Transition-metal-free Coupling Reaction of Dithiocarbamates with

2 days ago - A one-pot three-component route for the direct introduction of dithiocarbamates into indoles using a C-H sulfenylation strategy mediated ...
1 downloads 5 Views 937KB Size
Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Transition-metal-free Coupling Reaction of Dithiocarbamates with Indoles: C-S Bond Formation Azim Ziyaei Halimehjani, Sahar Shokrgozar, and Petr Beier J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00206 • Publication Date (Web): 25 Apr 2018 Downloaded from http://pubs.acs.org on April 25, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Transition-metal-free Coupling Reaction of Dithiocarbamates with Indoles: C-S Bond Formation Azim Ziyaei Halimehjani,*,† Sahar Shokrgozar,‡ Petr Beier*,‡



Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh St.,

Tehran, Iran. E-mail: [email protected]; Fax: +98 (21) 88820992; Tel: +98 (21) 88848949. ‡

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic. E-mail: [email protected]

ABSTRACT

A one-pot three-component route for the direct introduction of dithiocarbamates into indoles using a C-H sulfenylation strategy mediated by molecular iodine is disclosed. Various indole derivatives including 1-methylindole, 2-methylindole, 3-methylindole and 5-substituted indoles were applied successfully in this protocol to afford diverse indole-dithiocarbamates containing the dithiocarbamate group on the position two or three in good to high yields. The reactions do not require transition metals or disulfiram, use an environmentally benign solvent and simple commercially available starting materials.

1 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 22

The formation of C-S bonds is important in synthetic organic chemistry for the construction of various synthetic and natural biologically active compounds.1 Many reports exist for direct the C-H sulfenylation of indoles with thiols or disulfides. Various catalytic systems such as Pd/Al2O3/CuCl2,2 NBS,3 NCS,4 I2/DMSO,5 I2/air,6 NaOH/DMSO,7 K2CO3/DMSO,8 I2/H2O2,9 I2/TBHP,10 (NH4)2S2O8,11 FeF3/I2,12 N-thioalkyl- and N-thioarylphthalimides/MgBr2,13 CpCo(CO)I2/Cu(OAc)2/In(OTf)314 have been developed for the direct C-S bond formation via a C-H thiolation strategy. Notably, most of the reported methods are applicable for 3-sulfenylation of indoles; however, 2-sulfenylation of indoles is rare.10,

15

While numerous methods are

available for direct C-S bond formation via direct C-H sulfenylation of indoles with thiols and disulfides, a C-S bond formation through the direct introduction of dithiocarbamates into indoles has not been reported to date. The chemistry of dithiocarbamates is well known for their widespread applications in agriculture,16 polymer chemistry,17 and coordination chemistry.18 Recently, dithiocarbamates have been used as intermediates in synthetic organic chemistry for the construction of biologically active compounds.19 Various heterocyclic compounds containing dithiocarbamate groups

including

dithiocarbamates,

chromone-dithiocarbamate,

triazole–dithiocarbamates,

benzimidazole-dithiocarbamates,

benzodioxole-

indole-dithiocarbamates,

and

quinazolinone-dithiocarbamate have been introduced as potential anticancer agents.20 For this reason, methods of introduction of dithiocarbamate groups into heterocyclic compounds are useful in the design of novel biologically active compounds. Recently, Jiao et al. reported an efficient protocol for C-H sulfenylation of imidazohetecocycles with disulfiram in the presence of catalytic amount of iodine and FeF3 in dichloroethane at 80 °C (Scheme 1a).21 The chemistry 2 ACS Paragon Plus Environment

Page 3 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

and biological activity of indole-dithiocarbamates have been less investigated, presumably due to the lack of efficient procedures for their synthesis. Brassinin and isobrassinin are the most famous indole-dithiocarbamate compounds.22 Przheval'skii et al. reported the synthesis of S(indolyl-3) diethyl dithiocarmamates via Fischer indol synthesis (Scheme 1b).23 In addition, Krasovskiy et al. reported the synthesis of S-(indolyl-3) dimethyldithiocarbamate using metalated indole (Grignard reagent) and tetramethylthiuram Disulfide (Scheme 1c).24 Due to a widespread application of indoles and dithiocarbamates and their importance in drug discovery, the development of elegant technologies enabling synthesis of compounds containing both the indole and the dithiocarbamate groups in a single structure is in high demand. For this purpose, a direct reaction of an amine, carbon disulfide and an indole in the presence of iodine under transition-metal-free conditions was developed (Scheme 1d).

Scheme 1. Published and proposed introduction of dithiocarbamates into nitrogen heterocyles.

3 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C-H sulfenylation of indoles with dithiocarbamates was optimized using 1-methylindole, CS2, and diethylamine as a model reaction (Table 1). Initially, we observed that the reaction of diethylamine (2 equiv) with CS2 (3 equiv) in ethanol for 10 min., followed by the addition of 1methylindole (0.5 mmol, 1 equiv) and iodine (25 mol %) and stirring for 24 h at room temperature afforded only a trace amount of 2a (Table 1, entry 1). Performing the same reaction with 50 mol % of iodine gave a similar result (Table 1, entry 3). However, increasing the reaction temperature to reflux, afforded the product 2a in 45% isolated yield (Table 1, entry 6). Under these conditions, various solvents such as methanol, water, acetonitrile, DMF, toluene, THF, and petroleum ether were screened and afforded 2a, albeit in unsatisfactory yield (Table 1, entries 7–13). In addition, a low yield (20%) of 2a was obtained under solvent-free conditions (Table 1, entry 14). We observed that by increasing the amount of iodine to 100 mol % in ethanol, the yield significantly improved to 65% (Table 1, entry 16). Attempts to improve the product yield by using iodine in the presence of various oxidants such as TBHP, H2O2, DMSO gave unsatisfactory results (Table 1, entrie 17–19). Furthermore, performing the reaction under conditions suitable for thiolation of indoles with thiols and disulfide by using NaOH/DMSO,7 K2CO3/DMSO,8 and NBS3 gave no product formation (Table 1, entries 20–22). In summary, stirring diethylamine (2 equiv) and CS2 (3 equiv) at room temperature for 10 min., followed by addition of 1-methylindole (1 equiv) and iodine (1 equiv) and stirring for 24 h at 60 °C was considered as optimal reaction conditions.

