter
p a p e r u s e d i n the h i g h v o l u m e samplers to collect the p a r t i c u l a t e samples. T h e c o n v e n t i o n a l filter m a t e r i a l u s e d b y E P A w a s glass fiber filter m e d i a . H o w e v e r , this was not c o m p a t i b l e w i t h I N A A because of its h i g h a n d v a r i e d i m p u r i t y content.
D i s c u s s i o n s w i t h K . R a h n of the F o r d R e a c t o r
at the U n i v e r s i t y of M i c h i g a n r e v e a l e d that W h a t m a n - 4 1 filter p a p e r was the most d e s i r a b l e m e d i u m for use w i t h I N A A ( see Ref. 2 ). O u r analyses s h o w e d W h a t m a n - 4 1 to be v e r y l o w i n i m p u r i t i e s w i t h consistent i m p u r i t y levels f r o m b a t c h to b a t c h . A v e r a g e i m p u r i t y levels, b a s e d o n 12 b a t c h analyses, are s h o w n i n T a b l e I I I . A l t h o u g h the levels for c a l c i u m , c h l o rine, sodium, a l u m i n u m , a n d iron appear large, they rarely
affected
e l e m e n t a l levels f o u n d i n filtered p a r t i c u l a t e s . I m p u r i t y levels d i d not v a r y m o r e t h a n 2 5 % f r o m the m e a n . I m p u r i t y levels w e r e also i m p o r t a n t i n the q u a r t z a n d p o l y e t h y l e n e vials. D u r i n g the l o n g i r r a d i a t i o n t i m e i n q u a r t z , the samples d e c o m p o s e d so m u c h that i t w a s i m p o s s i b l e to c o m p l e t e l y r e m o v e the s a m p l e f r o m the v i a l for c o u n t i n g . T h e samples h a d to b e c o u n t e d i n the vials.
We
e v e n t u a l l y d e t e r m i n e d t h a t S u p r a s i l ( S u p r a s i l T - 2 0 , 6 - m m i . d . , 8 - m m o.d.; s u p p l i e r , A m e r s i l , Inc., H i l l s i d e , N . J . ), a s y n t h e t i c q u a r t z , best s e r v e d o u r needs for a l o w i m p u r i t y v i a l m a t e r i a l . I n T a b l e I V , w e i g h t s of i m p u r i t i e s are expressed i n m i c r o g r a m s b a s e d o n a v i a l 5 c m l o n g , w i t h a 6 - m m i . d . , 8 - m m o.d., a n d w e i g h i n g 2.77 g.
F o r some elements the l e v e l v a r i e d
significantly f r o m one b a t c h to another. most s i g n i f i c a n t l y was a n t i m o n y .
T h e element w h i c h
changed
T h e i r r a d i a t i o n of v o l a t i l e fuels
for
E P A r e q u i r e d t h a t w e also d e t e r m i n e the i m p u r i t y l e v e l of p o l y e t h y l e n e b e c a u s e l i q u i d samples w e r e c o u n t e d i n the i r r a d i a t i o n vials. W e f o u n d
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
106
TRACE
ELEMENTS
IN F U E L
that i m p u r i t y levels v a r i e d s o m e w h a t f r o m b a t c h to b a t c h of p o l y e t h y l e n e . T a b l e V presents a v e r a g e results o n i m p u r i t y levels of 16 p o l y e t h y l e n e vials. V i a l s w e r e 5 c m l o n g , w i t h 6 - m m i . d . , a n d 9 - m m o.d. T h e average w e i g h t of t h e s e a l e d v i a l w a s 2.00 g. H i g h d e n s i t y p o l y e t h y l e n e was u s e d because of its better r a d i a t i o n resistance. T h e h i g h i m p u r i t y levels i n these v i a l s f o r S, N a , C l , K , A l , a n d C a severely l i m i t e d the Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
s e n s i t i v i t y to these elements i n gasoline a n d other v o l a t i l e m a t e r i a l s w h i c h h a d to b e c o u n t e d i n the vials. P o l y e t h y l e n e w a s also s u s c e p t i b l e t o p i c k i n g u p r a d i o n u c l i d e s f r o m t h e p r i m a r y coolant.
