ARTICLE pubs.acs.org/IECR
Tray Efficiency versus Stripping Factor Branislav M. Jacimovic and Srbislav B. Genic* Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia ABSTRACT: Estimation of the tray (plate) efficiency is the basis of trayed column design. A newly introduced parameter “normalized efficiency” (η) is compared to the stripping factor (λ) in order to derive a correlation which can be useful in engineering practice. The proposed correlation is based on the numerous data gathered from various literature sources describing distillation, absorption, and stripping (desorption) columns and covering sieve, tunnel, bubble-cup, uniflux, and jet trays, in the range λ = 0.03912196. The final form of this correlation is 8 1 > > < 1 þ 1:5λ0:9 for λ e 1 ηc ¼ λ0:3 > > for λ g 1 : 1:5 þ λ0:3 with correlation ratio Θ = 0.883 and standard deviation Δav = 13.1%.
1. INTRODUCTION Stagewise operations for gas (vapor)liquid contact, such as distillation, absorption, and stripping (desorption), can be carried out in trayed (plate) columns. Column diameter, tray (plate) spacing, and the number of actual trays are, as it is well-known, the most important parameters estimated in the trayed column design. In general, these parameters depend on the following: gas/vapor and liquid flow rates, physical properties of the phases in contact, tray type, and its geometrical characteristics. The number of actual trays (plates) is usually calculated using the number of theoretical stages and tray efficiency. Ever since Murphree’s definition of tray efficiency,1 a lot of attention has been given to the problems concerning the effects of tray design variables, two-phase flow regimes and physical properties on the intensity of mass transfer. Generally, all tray efficiency estimation methods can be divided into two groups: methods strictly based on experimental experience2 and various semitheoretical methods.3 Newly defined normalized efficiency 4 once again put the focus on the tray efficiency estimation problem. In this paper, a new correlation for the estimation of tray efficiency is presented. 2. MURPHREE TRAY EFFICIENCY VERSUS STRIPPING FACTOR Approximately at the same time (August 1996), two references have shown the major influence of the stripping factor on tray efficiency. The stripping factor is defined as the ratio of the slopes of equilibrium and operating lines λ¼m
G L
ð1Þ
where m is the slope of the equilibrium line; G, kmol/s, is the gas flow rate; L, kmol/s, is the liquid flow rate. Jacimovic and Genic2 r 2011 American Chemical Society
used the experimental data to establish a simple correlation in the form EMG ¼ aλb
ð2Þ
and the authors mention that the influence of all other parameters (i.e., viscosity, density, etc.) on tray efficiency can practically be neglected. Kunesh et al.5 gave the diagram EMG versus λ for their own measurements and stated that the “only physical property which has a major effect on EML is the liquid diffusivity”.
3. NORMALIZED EFFICIENCY VERSUS STRIPPING FACTOR IN GASLIQUID OPERATIONS Normalized efficiency η is defined4 as the ratio of real mass transfer rate on the tray and theoretically maximal mass transfer rate (obtained for the countercurrent plug-flow model for both phases in the case of an infinite contact surface). For onecomponent transfer between the phases in gasliquid operations, normalized efficiency is 8 y y xout xin in out > > < λyin yðxin Þ ¼ xðyin Þ xin for λ g 1 ð3Þ η¼ y yout 1 xout xin > > in ¼ for λ < 1 : λ xðyin Þ xin yin yðxin Þ where yin and yout are mole fractions of the transferred component in gas at the tray inlet and outlet, xin and xout are mole fractions of the transferred component in liquid at the tray inlet and outlet, and y* and x* are the equilibrium mole fractions of the transferred component. Received: May 7, 2010 Accepted: April 19, 2011 Revised: November 3, 2010 Published: May 02, 2011 7445
dx.doi.org/10.1021/ie101052f | Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
Table 1. Expected Range of Real Tray Efficiencies
Table 2. Experimental Tray Efficiency Data
λ
0.04
0.04
1
1
2000
2000
NTUG
2
0.5
2
0.5
2
0.5
NTUL
5
1
5
1
5
1
NTUOG
1.97
0.49
1.43
0.33
0.0025
0.0005
ηIM ηCC
0.65 0.85
0.32 0.38
0.37 0.59
0.20 0.25
0.83 0.99
0.50 0.63
no.