4 ACS Paragon Plus Environment

Page 4 of 22

Page 5 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Table 1. Optimization of the reaction conditions.a

Entry

Catalyst

Oxidant

Solvent

t (h)/Temp (°C)

Yield (%)

(x mol %) (y mol %) 1

I2 ( 25)

-

EtOH

24/rt

trace

2

I2 ( 25)

-

EtOH

3/reflux

trace

3

I2 (50)

-

EtOH

24/rt

trace

4

I2 (50)

-

EtOH

24/50

20

5

I2 (50)

-

EtOH

6/reflux

35

6

I2 (50)

-

EtOH

24/reflux

45

7

I2 (50)

-

MeOH

24/reflux

30

8

I2 (50)

-

H2O

24/70

trace

9

I2 (50)

-

CH3CN

24/reflux

20

10

I2 (50)

-

DMF

24/70

25

11

I2 (50)

-

toluene

24/70

10

12

I2 (50)

-

THF

24/reflux

30

13

I2 (50)

24/reflux

10

14

I2 (50)

-

Solvent-free

24/70

20

15

I2 (75)

-

EtOH

24/reflux

45

16

I2 (100)

-

EtOH

24/60

65

17

I2 (50)

TBHP(100)

EtOH

24/reflux

15

-

Petroleum ether

18

I2 (50)

DMSO (100)

EtOH

24/reflux

trace

19

I2 (50)

H2O2 (100)

EtOH

24/70

30

20

NaOH (200)

DMSO

DMSO

24/100

NRb

21

K2CO3 (50)

DMSO

DMSO

6/70

NR

22

NBS(120)

CH2Cl2

3/ice bath

trace

a

-

Reaction conditions: 1-methylindole (0.5 mmol), diethylamine (1 mmol),

CS2 (1.5 mmol), catalyst (x mol %) , oxidant (y mol %), solvent (3 mL); [b] NR = no reaction.

5 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The scope of the reaction under optimized reaction conditions was examined using various commercially available secondary amines and indoles. As shown in Table 2, all tested acyclic and cyclic secondary amines such as dimethylamine, diethylamine, dipropylamine, pyrrolidine, piperidine, azepane, and morpholine afforded the corresponding products 2 in high yields. Indole, 1-methylindole, 2-methylindole, 5-bromoindole and 5-methoxyindole were applied successfully in this protocol to afford products containing the dithiocarbamate group substituted in the position three. The presence of an electron-withdrawing group on the carbon atom at the position five in the indole, decreased the yield significantly (Table 2, compound 2p). Interestingly, by performing the reaction with 3-methylindole, the dithiocarbamate group was substituted on the carbon at the position two. It was also observed that primary amines were not suitable starting materials for this reaction and gave a mixture of isothiocyanate, starting materials and other unidentified side-products. A proposed mechanism for this transformation is depicted in Scheme 2. Initially, the reaction of an amine with CS2 provides the intermediate dithiocarbamic acid A, which reacts with molecular iodine to produce the intermediate B. The intermediate B may directly undergo electrophilic substitution reaction with 1a to afford the intermediate D or react with another equivalent of A to provide disulfiram C. Disulfiram C can furnish the intermediate B by the reaction with molecular iodine or HI. Finally, removal of HI from D affords the product 2a. The proposed mechanism also explains why one equivalent of iodine is needed for this transformation. A control experiment without using indole afforded the corresponding disulfiram C in good yield. By using disulfiram in this protocol, a similar result was obtained in the presence of 0.5 equivalent of iodine. For 3-substituted indoles, the reaction took place on the position two, via a similar mechanism. 6 ACS Paragon Plus Environment

Page 6 of 22

Page 7 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Scheme 2. Proposed mechanism for C-H functionalization of indoles with dithiocarbamates. In conclusion, an efficient and environmetally benign protocol for the synthesis of indole-dithiocarbamates is reported for the first time via iodine-mediated one-pot threecomponent reaction of secondary amines, CS2 and indoles. This metal-free method proceeds in environmetally benign solvent and allows for efficient introduction of the dithiocarbamate group by C-H sulfenylation of indoles at positions two or three.

7 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Table 2. Diversity in the synthesis of indole-dithiocarbamates 2

a

Isolated yield. Reaction conditions: amine (2 mmol), CS2 (3 mmol)

indole (1 mmol), iodine (1 mmol), EtOH (6 mL), 24 h at 60 °C under N2 or Ar. 8 ACS Paragon Plus Environment