T h i s interference w a s e l i m i n a t e d b y s e a l i n g t h e
s e a l e d p o l y e t h y l e n e v i a l s i n t o h e a t - s h r i n k a b l e t u b i n g w h i c h w a s easily r e m o v e d after s a m p l e i r r a d i a t i o n . T h e p r o b l e m of f l a m e - s e a l i n g gasoline a n d other v o l a t i l e m a t e r i a l s into quartz for the long irradiation was solved b y using a cold
finger
condenser i n l i q u i d n i t r o g e n . T h e q u a r t z t u b e ( a b o u t o n e - h a l f f u l l , 0.8 cm ) 3
w a s p o s i t i o n e d i n a n a l u m i n u m r o d w h i c h h a d b e e n b o r e d o u t to
a c c o m m o d a t e the l e n g t h of t h e t u b e f r o m its b o t t o m to a b o v e t h e l i q u i d l e v e l . T h i s r o d w a s t h e n l o w e r e d into a D e w a r c o n t a i n i n g l i q u i d n i t r o g e n a n d a l l o w e d to s t a n d u n t i l t h e g a s o l i n e b e c a m e s l u s h y a n d / o r a r i n g of frost a p p e a r e d just a b o v e t h e t o p of t h e a l u m i n u m . T h e n t h e t u b e w a s sealed using a n oxygen-acetylene
flame.
T h i s process
took less t h a n
5 min.
Table I V .
T y p i c a l Impurity Levels of a 2.77-g Suprasil V i a l
Element
μς
Element
μρ
Au Ce Cr Co Fe
0.00035 0.003 0.0144 0.0012 0.52
Hg Sb Sc Ta Zn
0.00059 0.01 0.0014 0.00017 0.092
Table V .
Impurity Levels in a 2.00-g Polyethylene V i a l
Element Al Au Ba Br Ca CI Cu I
Element 3.6 0.009 0.48 0.25 4.5 9.0 0.27 0.062
In Κ La Mn Na S Ti V
0.0003 9.4 0.037 0.046 8.1 162. 0.95 0.016
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
SHEiBLEY
Instrumental
Neutron
Activation
107
Analysis
Spectra Code T h e computer program S P E C T R A (7) find,
contained an adequate peak
p e a k i n t e g r a t i o n , a n d p e a k m a t c h i n g r o u t i n e . T h e c o d e also d i s
t i n g u i s h e d t w o types of peaks b a s e d o n the statistical significance of the γ-ray c o u n t d a t a . T h e c o d e r e s o l v e d d o u b l e t s a n d t r i p l e t s u s i n g a m i n i Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
m u m p e a k area of five channels ( 5 k e V ) . T h i s degree of r e s o l u t i o n w a s a d e q u a t e for a l m o s t a l l peaks used. S P E C T R A also c o n t a i n e d a n o p t i o n c a l l e d G - s e a r c h . T h e G - s e a r c h r o u t i n e was u s e d to estimate the c o n c e n t r a t i o n of elements i n c l u d e d as s t a n d a r d s , b u t not f o u n d d u r i n g the p e a k find
a n d m a t c h i n g r o u t i n e . T h e c o d e t h e n e x a m i n e d the energy r e g i o n
w h e r e γ-ray peaks s h o u l d b e l o c a t e d a n d p r o v i d e d three estimates of the element c o n c e n t r a t i o n . T h e s e features w e r e left intact. W e d i d w r i t e i n t o the c o d e a l i b r a r y of standards w h i c h was u s e d i n l i e u of i r r a d i a t i n g a n d c o u n t i n g standards a l o n g w i t h t h e samples.
T o establish o u r w o r k i n g standards, w e
used
s p e c t r a of t y p i c a l s a m p l e matrices. E l e m e n t concentrations w e r e c a l c u l a t e d f r o m n u c l e a r d a t a . W e s u b s t a n t i a t e d the e l e m e n t a l values of these m a t r i x standards b y c o m p a r i s o n w i t h N B S a n d other standards.
Where
d i s c r e p a n c i e s of greater t h a n 2 0 % existed, the d a t a w e r e e x a m i n e d , t h e p r o b l e m i d e n t i f i e d , a n d c o r r e c t i v e a c t i o n t a k e n . F r o m this w e c o n c l u d e d that for these s a m p l e types no significant m a t r i x effects w e r e present.