λ
EMG
η
mixture
1
0.0391
0.69
0.672
ammonia/water6
2
0.0793
0.69
0.654
ammonia/water6
3
0.07942
0.65
0.618
triethyleneglycol/natural gas þ water7
4
0.0986
0.69
0.646
ammonia/water6
5
0.158
0.69
0.622
ammonia/water6
The tray efficiency data are traditionally expressed in the open literature in the form of Murphree tray efficiency. The relationship between the normalized and the Murphree tray efficiency is4 8 EMG λ EML > > ¼ for λ g 1 < 1 þ EMG λ EML þ λ ð4Þ η¼ EMG EML λ > > ¼ for λ e 1 : EML þ λ 1 þ EMG λ
6
0.167
0.70
0.627
ammonia/water6
7 8
0.170 0.180
0.99 0.98
0.847 0.833
isopropyl alcohol/water8 isopropyl alcohol/water8
9
0.186
0.90
0.771
isopropyl alcohol/water8
10
0.187
0.94
0.799
isopropyl alcohol/water8
11
0.188
0.91
0.777
isopropyl alcohol/water8
12
0.192
0.92
0.782
isopropyl alcohol/water8
13
0.203
0.94
0.790
isopropyl alcohol/water8
14
0.205
1.04
0.857
isopropyl alcohol/water8
where EMG and EML are Murphree tray efficiencies for gas and liquid phases, respectively. Normalized efficiency for the real cases of mass-transfer columns lies between the values calculated using idealized flow models:4 • For the countercurrent plug-flow model for both phases, normalized efficiency has a maximal value 8 1 exp½NTUOG ðλ 1Þ > > > for λ > 1 λ > > 1 λ exp½NTUOG ðλ 1Þ > > < NTUOG for λ ¼ 1 ηCC ¼ 1 þ NTUOG > > > > > 1 exp½NTUOG ðλ 1Þ > > for λ < 1 : 1 λ exp½NTU ðλ 1Þ OG
15 16
0.208 0.210
0.87 1.01
0.736 0.833
isopropyl alcohol/water8 isopropyl alcohol/water8
17
0.212
0.94
0.784
isopropyl alcohol/water8
18
0.212
0.96
0.797
isopropyl alcohol/water8
19
0.213
0.95
0.790
isopropyl alcohol/water8
20
0.214
0.93
0.776
isopropyl alcohol/water8
21
0.214
0.98
0.810
isopropyl alcohol/water8
22
0.216
0.88
0.739
isopropyl alcohol/water8
23 24
0.217 0.218
0.91 0.99
0.760 0.814
isopropyl alcohol/water8 isopropyl alcohol/water8
25
0.219
0.95
0.786
isopropyl alcohol/water8
26
0.220
0.96
0.792
isopropyl alcohol/water8
27
0.22
0.69
0.599
ammonia/water9
ð5Þ
28
0.222
0.91
0.757
isopropyl alcohol/water8
29
0.224
0.85
0.714
isopropyl alcohol/water8
30
0.230
0.94
0.773
isopropyl alcohol/water8
31 32
0.232 0.233
0.94 0.90
0.772 0.744
isopropyl alcohol/water8 isopropyl alcohol/water8
33
0.236
0.91
0.749
isopropyl alcohol/water8
34
0.237
0.92
0.755
isopropyl alcohol/water8
35
0.240
0.93
0.760
isopropyl alcohol/water8
36
0.241
0.85
0.706
isopropyl alcohol/water8
37
0.241
0.86
0.712
isopropyl alcohol/water8
38
0.243
0.84
0.698
isopropyl alcohol/water8
39 40
0.244 0.245
0.96 0.82
0.778 0.683
isopropyl alcohol/water8 isopropyl alcohol/water8
41
0.245
0.83
0.690
isopropyl alcohol/water8
42
0.245
0.81
0.676
dichloromethane/
• For the ideal phase mixing model for both phases, normalized efficiency has minimal value 8 λNTUOG > > for λ g 1 < 1 þ ðλ þ 1ÞNTU OG ηIM ¼ ð6Þ NTUOG > > for λ e 1 : 1 þ ðλ þ 1ÞNTU OG
where NTUOG is the overall number of transfer units for gas phase NTUOG ¼
1 1 λ þ NTUG NTUL
ð7Þ
dichloroethane10
and NTUG and NTUL are the numbers of transfer units for the gas and liquid phases, respectively. The majority of the published tray efficiency data fall within the range of λ = 0.042000, NTUG = 0.52, and NTUL = 15, and therefore, the expected normalized tray efficiencies should be within the range presented in Table 1. The data given in Table 2 were gathered from the open literature (ML is the molar mass of liquid in kilograms per kilomole), with the exception of the data marked with an asterisk, which are the data that the authors themselves have measured on an industrial distillation column (diameter 750 mm, uniflux trays,
43
0.247
0.85
0.702
isopropyl alcohol/water8
44
0.255
0.89
0.725
isopropyl alcohol/water8
45
0.257
0.83
0.684
isopropyl alcohol/water8
46 47
0.258 0.259
0.85 0.95
0.697 0.763
isopropyl alcohol/water8 isopropyl alcohol/water8
48
0.260
0.83
0.683
isopropyl alcohol/water8
49
0.26
0.57
0.496
triethyleneglycol/natural gas þ water7
50
0.26
0.88
0.716
dichloromethane/ dichloroethane10
7446
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
Table 2. Continued no.