Page 8 of 22

Page 9 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

EXPERIMENTAL SECTION General. All chemicals and solvents were obtained from commercial sources and used as received. The 1H and 13C NMR spectra of products were recorded on a Bruker AMX 300 and 400 MHz spectrometers referenced to internal Me4Si at 0.00 ppm. Reaction monitoring was carried out by thin-layer chromatography using TLC silica gel 60 F254 plates. IR spectra were recorded on an FTIR instrument using a film technique or KBr disc and wave numbers are reported in cm-1. Elemental analyses were conducted with a Perkin-Elmer 2004 Series II CHN analyzer. High-resolution mass spectra (HRMS) were recorded on an Agilent 7890A gas chromatograph coupled with a Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) ionization. General procedure for synthesis of indole-dithiocarbamates 2a-u: In a Schlenk flask under Ar or N2 atmosphere, EtOH (6 mL), a secondary amine (2 mmol, 2 equiv) and CS2 (3 mmol, 0.18 mL, 3 equiv.) were added respectively. After stirring for 10 min at room temperature, an indole (1 mmol, 1 equiv) and I2 (1 mmol, 0.254 g, 1 equiv) was added and the reaction mixture was further stirred at 60 °C for 24 h. Aqueous NaHSO3 solution was added and the product was extracted into EtOAc (3 × 10 mL). The organic extracts were combined, washed with water (2 × 10 mL), dried with anhydrous Na2SO4 or MgSO4, and evaporated to give crude products. Chromatography on silica gel, elution with EtOAc /petroleum ether (1:15) afforded pure products. 1-Methyl-1H-indol-3-yl diethylcarbamodithioate (2a). Yellow solid; Yield 181 mg (65%); mp 117-118°C; IR (KBr) ν 1508, 1482, 1458, 1267, 1203 ,740 cm-1; 1H NMR (300 MHz, DMSOd6) δ 7.63 (s, 1H, H-Ar), 7.52 (td, J = 8.2, 0.9 Hz, 1H, H-Ar), 7.35 (td, J = 7.8, 1.0 Hz, 1H, HAr), 7.21 (m, 1H, H-Ar), 7.10 (m, 1H, H-Ar), 3.97–3.88 (m, 4H), 3.84 (s, 3H), 1.37 (t, J = 7.0 9 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H) ppm; 13C NMR (75 MHz, DMSO-d6) δ 196.3, 137.6, 137.0, 129.8, 121.8, 120.1, 118.7, 110.4, 99.1, 49.8, 46.9, 32.8, 12.8, 11.4 ppm; Anal. Calcd (%) for C14H18N2S2 (MW = 278.44): C, 60.39; H, 6.52; N, 10.06; Found: C, 60.34; H, 6.24; N, 9.88. 1-Methyl-1H-indol-3-yl pyrrolidine-1-carbodithioate (2b). Cream solid; Yield: 218 mg (79%); mp 163-164 °C; IR (KBr) ν 1511, 1460, 1425, 1266, 1228, 1109, 1030, 959 ,734 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.59 (s, 1H, , H-Ar), 7.51 (dd, 1H, J = 8.3, 1.1 Hz, H-Ar), 7.39 (dd, 1H, J = 7.9, 1.1 Hz, H-Ar), 7.21 (m, 1H, H-Ar), 7.09 (m, 1H, H-Ar), 3.86–3.82 (m, 5H), 3.74 (t, 2H, J = 7.0 Hz), 2.13–2.03 (m, 2H), 1.96–1.87 (m, 2H) ppm; 13C NMR (75 MHz, DMSO-d6) δ 192.3, 137.4, 137.0, 129.7, 121.8, 120.1, 118.8, 110.5, 98.9, 55.4, 50.7, 32.9, 26.0, 23.8 ppm; Anal. Calcd. (%) for C14H16N2S2 (MW = 276.4): C, 60.83; H, 5.83; N, 10.13; Found: C, 60.95; H, 5.98; N, 10.50. 1-Methyl-1H-indol-3-yl piperidine-1-carbodithioate (2c). Cream solid; Yield: 162 mg (56%); mp 176-177 °C; IR (KBr) ν 2093, 1513, 1431, 1238, 1134, 1113, 1005, 968, 732 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.61 (s, 1H), 7.51 (d, 1H, J = 8.3Hz, H-Ar), 7.36 (td, 1H, J = 7.1, 1.2 Hz, H-Ar), 7.21 (m, 1H, H-Ar), 7.10 (m, 1H, H-Ar), 4.17-4.98 (brs, 4H), 3.84 (s, 3H), 1.68-1.59 (brs, 6H) ppm; 13C NMR (75 MHz, DMSO-d6) δ 195.3, 137.6, 137.1, 129.8, 121.8, 120.1, 118.7, 110.4, 99.1, 53.1, 52.9, 32.8, 26.0, 25.3, 23.6 ppm; Anal. Calcd. (%) for C15H18N2S2 (MW= 290.4): C, 62.03; H, 6.25; N, 9.64; Found: C, 61.75; H, 6.36; N, 9.36. 1-Methyl-1H-indol-3-yl morpholine-4-carbodithioate (2d). Cream solid; Yield: 184 mg (63%); mp 176-177 °C; IR (KBr) ν 1509, 1462, 1427, 1372, 1342, 1116, 1005, 989 ,737 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.63 (s, 1H), 7.52 (d, 1H, J = 8.2 Hz, H-Ar), 7.37 (d, 1H, J = 7.8 Hz, H-Ar), 7.25–7.19 (m, 1H, H-Ar), 7.10 (t, 1H, J = 7.4 Hz, H-Ar), 4.17 (brs, 4H), 3.85 (s, 3H), 3.72 (t, 4H, J = 7.8 Hz) ppm;

13

C NMR (75 MHz, DMSO-d6) δ 197.1, 137.6, 137.1, 129.7, 10 ACS Paragon Plus Environment

