Transport Phenomena in Packed Bed Reactors - American Chemical

This means that models of packed bed reactors ... means that the flow rate near the wall is more than ...... VDI-Forschungsheft 582 (1977), VDI-Verlag...
0 downloads 0 Views 3MB Size
4 Transport Phenomena in Packed Bed Reactors

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

E. U. SCHLÜNDER Institut für Thermische Verfahrenstechnik, Universität Karlsruhe, F.R.G., West Germany

I. Preface The performance of packed bed reactors may be influenced and sometimes even controlled by transport phenomena in the voids between the particles as well as inside the particles. This paper is restricted to transport phenomena mainly between the particles. There occurs heat, mass and momentum transfer between the fluid and the particles. Moreover, transport of heat and mass also occurs between the voids themselves. While mass transport through the particles is negligible, heat conduction through the particles is always involved with transport of heat between the voids and therefore must be considered simultaneously. In this paper emphasis is put on recent developments rather than on a more or less complete literature survey. However, experimental data w i l l be thoroughly reported, because they are the basis of any theoretical analysis. II.

Outline

Since transport of heat and mass in the voids of a packed bed cannot be understood without knowing the movement of the f l u i d , hydraulic phenomena w i l l be treated f i r s t . Second the heat and mass transfer between the fluid and the particles w i l l be discussed. Third the radial transport of heat and mass through the voids (and the particles) w i l l be treated. In the past these transport phenomena usually have been treated assuming that the fluid passes through the reactor in plug flow. This assumption then has been revised after careful studies have revealed, that there is not only a microscopic but also a macroscopic void fraction distribution. Consequently,there is a certain 0-8412-0432-2/78/47-072-110$12.80/0 © 1978 American Chemical Society In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Transport in Packed Bed Reactors

4. SCHLUNDER

111

macroscopic flow rate distribution i n a tubular reactor. But only recently the consequences o f this macroscopic non-uniform d i s t r i b u t i o n of flow rate have been e v a l u a t e d w i t h r e g a r d t o heat and mass t r a n s f e r between t h e f l u i d and t h e p a r t i c l e s . This e f f e c t w i l l b e t r e a t e d i n t h i s p a p e r t o some e x t e n t . Another problem, which s t i l l has not been solved i s the heat t r a n s f e r between p a r t i c l e s and r i g i d w a l l s . However, some a c h i e v e m e n t s c a n b e r e p o r t e d a l r e a d y now.

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

III.

Flow rate d i s t r i b u t i o n tubular reactors

and pressure

drop

i n

It i s w e l l known t h a t t h e v o i d f r a c t i o n i s larger near the walls of a tubular reactor than i n the central p a r t s . F i g . 1 shows e x p e r i m e n t a l d a t a o f B e n e n a t e and Brosilow (1). The v o i d f r a c t i o n ψ decreases from 1 a t t h e w a l l t o a minimum o f 0 , 2 3 a n d f o l l o w s a damped o s c i l l a t i o n f u n c t i o n towards the center of the tube. The a b s c i s s a y / d i s t h e d i s t a n c e from t h e w a l l divided by the p a r t i c l e diameter. A semitheoretical analysis of t h i s d i s t r i b u t i o n has been given by R i d g e w a y a n d T a r b u c k (2.) . F o r p r a c t i c a l p u r p o s e s Martin (3) gave a n e m p i r i c a l e x p r e s s i o n a s shown i n Fig. 1. T h e a v e r a g e v o i d f r a c t i o n r e m a i n s practically c o n s t a n t f o r y / d > 0 , 5 and i s about 0 , 4 0 f o r a random packed bed o f equal s i z e d s p h e r e s . However, near t h e r e t a i n i n g w a l l the average v o i d f r a c t i o n i s about 0,50. T h i s means t h a t m o d e l s o f p a c k e d b e d r e a c t o r s intro­ d u c i n g an average h y d r a u l i c diameter must be based a t l e a s t o n two a v e r a g e d i a m e t e r s . In t h i s case one o b t a i n s a h i g h e r f l o w r a t e V2 n e a r t h e w a l l a n d a l o w e r o n e V3

2 2 c ρ

κ

( 3 0 )

at ^

low

10~4

pressure which

same o r d e r o f m a g n i t u d e a s h a s b e e n f o u n d state experiments, see e . g . F i g . 12.