We
r e t a i n e d the o r i g i n a l standards d a t a tapes a n d o c c a s i o n a l l y r e r a n t h e m to c h e c k
for
error i n the a u t o m a t i c d a t a p r o c e s s i n g
equipment
and
software. E l e m e n t standards w e r e g r o u p e d i n t o f o u r s t a n d a r d l i b r a r i e s , cor r e s p o n d i n g to t h e f o u r d e c a y c o u n t i n g times.
D e c a y time boundaries
for e a c h s t a n d a r d l i b r a r y are s h o w n i n T a b l e I I . I n e a c h l i b r a r y , at least t w o elements w e r e c a l c u l a t e d f r o m different standards. T h e s e t w o s t a n d ards r e p r e s e n t e d
different
concentrations,
counting
geometries,
dead
times, d e c a y times, a n d s a m p l e matrices. V i s u a l i n s p e c t i o n of the c o m p u t e r l i s t i n g p r o v i d e d a r a p i d spot c h e c k for c o m p u t e r p r o g r a m m a l functions. A n o t h e r a c c u r a c y p r o b l e m area i n v o l v e d the l i n e a r i t y of the γ-ray spectrometer
(analyzer)
detector
system.
SPECTRA
control
integers
w e r e a d j u s t e d to a l l o w o n l y a t h r e e - c h a n n e l v a r i a t i o n i n γ-ray p e a k e n e r g y to ensure p r o p e r p e a k m a t c h i n g w i t h s t a n d a r d p e a k energies. e a r i t y of the analyzer—detector system w a s c h e c k e d d a i l y w i t h 6 0
C o sources.
C s and
T h e a c t i v i t y of these sources p r o d u c e d d e a d times i n the
a n a l y z e r - d e t e c t o r system of less t h a n 1 0 % . occur.
The lin 1 3 7
H o w e v e r , linearity drift d i d
G a i n shifts i n l i n e a r i t y also o c c u r r e d w h e n s a m p l e activities w e r e
too h i g h .
W h e n the l i n e a r i t y s h i f t e d m o r e t h a n three channels, peaks
d i d not m a t c h w i t h standards o r p o s s i b l y c o u l d b e i m p r o p e r l y m a t c h e d .
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
108
TRACE
Table V I . Element/ isotope (X) 6 4
Cu
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
6 5 1 4 1
2 4 75
Zn Ce
82
B
4e
59
M g (g)» 203JJgc
Na Se Sc F
e
"Mo Al(g) Yb, Se
r
IN FUEL
Interference Corrections for Various Isotopes
Interfering isotope (Z)
203JJg
ELEMENTS
1 7 5
7 6
Correction
Required"
N A ( 5 1 1 k e V X) — 0 . 0 8 8 6 ( N A 1369 k e V Z) N A ( 2 7 9 . 1 k e V X) — 0 . 3 8 6 6 ( N A 264.4 k e V Z) N A ( 1 1 1 5 . 4 k e V X) — 0 . 7 7 6 7 ( N A 889 k e V Z) N A Î 1 4 5 . 4 k e V X) — 0 . 3 6 ( N A 1292 k e V Z) N A ( 7 7 6 . 5 k e V X) — 0 . 3 4 ( N A 740 k e V Z) g of M g c a l c u l a t e d — 0.057 (g of A l ) See t e x t
° Ν A refers to n e t area of p e a k . T h i s correction was d e t e r m i n e d e m p i r i c a l l y b u t n o t p r o g r a m e d into S P E C T R A ; a l l others were. C o r r e c t i o n coefficients used were d e t e r m i n e d f r o m a t w o - l e v e l factorial design. 6
c
A s u b r o u t i n e f o r l i n e a r i t y adjustment w a s a d d e d to S P E C T R A to correct f o r n o n l i n e a r i t y or d r i f t i n g of the a n a l y z e r system. T h e s u b r o u t i n e p r o v i d e d i n f o r m a t i o n o n the t r u e e n e r g y l o c a t i o n of six peaks w h i c h c o u l d reasonably be expected i n a given decay time group.