Page 10 of 22

Page 11 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

121.9, 120.2, 118.7, 110.5, 98.4, 65.7 (2C), 51.9, 51.1, 32.9 ppm; Anal. Calcd (%) for C14H16N2OS2 (MW = 292.4): C, 57.50; H, 5.52; N, 9.58; Found: C, 57.38; H, 5.69; N, 9.40. 1-Methyl-1H-indol-3-yl azepane-1-carbodithioate (2e). Cream crystal; Yield: 198 mg (65%); mp 149-150 °C; IR (KBr) ν 2915, 1510, 1446, 1409, 1270, 1197, 1116, 945, 734 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.62 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.21 (m, 1H, H-Ar), 7.10 (m, 1H, H-Ar), 4.10–4.06 (m, 4H), 3.84 (s, 3H), 1.96–1.88 (m, 2H), 1.79– 1.71 (m, 2H), 1.59–1.52 (m, 4H) ppm; 13C NMR (75 MHz, DMSO-d6) δ 196.1, 137.6, 137.1, 129.7, 121.8, 120.1, 118.7, 110.5, 99.2, 55.7, 52.7, 32.8, 27.1, 26.1, 25.9, 25.4 ppm; Anal. Calcd (%) for C16H20N2S2 (MW= 304.47): C, 63.12; H, 6.62; N, 9.20; Found: C, 62.78; H, 6.64; N, 9.09. 2-Methyl-1H-indol-3-yl diethylcarbamodithioate (2f). White yellow solid; Yield 181 mg (65%); mp 119-120 °C; IR (KBr) ν 3232 (NH), 1490, 1454, 1416, 1267, 1203, 980, 747 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 11.60 (s, 1H, N-H), 7.34 (m, 1H, H-Ar), 7.24 (m, 1H, H-Ar), 7.09– 6.97 (m, 2H, H-Ar), 3.97–3.90 (m, 4H), 2.32 (s, 3H), 1.39 (t, 3H, J= 7.0 Hz), 1.17 (t, 3H, J= 6.9 Hz) ppm; 13C NMR (75 MHz, DMSO-d6) δ 195.1, 143.9, 135.4, 130.3, 120.9, 119.7, 117.6, 111.1, 97.5, 49.7, 46.7,12.8, 12.0, 11.4 ppm; Anal. Calcd (%) for C14H18N2S2 (MW = 278.44): C, 60.39; H, 6.52; N, 10.06; Found: C, 60.54; H, 6.54; N, 9.98. 2-Methyl-1H-indol-3-yl azepane-1-carbodithioate (2g). White yellow solid; Yield 198 mg (65%); mp 79-80 °C; IR (KBr) ν 3228 (NH), 1453, 1417, 1363, 1291, 1202, 854 ,746 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 11.60 (s, 1H, N-H), 7.32 (m, 1H, H-Ar), 7.24 (m, 1H, H-Ar), 7.07–6.93 (m, 2H, H-Ar), 4.12–4.06 (m, 4H), 2.32 (s, 3H), 1.98–1.90 (m, 2H), 1.79–1.71 (m, 2H), 1.62–1.45 (m, 4H) ppm;

13

C NMR (75 MHz, DMSO-d6) δ 195.9, 143.9, 135.4, 130.3,

11 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 22

120.9, 119.7, 117.5, 111.1, 97.6, 55.8, 52.7, 27.1, 26.1, 25.8, 25.3, 11.9 ppm; Anal. Calcd (%) for C16H20N2S2 (MW = 304.47): C, 63.12; H, 6.62; N, 9.20; Found: C, 62.79; H, 6.89; N, 8.90. 2-Methyl-1H-indol-3-yl dimethylcarbamodithioate (2h). White solid; Yield: 188 mg (75%); mp 180-182 °C; IR (KBr) ν 3391 (NH), 3275 (NH), 1500, 1453, 1377, 1248, 1228, 1148, 973, 750 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.45 (s, 1H, N-H), 7.51 (m, 1H, H-Ar), 7.28 (m, 1H, HAr), 7.19-7.15 (m, 2H), 3.63 (s, 3H), 3.61 (s, 3H), 2.39 (s, 3H) ppm;

13

C NMR (101 MHz,

CDCl3) δ 198.2, 143.2, 135.2, 130.3, 121.9, 120.8, 118.4, 111.0, 99.9, 46.1, 41.8, 12.4 ppm; HRMS Calcd for C12H14N2NaS2 (M+Na)+: 273.0496; Found: 273.0491. 2-Methyl-1H-indol-3-yl pyrrolidine-1-carbodithioate (2i). White solid; Yield: 190 mg (69%); mp 178-180 °C; IR (KBr) ν 3388 (NH), 3226 (NH), 1437, 1157, 1001, 951, 741 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H, N-H), 7.53 (m, 1H, H-Ar), 7.29 (m, 1H, H-Ar), 7.18-7.14 (m, 2H), 4.00–3.95 (m, 4H), 2.42 (s, 3H), 2.22–2.17 (2H, m), 2.06–2.02 (m, 2H) ppm; 13C NMR (101 MHz, CDCl3) δ 193.8, 143.1, 135.2, 130.3, 121.9, 120.8, 118.4, 111.1, 99.3, 55.5, 50.9, 26.5, 24.4, 12.5 ppm; HRMS Calcd for C14H17N2S2 (M+H)+: 277.0833; Found: 277.0828. 2-Methyl-1H-indol-3-yl dipropylcarbamodithioate (2j). Viscous yellow oil; Yield: 230 mg (75%); IR (film) ν 3388 (NH), 3285 (NH), 2964, 2930, 2873, 1483, 1455, 1414, 1238, 988, 741 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H, N-H), 7.49 (m, 1H, H-Ar), 7.29 (m, 1H, HAr), 7.17–7.15 (m, 2H, H-Ar), 3.97–3.88 (m, 4H), 2.40 (s, 3H), 2.02–1.94 (m, 2H), 1.88–1.80 (m, 2H), 1.11 (t, 3H, J = 7.4 Hz), 0.97 (t, 3H, J = 7.4 Hz) ppm; 13C NMR (101 MHz, CDCl3) δ 197.1, 143.2, 135.2, 130.4, 121.9, 120.7, 118.5, 111.0, 99.99, 57.5, 54.6, 21.2, 19.8, 12.5, 11.3, 11.2 ppm; HRMS Calcd for C16H23N2S2 [M+H]+ :307.1303; Found: 307.1298. 2-Methyl-1H-indol-3-yl dibenzylcarbamodithioate (2k). Yellow solid; Yield 298 mg (74%); mp 130-133 °C; IR (KBr) ν 3407 (NH), 2923, 1619, 1454, 1414, 1352, 1212, 1142, 957, 739, 698 12 ACS Paragon Plus Environment