i s

and in

from

short

the steady

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

Eq. 27 g i v e s a v e r a g e w a l l h e a t t r a n s f e r c o e f f i ­ c i e n t s obtained by i n t e g r a t i n g over the l o c a l heat transfer rates, which reach a rather high value near the contact point, see F i g . 9. T h i s l a r g e variation of the l o c a l heat flux with respect to the particle r a d i u s may become o f p r a c t i c a l i m p o r t a n c e , too. E . g . s h o u l d a wet porous c a t a l y s t be d r i e d i n an indirectly heated rotary dryer, one would expect t h a t the drying rate during the constant rate period i s controlled by the wall heat transfer coefficient c* a c c o r d i n g E q . 2 7 . Experiments, however, have shown that! t h e d r y i n g rate i s much l o w e r . F i g . 23 s h o w s e x p e r i m e n t a l data (Uni­ versity of Karlsruhe, s t i l l unpublished) for magnesium w

s i l i c a t e s p h e r e s o f 6 mm d i a m e t e r d r i e d i n an agitated packed bed c o n t a c t i n g a hot p l a t e . The o^-controlled d r y i n g r a t e can be m a i n t a i n e d o n l y d u r i n g the f i r s t few s e c o n d s . L a t e r when a c o n s t a n t r a t e p e r i o d is o b s e r v e d , the d r y i n g r a t e i s much l o w e r . The reason for this considerable rate reduction i s , that the particles immidiately dry off near the contact point, because the l o c a l heat flux i s so h i g h , t h a t the equivalent amount o f l i q u i d c a n n o t be b r o u g h t t o the surface of the p a r t i c l e s at t h i s point. T h i s means that the dry longer control forces

ing rate durin heat transfer led according i n the porous

g the constant rate period i s no c o n t r o l l e d , but a l s o mass transfer to the strength of the capillary granules.

Wall heat transfer coefficients in tubular reactes w i t h a f l u i d p a s s i n g through can be determined either by d i r e c t e v a l u a t i o n of temperature p r o f i l e s in the packed bed or by a n a l y z i n g over a l l heat transfer c o e f f i c i e n t s , s o far the apparent heat conductivity i s k n o w n . R e c e n t l y H e n n e c k e a n d S c h l u n d e r (6J5) have e v a l u a t e d a b o u t 5 0 0 0 d a t a c o l l e c t e d f r o m 14 authors, who h a v e p u b l i s h e d o v e r a l l h e a t t r a n s f e r coefficients a p p l y i n g E q . 22 a a n d t h e f o l l o w i n g o n e s f o r the p r e d i c t i o n of the apparent heat conductivity of packed bed A . Assuming plug flow they obtained heat transfer c o e f f i c i e n t s depending not only on P e c l e t number (Pe = u d / κ ) b u t a l s o o n t h e r a t i o tube diameter D t o t u b e l e n g t h L as shown i n F i g where the w a l l N u s s e l t number Nu.. = d / A i s pl against Pe. u i s the s u p e r f i c i a l v e l o c i t y of the a

w

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

the wall the of . 24, otted gas,

;

CHEMICAL REACTION ENGINEERING REVIEWS—

Plate surface temperature [•c]

Stirrer speed

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

60.9



70.7

Δ

81.5

Ο

91.3

Init. moisture content Ug/kg]

2

[l/min]

50.3 Ο

maximum drying rate [kg / m h ]

15.4 15.4

154 10' 219 10'

15,4 15.4

3

0.166 0.221

3

262 1 0 ' 324 10-3

0.201

3

0.199

3

zero

364 10"

0.211

Ρ s 21mbar

0.05

0.10

0.15

0.20 kg

Moisture

content

025

0.30

H 0 2

Y kg dry m a t .

Figure 23. Contact drying of magnesium silicate spheres of 6mm diameter in an agitated packed bed. Drying rate m vs. moisture content Y. Pressure 21 mbar.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Figure 24. Wall heat transfer coefficients Nu* — «w/dA vs. particle Peclet number Pe — ud/κ obtained by evaluation of overall heat transfer coefficients in tubular reactors assum­ ing plug flow according to Ref. 65. D — tube diameter, L — tube length.

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

156

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

d i s the p a r t i c l e and λ the thermal the

157

Transport in Packed Bed Reactors

SCHLUNDER

4.

N u - d a t a

not

also turned out the r a d i a l flow

diameter, κ the conductivity of only

tend

thermal d i f f u s i v i t y t h e g a s . Some o f

towards

i n f i n i t y

but

to be n e g a t i v e ! Taking i n t o account rate d i s t r i b u t i o n as given i n F i g . 3

t h e same e v a l u a t i o n y i e l d e d w a l l h e a t transfer c o e f f i c i e n t s Nu.. (Pe, L/D) d e p e n d i n g much l e s s ratio

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

have heat

L/D

as

shown

in

F i g .

25.