λ
Table 2. Continued EMG
η
no.
λ
8
mixture
EMG
η
mixture
51 52
0.262 0.264
0.94 0.97
0.754 0.772
isopropyl alcohol/water isopropyl alcohol/water8
103 104
0.367 0.368
0.76 0.86
0.594 0.653
isopropyl alcohol/water8 isopropyl alcohol/water8
53
0.267
0.82
0.673
isopropyl alcohol/water8
105
0.368
0.85
0.648
isopropyl alcohol/water8
0.789
8
106
0.378
0.97
0.710
isopropyl alcohol/water8
8
107
0.383
0.91
0.675
dichloromethane/
54
0.267
1.00
isopropyl alcohol/water
55
0.274
0.83
0.676
isopropyl alcohol/water
56
0.274
0.83
0.676
isopropyl alcohol/water8 8
57
0.275
0.77
0.635
isopropyl alcohol/water
58
0.275
1.01
0.791
isopropyl alcohol/water8
59
0.275
0.845
0.686
dichloromethane/ dichloroethane10
60
0.279
0.79
0.647 0.763
61 62 63 64 65
0.280 0.281 0.285 0.286 0.287
0.97 0.74 0.84 1.02 0.93
0.613 0.678 0.790 0.734
dichloroethane10 108
0.3959
0.60
0.485
triethyleneglycol/natural gas þ water7
109 110
0.401 0.42
1.00 0.78
0.714 0.588
isopropyl alcohol/water8 methanol/water11
isopropyl alcohol/water8
111
0.427
0.85
0.624
isopropyl alcohol/water8
8
112
0.43
0.82
0.606
methanol/water11
8
113
0.431
0.53
0.431
benzene/toluene12
8
114
0.432
0.54
0.438
benzene/toluene12
8
115
0.441
0.55
0.443
benzene/toluene12
8
116
0.442
0.64
0.499
benzene/toluene12
8
isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water
66 67
0.290 0.293
0.96 0.99
0.751 0.768
isopropyl alcohol/water isopropyl alcohol/water8
117
0.452
0.904
0.642
dichloromethane/ dichloroethane10
68
0.295
0.91
0.717
isopropyl alcohol/water8
118
0.460
0.91
0.641
isopropyl alcohol/water8
0.766
8
119
0.461
0.65
0.500
benzene/toluene12
8
120
0.461
0.64
0.494
benzene/toluene12
8
121
0.461
0.65
0.500
benzene/toluene12
8
122
0.472
0.90
0.632
isopropyl alcohol/water8
8
123
0.478
0.66
0.502
benzene/toluene12
8
124 125
0.478 0.480
0.62 0.88
0.478 0.619
benzene/toluene12 isopropyl alcohol/water8
69 70 71 72 73
0.296 0.296 0.296 0.296 0.297
0.99 0.97 0.98 1.03 0.97
0.753 0.759 0.789 0.753
isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water
74 75
0.298 0.30
0.95 0.82
0.741 0.658
isopropyl alcohol/water dichloromethane/
126
0.48
0.7
0.524
methanol/water11
76
0.306
0.93
0.724
isopropyl alcohol/water8
127
0.481
0.67
0.507
benzene/toluene12
77
0.310
0.91
0.710
isopropyl alcohol/water8