Page 13 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

cm-1; 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H, N-H), 7.55-7.19 (m, 14H, H-Ar), 5.39 (brs, 2H), 5.19 (brs, 2H), 2.48 (s, 3H) ppm; 13C NMR (101 MHz, CDCl3) δ 200.6, 143.3, 135.8 (2C), 135.2, 130.3, 129.0, 128.9, 128.1, 127.9, 127.4, 127.3, 122.1, 120.9, 118.5, 111.0, 100.0, 57.0, 54.2, 12.6 ppm; HRMS Calcd for C24H22N2NaS2 (M+Na)+: 425.1122; Found: 425.1117. 1H-Indol-3-yl pyrrolidine-1-carbodithioate (2l). Yellow solid; Yield 178 mg (68%); mp 162165 °C; IR (film) ν 3393 (NH), 3257 (NH), 1437, 11559, 1000, 953, 741 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.74 (s, 1H, N-H), 7.63 (m, 1H, H-Ar), 7.37–7.32 (m, 2H, H-Ar), 7.25–7.19 (m, 2H, H-Ar), 4.02–3.93 (m, 4H), 2.23–2.16 (m, 2H), 2.08–2.01 (m, 2H) ppm;

13

C NMR (101

MHz, CDCl3) δ 194.4, 136.2, 132.6, 129.2, 122.8, 120.9, 119.3, 112.0, 102.1, 55.6, 51.0, 26.5, 24.4 ppm; HRMS Calcd for C13H14N2NaS2 (M+Na)+: 285.0496; Found: 285.0492. 1H-Indol-3-yl dimethylcarbamodithioate (2m). Cream solid; Yield: 154 mg (65%); mp 181-183 °C; IR (KBr) ν 3402 (NH), 3326 (NH), 1505, 1457, 1411, 1371, 1252, 1239, 1147, 972, 738 cm; H NMR (400 MHz, CDCl3) δ 8.66 (s, 1H, N-H), 7.60 (m, 1H, H-Ar), 7.39 (m, 1H, H-Ar),

1 1

7.35 (d, 1H, J = 2.7 Hz, H-Ar), 7.27–7.20 (m, 2H, H-Ar), 3.62 (s, 6H) ppm;

13

C NMR (101

MHz, CDCl3) δ 198.8, 136.2, 132.6, 129.2, 122.9, 121.0, 119.3, 111.9, 102.8, 46.1, 41.9 ppm; HRMS calcd for C11H13N2S2 [M+H]+, 237.0520; Found 237.0514. 1H-Indol-3-yl azepane-1-carbodithioate (2n). White yellow solid; Yield 160 mg (55%); mp 162-163 °C; IR (film) ν 3253 (NH), 2934, 1487, 1418, 1269, 1197, 735 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.64 (s, 1H, N-H), 7.60 (dd, J= 7.7, 1.4, 1H, H-Ar), 7.41–7.38 (m, 2H, H-Ar), 7.27–7.19 (m, 2H, H-Ar), 4.24 (t, 2H, J = 6.0 Hz), 4.16 (t, 2H, J = 6.2 Hz), 2.08–2.02 (m, 2H), 1.96–1.90 (m, 2H), 1.75-1.67 (m, 4H) ppm; 13C NMR (101 MHz, CDCl3) δ 197.7, 136.2, 132.7, 129.3, 122.8, 121.0, 119.3, 111.9, 102.9, 56.5, 53.2, 27.8, 26.8, 26.7, 26.2 ppm; HRMS Calcd for C15H19N2S2 (M+H)+: 291.0990; Found: 291.0984. 13 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1H-Indol-3-yl diethylcarbamodithioate (2o). Cream solid; yield: 172 mg (65%); mp 187-188 °C; IR (KBr) ν 3368 (NH), 1495, 1421, 1335, 1272, 1199, 974 ,756 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 11.66 (s, 1H, N-H), 7.6 (d, 1H, J = 2.7 Hz, H-Ar), 7.44 (d, 1H, J = 8.0 Hz, H-Ar), 7.34 (d, 1H, J = 7.7 Hz, H-Ar), 7.12 (m, 1H, H-Ar), 7.02 (m, 1H, H-Ar), 3.96–3.89 (m, 4H), 1.37 (t, 3H, J = 7.0 Hz), 1.17 (t, 3H, J = 7.1 Hz) ppm; 13C NMR (75 MHz, DMSO-d6) δ 195.5, 136.4, 134.1, 129.4, 121.7, 119.9, 118.5, 112.1, 100.2, 49.6, 46.7, 12.8, 11.4 ppm; Anal. Calcd (%) for C13H16N2S2 (MW: 264.41) C, 59.05; H, 6.10; N, 10.59; Found C, 58.88; H, 6.02; N, 10.37. 5-Bromo-1H-indol-3-yl morpholine-4-carbodithioate (2p). White solid; Yield: 161 mg (45%); mp: decomposed at >170 °C; IR (film) ν 3196 (NH), 3163 (NH), 2916, 2856, 1455, 1421, 1267, 1231, 1112, 1029 cm-1; 1H NMR (400 MHz, DMSO-d6+CDCl3) δ 11.27 (s, 1H, N-H), 7.49 (m, 1H, H-Ar), 7.35-7.28 (m, 2H, H-Ar), 7.180 (m, 1H, H-Ar), 4.18 (brs, 4H), 3.76 (brs, 4H) ppm; C NMR (101 MHz, DMSO-d6 + CDCl3) δ 198.6, 135.5, 134.8, 131.3, 125.0, 121.5, 113.9,

13

113.8, 100.2, 66.2 (2C), 52.0, 50.9 ppm; HRMS Calcd for C13H14BrN2OS2 (M+H)+: 356.9731; Found: 356.9727. 5-Methoxy-1H-indol-3-yl pyrrolidine-1-carbodithioate (2q). White solid; Yield: 248 mg (85%); mp 134-137 °C; IR (KBr) ν 3365 (NH), 3241 (NH), 1622, 1584, 1485, 1437, 1288, 1206, 1169, 1037, 1004, 955 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H, N-H), 7.24-7.19 (m, 2H, HAr), 7.05 (d, 1H, J =2.4 Hz, H-Ar), 6.86 (dd, 1H, J = 8.8, 2.5 Hz, H-Ar), 4.00 (t, 2H, J = 7.0 Hz), 3.95 (t, 2H, J = 6.9 Hz), 3.88 (s, 3H), 2.23-2.16 (m, 2H), 2.08-2.01 (m, 2H) ppm; 13C NMR (101 MHz, CDCl3) δ 194.6, 155.1, 133.3, 131.3, 129.9, 113.2, 112.9, 101.2, 100.6, 55.8, 55.7, 51.0, 26.5, 24.4 ppm; HRMS Calcd for C14H16N2NaOS2 [M+Na]+: 315.0602; Found: 315.0597.