Also

no

on

negative

the

values

been o b t a i n e d . However, for long tubes the wall transfer c o e f f i c i e n t s are s t i l l lower by o r d e r s

of magnitude than those for short tubes. This effect is s t i l l not r e a l l y u n d e r s t o o d . It may b e t h a t t h i s i s due to the by pass e f f e c t d e s c r i b e d i n s e c t i o n IV. However, t h i s i s an assumption and i s s t i l l subject to further i n v e s t i g a t i o n . For p r a c t i c a l purposes Hennecke (65) has developed semi-empirical correlations to predict both wall heat transfer c o e f f i c i e n t s as shwon i n F i g . 25 a s w e l l a s f l o w r a t e d i s t r i b u t i o n s i n p a c k e d b e d r e a c t o r s as shown i n F i g . 3. At

the

present

state

these

correlations

together

w i t h E q . 23 f o r t h e p r e d i c t i o n o f t h e a p p a r e n t heat c o n d u c t i v i t y and E q . 6, 7 for the p a r t i c l e - t o - f l u i d h e a t t r a n s f e r may b e r e c o m m e n d e d f o r a p p l i c a t i o n in tubular reactor design. These correlations give f a i r l y r e l i a b l e parameters for either homogeneous o r hetero­ g e n e o u s one o r two d i m e n s i o n a l t i c a l simulation of packed bed Symbols A a

v

Cg

surface surface

area area

radiation

d

particle

D,4^,

bed

per

of

the

unit black

models for reactors.

mathema­

volume body

diameter

diameter

f

cross

L ΔΡ q

bed height ; pressure drop Heat flux

r,p

radial

S

gap

Τ u

temperature s u p e r f i c i a l

sectional

area 1

p a r t i c l e

length

coordinate

width ; velocity

t

V

flow

y

distance

α ε η,ν

heat transfer coefficient radiation emissivity dynamic and kinematic v i s c o s i t y ,

λ

void

time

rate from

the

tube

wall

resp.

fraction

Λ κ

apparent thermal

0

mean

o

the

free

heat conductivity d i f f u s i v i t y path

of

the

molecules

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

158

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

Literature Cited (1) (2) (3) (4) (5)

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

(6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23)

Benenati, R.F. and Brosilow, C.B. AIChE J. (1962) 3 359 Ridgway, K. and Tarbuck, V.J. Chem. Engng. S c i . (1968) 23 1147 Martin, H. Chem. Engng. S c i . (to be published in 1978) Ergun, S. Chem. Engng. Progr. (1952) 48 89 Schwartz, C . E . and Smith, J.M. Ind. Engng. Chem.(1953) 45 1209 Gnielinski, V. Forsch. Ing. Wesen (1975) 41 145 Ranz, W.E. Chem. Eng. Progr. (1952) 48 247 Gnielinski, V. verfahrenstechnik (to be published in 1978) Schlünder, E . U . , Einf. Wärme- u. Stoffübertragung, Vieweg-Verlag Braunschweig, 2.Aufl. (1975) Hobson, M. and Thodos, G. Chem. Engng. Progr. (1951) 47 370 Gupta, A.S. and Thodos, G. Amer.Inst.Chem.Engng. (AIChE) J. (1963) 9 751 Rowe, P.N. and Claxton, K.T. Trans.Instn.Chem.Engrs. (1965) 43 T321 Glaser, M.B. and Thodos, G. Amer.Inst.Chem.Engng. (AIChE) J. (1958) 4 63 Malling, G.F. and Thodos, G. Internat.J.Heat Mass Transfer (1967) 10 489 Gupta, A.S. Ph.D. Dissertation, Northwestern Univ. Evaston, Ill. (1963) Thoenes, D. and Kramers, H. Chem. Engng. S c i . (1958) 8 271 Glaser, H. Chemie-Ing.-Techn. (1962) 34 468 Jaeschke, L . Diss. TH Darmstadt (1960) Bradshaw, R.D. and Myers, J.E. Amer.Inst.Chem.Engng. (AIChE) J. (1963) 9 590 Gaffney, B . J . and Drew, T.B. Industr. Engng. Chem. (1950) 42 1120 Wilkins, G.S. and Thodos, G. Amer.Inst.Chem.Engng.(AIChE) J. (1965) 15 47 v . d . Decken, C . B . , Hantke, H.J., Binckebanck, J. and Bachus, K.P. Chemie-Ing.-Techn. (1960) 32 591 Wilson, E . J . and Geankopolis, C . J . Industr.Engng.Chem.Fund. (1966) 5 9