128
0.482
0.91
0.633
isopropyl alcohol/water8
78
0.312
1.05
0.791
isopropyl alcohol/water8
129
0.486
0.87
0.612
isopropyl alcohol/water8
79
0.319
0.93
0.717
isopropyl alcohol/water8
130
0.50
1.0
0.667
ethanol/water14
80
0.327
0.89
0.689
isopropyl alcohol/water8
131
0.514
0.67
0.498
benzene/toluene12
81 82
0.335 0.335
0.88 0.92
0.679 0.703
isopropyl alcohol/water8 isopropyl alcohol/water8
132 133
0.515 0.516
0.63 0.66
0.476 0.492
benzene/toluene12 benzene/toluene12
83
0.336
0.89
0.685
isopropyl alcohol/water8
134
0.53
1.2
0.733
isopropyl alcohol/water13
84
0.347
0.92
0.698
isopropyl alcohol/water8
135
0.571
0.844
0.570
ethanol/water *
85
0.349
0.89
0.679
isopropyl alcohol/water8
136
0.575
0.67
0.484
benzene/toluene12
86
0.353
0.88
0.671
isopropyl alcohol/water8
137
0.607
0.61
0.445
benzene/toluene12
0.636
8
138
0.614
0.66
0.470
benzene/toluene12
8
139
0.625
0.65
0.462
benzene/toluene12
8
0.543 0.459
ethanol/water * benzene/toluene12
dichloroethane10
87 88
0.353 0.358
0.82 0.91
0.686
isopropyl alcohol/water isopropyl alcohol/water
89 90
0.358 0.361
0.88 0.79
0.669 0.615
isopropyl alcohol/water isopropyl alcohol/water8
140 141
0.626 0.642
0.823 0.65
91
0.362
0.88
0.667
isopropyl alcohol/water8
142
0.654
0.846
0.545
ethanol/water *
92
0.362
0.83
0.638
isopropyl alcohol/water8
143
0.658
0.62
0.440
ethanol/water12
93
0.363
0.86
0.656
isopropyl alcohol/water8
144
0.658
0.62
0.440
ethanol/water12
0.602
8
145
0.660
0.63
0.445
ethanol/water12
8
146
0.661
0.62
0.440
ethanol/water12
8
147
0.669
0.75
0.499
ethanol/water12
8
94 95 96
0.364 0.364 0.365
0.77 0.88 0.82
0.666 0.631
isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water
97 98
0.365 0.365
0.82 0.85
0.631 0.649
isopropyl alcohol/water isopropyl alcohol/water8
148 149
0.675 0.685
0.62 0.75
0.437 0.495
ethanol/water12 benzene/n-heptane15
99
0.365
0.88
0.666
isopropyl alcohol/water8
150
0.690
0.56
0.404
ethanol/water12
0.682
8
151
0.694
0.58
0.414
ethanol/water12
8
152
0.703
0.878
0.543
ethanol/water6
8
153
0.711
0.72
0.476
ethanol/water12
100 101 102
0.367 0.367 0.367
0.91 0.89 0.87
0.671 0.659
isopropyl alcohol/water isopropyl alcohol/water isopropyl alcohol/water
7447
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
Table 2. Continued no.