14 ACS Paragon Plus Environment

Page 14 of 22

Page 15 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

5-Methoxy-1H-indol-3-yl morpholine-4-carbodithioate (2r). Cream solid; Yield: 203 mg (66%); mp 163-166 °C; IR (KBr) ν 3405 (NH), 3298 (NH), 1623, 1583, 1485, 1462, 1428, 1266, 1232, 1211, 1172, 1107, 1030, 990, 805 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.65 (s, 1H, N-H), 7.30-7.24 (m, 2H, H-Ar), 7.02 (dd, J = 3.0, 0.7 Hz, 1H, H-Ar), 6.90 (dd, 1H, J= 8.8, 2.5 Hz, HAr), 4.31(brs, 4H), 3.89-3.84 (m, 7H) ppm; 13C NMR (101 MHz, CDCl3) δ 199.2, 155.2, 133.4, 131.2, 130.0, 113.4, 112.8, 101.1, 100.8, 66.4 (2C), 55.8, 52.5, 51.3 ppm; HRMS Calcd for C14H17N2O2S2 [M+H]+: 309.0731; Found: 309.0727. 3-Methyl-1H-indol-2-yl pyrrolidine-1-carbodithioate (2s). White solid; Yield: 174 mg (63%); mp 163-165 °C; IR (KBr) ν 3423 (NH), 3301 (NH), 1628, 1442, 1332, 1159, 1002, 954 cm-1; 1

H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H, N-H), 7.63 (m, 1H, H-Ar), 7.38 (td, 1H, J = 8.2, 1.0

Hz, H-Ar), 7.27 (m, 1H, H-Ar), 7.15 (m, 1H, H-Ar), 3.98-3.94 (m, 2H), 3.90-3.86 (m, 2H), 2.40 (s, 3H), 2.22-2.15 (m, 2H), 2.08-2.01 (m, 2H) ppm; 13C NMR (101 MHz, CDCl3) δ 191.1, 137.7, 128.3, 123.9, 121.9, 120.2, 119.8, 119.6, 111.2, 55.3, 51.3, 26.5, 24.4, 9.60 ppm; HRMS Calcd for C14H16N2NaS2 [M+Na]+: 299.0653; Found: 299.0647. 3-Methyl-1H-indol-2-yl morpholine-4-carbodithioate (2t). White solid; Yield: 205 mg (70%); mp 193-196 °C; IR (KBr) ν 3279 (NH), 1406, 1271, 1231, 1113, 1037, 991, 871, 746 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.19 (s, 1H, N-H), 7.65 (d, 1H, J = 8.0 Hz, H-Ar), 7.38 (d, 1H, J = 8.2 Hz, H-Ar), 7.31-7.27 (m, 1H, H-Ar), 7.17 (t, 1H, J = 7.5 Hz, H-Ar), 4.33-4.13 (brs, 4H), 3.85 (t, J = 5.0 Hz, 4H), 2.40 (s, 3H) ppm; 13C NMR (101 MHz, CDCl3) δ 195.7, 137.9, 128.3, 124.1, 122.6, 119.8, 119.7, 119.4, 111.2, 66.3, 66.2, 51.6, 51.3, 9.8 ppm; HRMS Calcd for C14H17N2OS2 [M+H]+: 293.0782; Found: 293.0777. 3-Methyl-1H-indol-2-yl azepane-1-carbodithioate (2u). Yellow solid; Yield: 167 mg (55%); mp 131-134 °C; IR (KBr) ν 3395 (NH), 2930, 2852, 1617, 1445, 1415, 1352, 1268, 1165, 946, 738 15 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

cm-1; 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H, N-H), 7.63 (m, 1H, H-Ar), 7.38 (td, 1H, J = 8.2, 1.0 Hz, H-Ar), 7.27 (m, 1H, H-Ar), 7.15 (m, 1H, H-Ar), 4.20 (t, J = 6.1 Hz, 2H), 4.07 (t, J = 6.0 Hz , 2H), 2.39 (s, 3H), 2.04-1.95 (m, 2H), 1.95-1.89 (m, 2H), 1.70-1.47 (m, 4H) ppm; 13C NMR (101 MHz, CDCl3) δ 194.7, 137.8, 128.4, 123.8, 122.1, 120.6, 119.8, 119.5, 111.2, 56.1, 53.5, 27.8, 26.7, 26.6, 26.1, 9.6 ppm; HRMS Calcd for C16H20N2NaS2 [M+Na]+: 327.0966; Found: 327.0961.

ASSOCIATED CONTENT Supporting Information Copies of 1H and 13C NMR spectra for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org. AUTHOR INFORMATION Corresponding Author * Email: [email protected] * Email: [email protected]

ACKNOWLEDGMENTS We are grateful to the research council of Kharazmi University for supporting this work. This work was also supported by the Academy of Sciences of the Czech Republic (RVO: 61388963). REFERENCES 16 ACS Paragon Plus Environment