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

4. SCHLUNDER

Transport in Packed Bed Reactors

159

(24) Bhattacharya, S.N. and Raja Rao, M. Indian Chem. Engng. (1967)9T65 (25) Evans, G.C. and Gerald, C . F . Chem. Engng. Progr. (1953) 49 135 (26) Venkateswaran, S.D. and Laddha, G.S. Indian Chem. Engng. (1966) 8 T33 (27) Williamson, J.E., Bazaire, K . E . and Geankopolis, C.J. Industr.Engng.Chem.Fund. (1963) 2 126 (28) McCune, L . K . and Wilhelm, R.H. Industr. Engng. Chem. (1949) 41 1124 (29) Karabelas, A.J., Wegner, T.H. and Hanratty, T.J. Chem. Engng. S c i . (1971) 26 1581 (30) J o l i s , K.R. and Hanratty, T.J. Amer.Inst.Chem.Engng. (AIChE) J. (1969) 15 199 (31) Soerensen, J . P . and Stewart, W.E. Chem. Engng. S c i . (1974) 29 827 (32) Kunii, D. and Suzuki, M. Int. J. Heat and Mass Transfer (1967) 10 845 (33) Schlünder, E.U. Chem. Engng. S c i . (1977) 32 845 (34) Grootenhuis, P. Mackworth, R.C.A. and Sounders, O.A. Proc. Instn. Mech. Engrs. (1951) General Discussion on Heat Transfer pp. 363-366 (35) Eichhorn, J. and White, R.R. Chem. Eng. Progr. Symp. Series (1952) 48 11 (36) Kunii, D. and Smith, J.M. AIChE J. (1961) 7 29 (37) Löf, G.Ο.G. and Hawley, R.W. Ind.Engng.Chem. (1948) 40 1061 (38) Domadien, G. Revue Inst. F r . Petrole (1961) 16 1330 (39) Satterfield, C.N. and Resnick, H. Chem. Engng. Progr. (1954) 50 504 (40) Kunii, D. and Ito, K . ; referred to as "to be published" in (32) (41) Mimura, T. Studies on heat transfer in packed beds. Graduate Thesis, university of Tokio(l963) (42) Suzuki, K . , Studies on heat transfer in packed beds, Graduate Thesis, university of Tokio (1964) (43) Tokutomi, T . , Heat transfer dynamics of packed beds, M.S. thesis, university of Tokio (1966) (44) Harada, Η., Studies on axial heat transfer in packed beds, Graduate Thesis, University of Tokio (1965) (45) Mitsumori, T . , Unsteady-state heat transfer in packed beds, Graduate Thesis, University of Tokio (1966)

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

160

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

(46) Seidel, H.P. CIT (1965) 37 1125 (47) Schlünder, E.U. CIT (1971) 43 651 (48) Zehner, P. VDI-Forschungsheft 558, (1973) (49) Krischer, O. and K r ö l l , K. Die wiss. Grundlagen der Trocknungstechnik Bd. 1, Springer-Verlag (1963) Berlin, Gottingen, Heidelberg (50) Yagi, S. and Kunii, D. Amer. Inst. Chem. Engrs. (1957) 3 373 (51) Schumann, E.W. and Voss, V. Fuel (1934) 13 249 (52) Kunii, D. and Smith, J.M. AIChE J. (1960) 6 71 (53) Schlünder, E.U. CIT (1966) 38 967 (54) Woodside, W. Cand. J. Phys. (1958) 36 815 (55) Deissler, R.G. and Boegli, J . S . Trans. Amer.Soc.Mech.Engrs. (ASME) (1958) 80 141 (56) Wakao, N. and Kato, K. J. Chem. Engng. Japan (1969) 2 24 (57) Krupitzka, R. Int. Chem. Engng. (1967) 7 122 (58) Bauer, R. VDI-Forschungsheft 582 (1977), VDI-Verlag D ü s s e l dorf and Int. Chem. Engng. (1977) (59) Damköhler, G. (M. Eucken and A. Jakob) Der Chemieingenieur, Bd. III, 1. T e i l , Akad. Verlag GmbH Leipzig (1937) (60) Imura, S. and Takgegoshi, E . Nippon Kikai Gakkai Ronbunsku Tokyo (1970) 40 489 (61) Rumpf, H. and Gupte, A.R. Chem. Ing. Techn. (1971) 6 367 (62) Schlünder, E.U. Chem. Ing. Techn. (1966) 38 967 (63) Wunschmann, J. and Schlünder, E.U. 5th International Heat Transfer Conference Tokyo (1974), Paper CT2.1 (64) Wunschmann, J. and E.U. Schlünder verfahrenstechnik (1975) 10 (65) Hennecke, F.W. and Schlünder, E.U. Chem. Ing. Techn. (1973) 45 277 (66) Leva, M. Ind. Engng. Chem. (1946) 38 415 (67) Leva, M. Ind. Engng. Chem. (1947) 39 865 (68) Hanratty, Th.P. Chem. Engng. S c i . (1954) 230

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

4. SCHLUNDER

Transport in Packed Bed Reactors

161

(69) Zehner, P. and Schlünder, E.U. Chem. Ing. Techn. (1973) 45 272 (70) Beek, J. Advances i n Chem. Eng. V o l . 3, Academic Press New York (1962) (71) Yagi, S. and Kunii, D. Int. Development in Heat Transfer, Part IV (1961) March 30, 1978

Downloaded by UNIV OF PITTSBURGH on August 13, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch004

RECEIVED

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.