λ
Table 2. Continued EMG
η
mixture
154 155
0.713 0.719
0.752 0.62
0.489 0.429
methyl ethyl ketone/toluene ethanol/water12
156
0.736
0.74
0.479
ethanol/water12
157 158 159 160 161
0.737 0.742 0.747 0.748 0.749
0.69 0.68 0.894 0.76 0.66
0.457 0.452 0.536 0.485 0.442
16
12
168 169
0.792 0.810
0.809 0.877 0.67
0.497 0.517 0.434
209
0.952
0.890
0.482
methyl ethyl ketone/toluene16
ethanol/water
12
210
0.952
0.863
0.474
methyl ethyl ketone/toluene16
12
211
0.958
0.883
0.478
ethanol/water6
212 213
0.97 0.971
0.50 0.71
0.337 0.420
n-butane/1-butene10 ethanol/water12
214
0.973
0.399
0.287
methyl ethyl ketone/toluene16
benzene/toluene 12
11
215
0.973
0.769
0.440
methyl ethyl ketone/toluene16
methyl ethyl ketone/toluene
16
216
0.981
0.909
0.481
methyl ethyl ketone/toluene16
methyl ethyl ketone/toluene
16
217
0.982
0.865
0.468
methyl ethyl ketone/toluene16
methyl ethyl ketone/toluene
16
cyclohexane/n-pentane
ethanol/water
218
0.993
0.62
0.384
ethanol/water12
12
219
0.995
0.75
0.429
ethanol/water12
6
220 221
0.995 1.0
0.71 0.57
0.416 0.363
ethanol/water12 ethanol/water14
ethanol/water isopropyl alcohol/water8
172
0.819
0.74
0.461
ethanol/water12
174 175 176 177
0.825 0.827 0.827 0.827
0.735 0.69 0.655 0.661
0.458 0.439 0.425 0.427
methyl ethyl ketone/toluene16
ethanol/water
0.512 0.630 0.519
0.421
methyl ethyl ketone/toluene16
0.88 1.30 0.904
0.697
0.500
0.815 0.818 0.821
0.943
0.953
170 171 173
206
0.952
methyl ethyl ketone/toluene16
0.777
methyl ethyl ketone/toluene16 methyl ethyl ketone/toluene16
208
0.445
167
0.433 0.432
6
0.674
0.493
0.730 0.728
ethanol/water
0.765
0.799
0.942 0.942
methyl ethyl ketone/toluene16
164
0.777
204 205
0.420
ethanol/water benzene/toluene12
166
mixture
0.696
0.412 0.430 0.475
η
0.943
0.60 0.64 0.75
EMG
207
0.760 0.764 0.77
λ
12
benzene/toluene
162 163 165
no.
222
1.0
0.55
0.355
n-butane/1-butene10
methyl ethyl ketone/toluene
16
223
1.004
0.928
0.482
methyl ethyl ketone/toluene16
methyl ethyl ketone/toluene
16
224
1.004
0.921
0.481
methyl ethyl ketone/toluene16
225
0.983
0.5073
0.338
water/acetic acid18
methyl ethyl ketone/toluene
16
226
1.045
0.700
0.422
methyl ethyl ketone/toluene16
methyl ethyl ketone/toluene
16
227
1.049
0.56
0.370
benzene/toluene12
16
228 229
1.049 1.049
0.785 0.743
0.452 0.438
methyl ethyl ketone/toluene16 methyl ethyl ketone/toluene16
ethanol/water
12
178 179
0.827 0.83
0.638 0.56
0.418 0.382
methyl ethyl ketone/toluene n-butane/1-butene10
180
0.842
0.658
0.423
methyl ethyl ketone/toluene16
230
1.06
0.42
0.308
isobutane/1-butene10
181
0.842
0.760
0.463
methyl ethyl ketone/toluene16
231
1.062
0.70
0.426
n-heptane/toluene15
182
0.848
0.89
0.507
ethanol/water *
232
1.082
0.75
0.448
ethanol/water12
183
0.853
0.70
0.438
cyclohexane/n-heptane11
233
1.086
0.866
0.485
methyl ethyl ketone/toluene16
184
0.854
0.846
0.491
methyl ethyl ketone/toluene16
234
1.088
0.772
0.457
methyl ethyl ketone/toluene16
185
0.855
0.812
0.479
methyl ethyl ketone/toluene16
235
1.09
0.50
0.353
n-butane/1-butene10
186
0.856
0.69
0.372
2,2,4 trimethylpentane/ toluene17
236 237
1.092 1.137
0.58 0.78
0.388 0.470
benzene/toluene12 ethanol/water12
187
0.857
0.70
0.376
2,2,4 trimethylpentane/
238
1.160
0.721
0.455
methyl ethyl ketone/toluene16
239
1.182
0.47
0.357
benzene/toluene12
240
1.191