T h e search area
for e a c h p e a k w a s r e s t r i c t e d to a g i v e n n u m b e r of channels.
Coefficients
for a l i n e a r e q u a t i o n w e r e d e r i v e d f r o m a least-squares fit of t h e differ ence b e t w e e n t r u e e n e r g y l o c a t i o n a n d a c t u a l e n e r g y l o c a t i o n of at least f o u r peaks. T h e a c t u a l p e a k locations w e r e t h e n m a t h e m a t i c a l l y r e l o c a t e d closer to the t r u e energy l o c a t i o n before the p e a k m a t c h i n g r o u t i n e w i t h the standards w a s p e r f o r m e d . T h i s s u b r o u t i n e v i r t u a l l y e l i m i n a t e d m i s s e d peaks or i m p r o p e r p e a k matches.
T h i s saved considerable
man-hours
since peaks n o t m a t c h e d w i t h standards h a d to b e m a n u a l l y i d e n t i f i e d and hand calculated. S o m e elements w e r e c a l c u l a t e d f r o m t h e same isotope i n different d e c a y groups. A n d other elements w e r e c a l c u l a t e d f r o m different isotopes i n t h e same o r different d e c a y groups.
This duplication was used to
improve accuracy. Interference Corrections. I n c e r t a i n cases, the γ-rays of one element isotope are close to t h e γ-ray energy of a n isotope u s e d to d e t e r m i n e a n o t h e r element. interference.
I n these cases, it w a s necessary to correct for this
S u b r o u t i n e s f o r interference
corrections
were
added
to
S P E C T R A to e l i m i n a t e p e r f o r m i n g s u c h corrections m a n u a l l y . T h e c o r r e c t i o n factors u s e d w e r e n o r m a l l y d e r i v e d f r o m n u c l e a r d a t a i n f o r m a t i o n . B u t w e d i d c h e c k these corrections b y i r r a d i a t i n g m i x t u r e s of these ele ments i n v a r i o u s concentrations.
T h e i n t e r f e r e n c e corrections u s e d are
s h o w n i n T a b l e V I . T h e c o r r e c t i o n for
2 8
A 1 on
2 7
M g was determined
e m p i r i c a l l y b e c a u s e i t w a s specific to the i r r a d i a t i o n l o c a t i o n i n t h e P B R . T h e d e t e r m i n a t i o n of m e r c u r y i n c o a l p r o d u c e d a n interference cor rection p r o b l e m w h i c h was quite complex.
W e f o u n d that c o u n t i n g a n
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
Instrumental
SHEiBLEY
Neutron
Activation
109
Analysis
i r r a d i a t i o n c o a l s a m p l e at 5—6-wks d e c a y t i m e p r o d u c e d a smaller m e r c u r y v a l u e t h a n t h e v a l u e c a l c u l a t e d f r o m t h e c o u n t at 3-wks decay. c o r r e c t i o n for
7 5
S e was b e i n g m a d e o n
2 0 3
H g , b u t the l o w e r
A
mercury
results ( f r o m 0.5 to 0.1 times s m a l l e r ) at 6-wks d e c a y c o u l d n o t
be
explained. A search of the N u c l e a r D a t a T a b l e s ( 8 ) Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
ference: 4.2-day with
2 0 3
Yb.
1 7 5
H g , b u t also the 4 0 0 . 7 - k e V p e a k of
K e V p e a k area of
1 7 5
p r o d u c e d another i n t e r
N o t o n l y d i d the 2 8 2 - k e V p e a k of 7 5
1 7 5
Y b interfere
S e i n t e r f e r e d w i t h the 396-
Y b , w h i c h was u s e d for the Y b c o r r e c t i o n o n
I n a d d i t i o n , another y t t e r b i u m isotope, 3 2 - d a y 2 6 4 - k e V p e a k area of area at 279 k e V ) .
75
1 6 9
2 0 3
Hg.