Page 16 of 22

Page 17 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(1) (a) Nudelman, A. The Chemistry of Optically Active Sulfur Compounds; Gordon and Breach: New York, 1984. (b) Damani, L. A. Ed.; Sulphur-Containing Drugs and Related Organic Compounds; Wiley: New York, 1989. (c) Clayden, J.; MacLellan, P. Asymmetric synthesis of tertiary thiols and thioethers. Beilstein J. Org. Chem. 2011, 7, 582–595. (d) Chauhan, P.; Mahajan, S.; Enders, D. Organocatalytic carbon-sulfur bondforming reactions. Chem. Rev. 2014, 114, 8807–8864. (e) Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem. Rev. 2017, 117, 5521–5577. (f) Kondo, T.; Mitsudo, T. Metal-Catalyzed Carbon−Sulfur Bond Formation. Chem. Rev. 2000, 100, 3205–3220. (2) Vasquez-Cespedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously Catalyzed Direct CH Thiolation of Heteroarenes. Angew. Chem. Int. Ed. 2015, 54, 1–6. (3) Huang, D.; Chen, J.; Dan, W.; Ding, J.; Liu, M.; Wu, H. A Metal-Free Sulfenylation and Bromosulfenylation of Indoles: Controllable Synthesis of 3-Arylthioindoles and 2Bromo-3-arylthioindoles. Adv. Synth. Catal. 2012, 354, 2123–2128. (4) Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. A Highly Efficient Procedure for 3-Sulfenylation of Indole-2-carboxylates. Org. Lett. 2004, 6, 819–821. (5) (a) Ge, W.; Wei, Y. Iodine-catalyzed oxidative system for 3-sulfenylation of indoles with disulfides using DMSO as oxidant under ambient conditions in dimethyl carbonate. Green Chem. 2012, 14, 2066–2070. (b) Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. A Solvent- and Metal-Free Synthesis of 3‑ Chacogenylindoles Employing DMSO/I2 as an Eco-friendly Catalytic Oxidation System. J. Org. Chem. 2014, 79, 4125–4130. (c) Yi, S.; Li, M; Mo, W.; Hu, X.; Hu, B.; Sun, N.; Jin, L.; 17 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Shen, Z. Metal-free, iodine-catalyzed regioselective sulfenylation of indoles with thiols. Tetrahedron Lett. 2016, 57, 1912–1916. (6) Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, G.; Wei, W.; Wang, H. Iodine-catalyzed Direct Thiolation of Indoles with Thiols Leading to 3-Thioindoles Using Air as the Oxidant. Catal. Lett. 2016, 146, 1743–1748. (7) Liu, Y.; Zhang, Y.; Hu, C.; Wan, J.-p.; Wen, C. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction. RSC Adv. 2014, 4, 35528–35530. (8) Sang, P.; Chen, Z.; Zou, J.; Zhang, Y. K2CO3 promoted direct sulfenylation of indoles: a facile approach towards 3-sulfenylindoles. Green Chem. 2013, 15, 2096–2100. (9) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Direct Sulfenylation of Imidazoheterocycles with Disulfides in an Iodine–Hydrogen Peroxide System. Synthesis 2015, 659–671. (10)

Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Iodine-Catalysed Versatile

Sulfenylation of Indoles with Thiophenols: Controllable Synthesis of mono- and bisArylthioindoles. Tetrahedron 2015, 71, 8885–8891. (11)

Prasad, C. D.; Kumar, S.; Sattar, M.; Adhikary, A.; Kumar, S. Metal free

sulfenylation and bis-sulfenylation of indoles: persulfate mediated synthesis. Org. Biomol. Chem. 2013, 11, 8036–8040. (12)

Fang, X.-L.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Iron-Catalyzed Sulfenylation of

Indoles with Disulfides Promoted by a Catalytic Amount of Iodine. Synthesis 2009, 4183–4189.

18 ACS Paragon Plus Environment

Page 18 of 22

Page 19 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(13)

Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Development of a Novel,

Highly Efficient Halide-Catalyzed Sulfenylation of Indoles. Org. Lett. 2006, 8, 565– 568. (14)

Gensch, T.; Klauck, F. J. R.; Glorius, F. Cobalt-Catalyzed C-H Thiolation

through Dehydrogenative Cross-Coupling. Angew. Chem. Int. Ed. 2016, 55, 11287– 11291. (15)

Li, Z.; Hong, J.; Zhou, X. An efficient and clean CuI-catalyzed chalcogenylation

of aromatic azaheterocycles with dichalcogenides. Tetrahedron 2011, 67, 3690–3697. (16)

(a) Len, C.; Boulogne-Merlot, A.-S.; Postel, D.; Ronco, G.; Villa, P.; Goubert,

C.; Jeufrault, E.; Mathon, B.; Simon, H. Synthesis and antifungal activity of novel bis (dithiocarbamate) derivatives of glycerol. J. Agric. Food Chem., 1996, 44, 2856–2858. (b) Marinovich, M.; Viviani, B.; Capra, V.; Corsini, E.; Anselmi, L.; D’Agostino, G.; Nucci, A. D.; Binaglia, M.; Tonini, M.; Galli, C. L. Facilitation of Acetylcholine Signaling by the Dithiocarbamate Fungicide Propineb. Chem. Res. Toxicol 2002, 15, 26– 32. (c) Malik, A. K.; Rao, A. L. J. Spectrophotometric Determination of Ferbam [Iron(III) Dimethyl Dithiocarbamate] in Commercial Sample and Wheat Grains after Extraction of Its Bathophenanthroline Tetraphenylborate Complex into Molten Naphthalene. J. Agric. Food Chem. 2000, 48, 4044–4047. (d) Weissmahr, K. W.; Houghton, C. L.; Sedlak, D. L. Analysis of the Dithiocarbamate Fungicides Ziram, Maneb, and Zineb and the Flotation Agent Ethylxanthogenate by Ion-Pair ReversedPhase HPLC. Anal. Chem. 1998, 70, 4800–4804.