0.859
0.506
methyl ethyl ketone/toluene16
241
1.191
0.836
0.499
methyl ethyl ketone/toluene16
242
1.191
0.887
0.514
methyl ethyl ketone/toluene16
243
1.2
0.54
0.393
C3C6/oil (ML = 135)9
toluene17 188
0.862
0.74
0.388
2,2,4 trimethylpentane/ 17
toluene 189
0.864
0.56
0.327
2,2,4 trimethylpentane/ 17
toluene 190 191
0.869 0.869
0.835 0.845
0.484 0.487
methyl ethyl ketone/toluene methyl ethyl ketone/toluene16
244 245
1.242 1.28
0.71 0.60
0.469 0.434
ethanol/water12 methanol/water11
192
0.879
0.75
0.452
methanol/isopropanol15
193
0.889
0.813
0.472
16
246
1.289
0.78
0.501
ethanol/water12
methyl ethyl ketone/toluene
16
247
1.293
0.73
0.485
ethanol/water12
16
248
1.327
0.478
0.388
methyl ethyl ketone/
194
0.890
0.583
0.384
methyl ethyl ketone/toluene
195
0.891
0.925
0.507
methyl ethyl ketone/toluene16
196 197
0.894 0.907
0.91 0.632
0.502 0.402
toluene16 249
1.36
0.36
0.329
i-C4H8/heavy naphtha9
methyl ethyl ketone/toluene
16
250
1.36
0.34
0.316
isobutane/1-butene10
16
251 252
1.364 1.364
0.738 0.821
0.502 0.528
methyl ethyl ketone/toluene16 methyl ethyl ketone/toluene16
0.364
0.342
iso-C4H8/heavy naphtha6
ethanol/water
6
198 199
0.907 0.92
0.589 0.54
0.384 0.361
methyl ethyl ketone/toluene n-butane/1-butene10
200
0.924
0.60
0.386
acetic acid/water11
253
1.43
16
201
0.925
0.580
0.377
methyl ethyl ketone/toluene
254
1.452
0.555
0.446
ethanol/water *
202
0.925
0.645
0.404
methyl ethyl ketone/toluene16
255
1.46
0.44
0.391
C3C6/oil (ML = 185)9
203
0.942
0.719
0.429
methyl ethyl ketone/toluene16
256
1.51
0.33
0.333
isobutane/1-butene10
7448
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
Table 2. Continued no.
λ
Table 2. Continued EMG
η
mixture
257 258
1.54 1.575
0.45 0.41
0.409 0.392
C3C5/oil (ML = 135) acetic acid/water11
259
2.0
0.30
0.375
C3C6/oil (ML = 64)9
0.383
C3C6/oil (ML = 157)
260 261 262
2.0 2.5 2.564
0.31 0.50 0.74
9
11
6.25 7.79
0.18 0.131
7.94
0.11
307
126.0
0.021
0.73
CO2/water6
0.022
0.76
CO2/water6
310
142.4
0.035
0.833
toluene/water5
311
146.7
0.025
0.79
CO2/water6
heavy naphtha propene (C3H6)/
312 313
148.0 148.4
0.028 0.029
0.81 0.811
CO2/water6 toluene/water5
heavy naphtha6
314
157.6
0.022
0.78
CO2/water6
propene (C3H6)/
315
177.1
0.026
0.822
toluene/water5
6
heavy naphtha
316
178.9
0.024
0.811
toluene/water5
propene (C3H6)/
317
182.0
0.015
0.732
CO2/water9
0.462 0.504 0.540
318
185.3
0.024
0.816
CO2/water6
9
9
0.409
propene (C3H6)/gas oil
319
229.9
0.028
0.866
toluene/water5
0.529 0.505
C3C6/oil (ML = 201) propene (C3H6)/
320 321
235.2 278.7
0.019 0.029
0.817 0.890
CO2/water6 toluene/water5
322
282.9
0.029
0.891
toluene/water5
323
285.8
0.028
0.889
toluene/water5
324
341.9
0.031
0.914
toluene/water5
325
351.4
0.024
0.894
toluene/water5
326
372.1
0.015
0.848
CO2/water6
heavy naphtha6 271
CO2/water6
140.8
heavy naphtha 269 270
0.77
309
6
0.12
0.026
12
6
5.77
125.4
ethanol/water
propene (C3H6)/
268
306
0.655 0.417
0.216
CO2/water CO2/water6
CO2/water6
0.224
5.44
0.70 0.78
0.78
3.20
267
0.019 0.030
0.027
264
0.23
120.5 121.6
127.8
ethanol/water
4.42
304 305
308
0.658
266
mixture 6
12
0.69
0.240
η
methanol/water
2.785
3.57
EMG
0.556
263
265
λ
no. 9
0.466
propene (C3H6)/gas oil þ lube oil
9
272
10.0
0.18
0.643
C3C6/oil (ML = 206)
273
15.064
0.217
0.766
ethanol/water *
274
19.41
0.226
0.814