Y b i n t e r f e r e d w i t h the
S e , w h i c h is u s e d i n the c o r r e c t i o n o n
2 0 3
H g (peak
T h e s e discrepancies w e r e not e l i m i n a t e d b y u s i n g
t h e o r e t i c a l corrections. F i n a l l y , the p r o b l e m w a s r e s o l v e d b y i r r a d i a t i n g standards a n d m i x tures of standards i n a f a c t o r i a l e x p e r i m e n t . T h e e x p e r i m e n t d e s i g n w a s a f u l l f a c t o r i a l e x p e r i m e n t w i t h three v a r i a b l e s , m e r c u r y , s e l e n i u m , a n d y t t e r b i u m , at t w o levels w i t h r e p l i c a t i o n a n d w i t h a center p o i n t a d d e d to test h i g h e r order effects.
T h e p e r t i n e n t i n f o r m a t i o n o n treatments a n d
levels of v a r i a b l e s are s h o w n i n T a b l e V I I . R e g r e s s i o n analysis o n the d a t a was u s e d to estimate t h e coefficients in a predictive model equation.
T h e d e p e n d e n t v a r i a b l e w a s chosen as
t h e difference b e t w e e n the c o m p u t e r - c a l c u l a t e d v a l u e f o r m e r c u r y
(or
s e l e n i u m or y t t e r b i u m ) a n d the true v a l u e . I n d e p e n d e n t v a r i a b l e s w e r e the elements p l u s p l a u s i b l e interactions (e.g., the i n t e r a c t i o n of s e l e n i u m Table VII. Factorial Design Treatments for Y b and Se Interferences on H g Coded Level of
a
(
Variable"
Treatment
Se
Hg
Yb
1 2 3 4 5 6 7 8 Replicates 4 7 8 Center point
-1 + 1 -1 -1 + 1 - 1 + 1 + 1
-1 -1 + 1 -1 + 1 + 1 + 1 -1
-1 -1 -1 + 1 -1 + 1 + 1 + 1
-1 + 1 + 1 CP
-1 + 1 -1 CP
+ 1 + 1 + 1 CP
(-1)
indicates low level, 10 μg.
( + 1) indicates h i g h level, 100
μg.
CP
h i g h level + low level \
2
)
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
indicates
110
TRACE
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
NBS
Sb Ce Co Eu Au La Th Sc Ag
610
PBR
— — (390) — (25) — — — (254)
IN
FUEL
Comparison of N B S Standard
Table VIII. Element
ELEMENTS
NBS
PBR
612
— —
(39) (35) (36) (5) (36) 37.6±0.1
37±2 31±1 26±1 5±1 35±15 31±1
180±80
22.0±0.8
31±7
135±14
— 20±2
° N B S values in parentheses are interim values. Others are certified values. and ytterbium on mercury).
T h e coefficients d e r i v e d f o r the p r e d i c t i v e
e q u a t i o n s s e r v e d as the basis for t h e e m p i r i c a l c o r r e c t i o n of y t t e r b i u m and selenium on mercury. F o r c o m p a r i s o n , the t h e o r e t i c a l a n d e m p i r i c a l corrections
are
as
follows: 1. T h e o r e t i c a l corrections for s e l e n i u m a n d y t t e r b i u m interferences on mercury A B D
c c c
= = =
A B D
u u u
-
0.0369 X 0.118 A 0.959 B c
c
0.387
A
c
2. E m p i r i c a l f o r m of s e l e n i u m a n d y t t e r b i u m c o r r e c t i o n factors interference o n m e r c u r y Table IX.
for
Comparison of P B R Mean Values Coal
Element As Co Cr Cu Hg Mn Ni Rb Se Sr Fe Th U V Zn a
NBS* 5.9±0.4 — 22 ± 2 18 ± 2 0.11 47 ± 3 — — 2.8±0.2 — — 3 1.4±0.1 35 ± 4 37 ± 4
PBR 5.9
±0.5 — 19.0 ± 0 . 8 14.1 ± 0 . 9 0.95±0.09 38 ±3 — — 3.8 ± 0 . 5 — — 3.1 ± 0 . 2 0.98±0.08 36 ±4 —
Data taken from: "Characterization of Standard Reference Materials For the File Number 0168-4 (May 1, 1973).
0158(D),
Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
9.
Instrumental Neutron Activation
SHEiBLEY
Reference Materials with P B R Results ( p p m ) NBS
PBR
614
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 3, 2018 | https://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch009
(1.06)
1.1
NBS
0.59±0.1 1.1 ± 0 . 6 1.0 ± 0 . 8