19 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(17)

Lai, J. T.; Shea, R. Controlled radical polymerization by carboxyl‐ and hydroxyl‐

terminated dithiocarbamates and xanthates. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 4298–4316. (18)

(a) Fuhrmann, D.; Dietrich, S.; Krautscheid, H. Zinc Tin Chalcogenide

Complexes and Their Evaluation as Molecular Precursors for Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Inorg. Chem. 2017, 56, 13123–13131. (b) Morrison, C. E.; Wang, F.; Rath, N. P.; Wieliczka, B. M.; Loomis, R. A.; Buhro, W. E. Cadmium Bis(phenyldithiocarbamate) as a Nanocrystal Shell-Growth Precursor. Inorg. Chem. 2017, 56, 12920–12929. (19)

(a) McMaster, C.; Bream, R. N.; Grainger, R. S. Radical-mediated reduction of

the dithiocarbamate group under tin-free conditions. Org. Biomol. Chem. 2012, 10, 4752–4758. (b) Ziyaei Halimehjani, A.; Khoshdoun, M. Tandem Esterification/1,4Addition-Type Friedel-Crafts Alkylation Reactions of Phenols/Naphthols with Olefinic Thioazlactones: Access to Functionalized 1,2-Dihydrobenzo[f]chromen-3-ones and 3,4Dihydrochromen-2-ones. J. Org. Chem., 2016, 81, 5699–5704. (c) Ziyaei Halimehjani, A.; Lotfi Nosood, Y. Synthesis of N ,S ‑ Heterocycles and Dithiocarbamates by the Reaction of Dithiocarbamic Acids and S‑ Alkyl Dithiocarbamates with Nitroepoxides. Org. Lett. 2017, 19, 6748–6751. (d) Maddani, M.; Prabhu, K. R. A convenient method for the synthesis of substituted thioureas. Tetrahedron Lett. 2007, 48, 7151–7154. (e) Das, P.; Kumar, C. K.; Kumar, K. N.; Innus, M. D.; Iqbal, J.; Srinivas, N. Dithiocarbamate and CuO promoted one-pot synthesis of 2-(N-substituted)aminobenzimidazoles and related heterocycles.

Tetrahedron Lett. 2008, 49, 992–995.

(f) Wong, R.; Dolman, S. J. Isothiocyanates from Tosyl Chloride Mediated 20 ACS Paragon Plus Environment

Page 20 of 22

Page 21 of 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Decomposition of in Situ Generated Dithiocarbamic Acid Salts. J. Org. Chem. 2007, 72, 3969–3971. (g) Guillaneuf, Y.; Couturier, J. L.; Gigmes, D.; Marque, S. R. A.; Tordo, P.; Bertin, D. Synthesis of highly labile SG1-based alkoxyamines under photochemical conditions. J. Org. Chem. 2008, 73, 4728–4731. (h) Ziyaei Halimehjani, A.; Dadras, A.; Ramezani, D. M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc., 2015, 26, 1500–1508. (20)

(a) Huang, W.; Ding, Y.; Miao, Y.; Liu, M. Z.; Li, Y.; Yang, G.-F. Synthesis and

antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem. 2009, 44, 3687–3696. (b) Zheng, Y.-C.; Duan, Y.-C.; Ma, J.-L.; Xu, R.-M.; Zi, X.; Lv, W.-L.; Wang, M.-M.; Ye, X.-W.; Zhu, S.; Mobley, D.; Zhu, Y.-Y.; Wang, J.-W.; Li, J.F.; Wang, Z.-R.; Zhao, W.; Liu, H.-M. Triazole–Dithiocarbamate Based Selective Lysine Specific Demethylase 1 (LSD1) Inactivators Inhibit Gastric Cancer Cell Growth, Invasion, and Migration. J. Med. Chem., 2013, 56, 8543–8560. (c) Altıntop, M. D.; Sever, B.; Çiftçi, G. A.; Kucukoglu, K.; Kaplancıklı, Z. A. Synthesis and evaluation of new benzodioxole-based dithiocarbamate derivatives as potential anticancer agents and hCA-I and hCA-II inhibitors. Eur. J. Med. Chem. 2017, 125, 190–196. (d) Duan, Y.-C.; Ma, Y.-C.; Zhang, E.; Shi, X.-J.; Liu, H.-M. Design and synthesis of novel 1,2,3triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem. 2013, 62, 11–19. (e) Duan, Y.-C.; Zheng, Y.-C.; Li, X.-C.; Wang, M.-M.; Liu, H.-M. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole– dithiocarbamate–urea hybrids. Eur. J. Med. Chem. 2013, 64, 99–110. (f) Rani, P. J.; Thirumaran, S. Synthesis, characterization, cytotoxicity and antimicrobial studies on 21 ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

bis(N-furfuryl-N-(2-phenylethyl)dithiocarbamato-S,S′)zinc(II) and its nitrogen donor adducts. Eur. J. Med. Chem. 2013, 62, 139–147. (g) Mohamed, G. G.; Ibrahim, N. A.; Attia, H. A. E. Synthesis and anti-fungicidal activity of some transition metal complexes with benzimidazole dithiocarbamate ligand. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 2009, 72, 610–615. (h) Magedov, I. V.; Lefranc, F.; Frolova, L. V.; Banuls, L. M. Y.; Peretti, A. S.; Rogelj, S.; Mathieu, V.; Kiss, R.; Kornienko, A. Antiproliferative activity of 2,3-disubstituted indoles toward apoptosis-resistant cancers cells. Bioorg. Med. Chem. Lett., 2013, 23, 3277–3282. (i) Cao, S.-L.; Feng, Y.-P.; Jiang, Y.-Y.; Liu, S.-Y.; Ding, G.-Y.; Li, R.-T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett. 2005, 15, 1915–1917. (21)

Jiao, J.; Wei, L.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y. Direct Introduction of

Dithiocarbamates onto Imidazoheterocy-cles under Mild Conditions. Adv. Synth. Catal. 2016, 358, 268–275. (22)

Chripkova, M.; Drutovic, D.; Pilatova, M.; Mikes, J.; Budovska, M.; Vaskova,

J.; Broggini, M.; Mirossay, L.; Moizis, J. Brassinin and its derivatives as potential anticancer agents. Toxicology in Vitro 2014, 28, 909–915. (23)

Przheval'skii, N. M.; Magedov, I. V.; Drozd, V. N. New derivatives of indole.

Synthesis of S-(indoyl-3) diethyl dithiocarbamates. Chem. Heterocycl. Comp. 1997, 33, 1475–1476. (24)

Krasovskiy, A.; Gavryushin, A.; Knochel, P. A General Thiolation of

Magnesium Organometallics Using Tetramethylthiuram Disulfide. Synlett 2005, 2691– 2693. 22 ACS Paragon Plus Environment

Page 22 of 22