propene (C3H6)/
327
392.3
0.024
0.904
toluene/water5
6
9
275
42.6
0.029
0.55
heavy naphtha CO2/water6
328 329
460.9 484.0
0.028 0.018
0.928 0.897
toluene/water5 CO2/water9
276
49.4
0.032
0.61
CO2/water6
330
491.0
0.018
0.898
CO2/water6
277
58.6
0.035
0.67
CO2/water6
331
542.2
0.015
0.891
toluene/water5
278
58.8
0.027
0.61
CO2/water6
332
547.3
0.021
0.920
toluene/water5
279
61.8
0.021
0.56
CO2/water6
333
697.6
0.012
0.893
toluene/water5
280
66.5
0.026
0.634
CO2/water9
334
1185
0.0099
0.921
toluene/water5
281
66.7
0.022
0.595
CO2/water6
335
1533
0.012
0.948
toluene/water5
282 283
69.2 69.4
0.024 0.018
0.62 0.56
CO2/water6 CO2/water6
336 337
1882 2036
0.0081 0.008
0.938 0.942
toluene/water5 toluene/water5
284
70.5
0.020
0.59
CO2/water þ glycerol6
338
2196
0.0045
0.908
toluene/water5
6
285
79.2
0.033
0.72
CO2/water
286
79.6
0.026
0.674
CO2/water6
287
79.9
0.020
0.62
CO2/water6
288
80.0
0.035
0.737
CO2/water9
289
81.5
0.016
0.57
CO2/water þ glycerol
290
89.0
0.018
0.62
CO2/water6
291
90.4
0.017
0.606
CO2/water6
292
90.4
0.017
0.61
CO2/water6
293
90.8
0.032
0.74
CO2/water6
294
91.1
0.020
0.646
CO2/water þ glycerol9
295
92.9
0.018
0.63
CO2/water6
296
95.5
0.025
0.70
CO2/water6
297
102.7
0.015
0.61
CO2/water6
298
103.9
0.033
0.77
CO2/water6
299
109.7
0.019
0.68
CO2/water6
300
110.3
0.035
0.79
CO2/water6
301
110.8
0.018
0.67
CO2/water6
302
115.9
0.018
0.68
CO2/water6
303
120.2
0.036
0.812
toluene/water5
6
ethanolwater distillation). The data given in Table 2 cover all three gasliquid operations (distillation, absorption, and stripping) as well as a wide range of other influential parameters: • 338 experimental runs with more than 25 gasliquid systems (mixtures) • various tray designs: sieve, bubble-cup, tunnel, uniflux, jet • column diameter 50.82743 mm • column pressure range 133.4 bar • range of temperature 9.5120 °C • flood-factor from about 15% to 98% • stripping factor range λ = 0.03912196 (including two regimes with λ = 1). Figure 1 shows the data given in Table 2 and the lines for ηCC(NTUG = 2; NTUL = 5) and ηIM(NTUG = 0.5; NTUL = 1). It can be noticed that only 11 experimental runs fall outside of the field defined by lines for ηCC(NTUG = 2; NTUL = 5) and ηIM(NTUG = 0.5; NTUL = 1). 7449
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
wide range of tray types, column diameter, and other tray variables, working conditions (pressure, temperature), various mixtures, and stripping factor in the range λ = 0.03912196, a new correlation was found in the form 8 > >
> : 1:5 þ λ0:3
Figure 1. Normalized efficiency experimental data vs stripping factor.
for λ e 1 for λ g 1
ð8Þ
The statistical parameters of eq 8 are so good (correlation ratio Θ = 0.883, standard deviation Δav = 13.1%) that we are assured that all the other parameters (such as the physical and transport properties and flow rates of both phases, tray geometrical parameters, etc.) have little or no influence on tray efficiency. Authors have already successfully used correlation 8 for the final design of a distillery for production of 4 m3 per day of refined ethanol from corn which was built in Kostojevici (Serbia) during 2007.
’ AUTHOR INFORMATION Corresponding Author
*Fax: þ381 11 3370364. Phone: þ381 11 3302360. E-mail:
[email protected].
’ ACKNOWLEDGMENT We thank the Ministry of Science and Technological Development of Serbia for partial support of this study through Project of Energy Efficiency. ’ REFERENCES
Figure 2. Correlated normalized efficiency vs stripping factor.
Jacimovic and Genic4 have shown that tray efficiency has discontinuity for λ = 1, and so, the following correlation covers the whole range of λ 8 1 > > < 1 þ 1:5λ0:9 for λ e 1 ð8Þ ηc ¼ λ0:3 > > for λ g 1 : 1:5 þ λ0:3 Statistical parameters for correlation 8 are correlation ratio Θ = 0.883, standard deviation Δav = 13.1%, maximal deviation 41% and þ30%, 22 runs with deviation greater than (25%. The experimental data from Table 2 and correlation 8 are presented in Figure 2, accompanied by the (25% deviation field between the dashed lines.
4. CONCLUSION The introduction of normalized efficiency4 gave us one more opportunity to correlate tray efficiency versus stripping factor. By using 338 experimental data records gathered from the open literature for gasliquid mass transfer operations and for the
(1) Murphree, E. V. Rectifying Column Calculations. Ind. Eng. Chem. 1925, 17, 747. (2) Jacimovic, B.; Genic, S. Use A New Approach To Find Murphree Tray Efficiency. Chem. Eng. Progr. 1996, 92, 46–51. (3) Kafarov, V. V. Fundamentals of Mass Transfer; Mir Publishers: Moscow, 1985. (4) Jacimovic, B.; Genic, S. Normalized Efficiency For Stagewise Operations. Ind. Eng. Chem. Res. 2011in press. (5) Kunesh, J. G.; Ognisty, T. P.; Sakata, M.; Chen, G. X. Sieve Tray Performances for Steam Stripping Toluene from Water in a 4-ft Diameter Column. Ind. Eng. Chem. Res. 1996, 35, 2660–2671. (6) Walter, J. F.; Sherwood, T. K. Gas Absorption in Bubble-Cap Columns. Ind. Eng. Chem. 1941, 33, 493–501. (7) Oi, L. E. Estimation of Tray Efficiency in Dehydration Absorbers. Chem. Eng. Process. 2003, 42, 867–878. (8) Keyes, D. B.; Langdon, W. M. Plate Factors in Fractional Distillation of Isopropyl Alcohol-Water System. Ind. Eng. Chem. 1943, 35, 464–469. (9) Hobler, T. Mass Transfer and Absorbers; Pergamon: Oxford, 1966. (10) Bubble Tray Design Manual; AIChE: New York, 1958. (11) Afacan, A.; Chen, G. X.; Yang, N.; Chuang, K. T. Hydraulics and efficiency of screen trays for distillation. Chem. Eng. Commun. 2002, 189, 41–60. (12) Rhodes, F. H.; Slachman, P. G. Plate Efficiency and Entrainment in Distillation. Ind. Eng. Chem. 1937, 29, 51–54. (13) Hubner, W. Der Einfluss der Konzentration auf das Verst€arkungsverh€altnis von Rektifizierb€ oden. Chem. Ing. Technik 1972, 44, 546–552. (14) Shilling, G. D.; Beyer, G. H.; Watson, C. C. Efficiencies in Ethanol-Water Fractionation. Chem. Eng. Progr. 1953, 49, 128–134. 7450
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451
Industrial & Engineering Chemistry Research
ARTICLE
(15) Xu, Z. P.; Afacan, A.; Chuang, K. T. Prediction of packed sieve tray efficiency in distillation. Trans. Inst. Chem. Eng. 1996, 74(A), 893–900. (16) Rampacek, C. M.; Van Winkle, M. Efficiency Study on Jet Trays in a 6-Inch Diameter Laboratory Column. Ind. Eng. Chem. Proc. Des. Dev. 1968, 7, 313–318. (17) Manning, E.; Marple, S.; Hinds, G. P. A Plant-Scale Unit for Distillation Tray Research. Ind. Eng. Chem. 1957, 49, 2051–2054. (18) Pavlechko, V. N.; Minakhmetov, A. V.; Nikolaev, N. A. Analysis of Mass Exchange Efficiency in Rectifying Columns. Russ. J. Appl. Chem. 2009, 82, 435–438.
7451
dx.doi.org/10.1021/ie101052f |Ind. Eng. Chem. Res. 2011, 50, 7445–7451