Subscriber access provided by UNIVERSITY OF ADELAIDE LIBRARIES
Article
Trends in chemical composition of global and regional population-weighted fine particulate matter estimated for 25 years Chi Li, Randall V Martin, Aaron van Donkelaar, Brian Boys, Melanie Hammer, Jun-Wei Xu, Eloise A. Marais, Adam Reff, Madeleine Strum, David Ridley, Monica Crippa, Michael Brauer, and Qiang Zhang Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b02530 • Publication Date (Web): 11 Sep 2017 Downloaded from http://pubs.acs.org on September 12, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 27
Environmental Science & Technology
1
Trends
in
chemical
composition
of
global
and
regional
2
population-weighted fine particulate matter estimated for 25 years
3 4
Chi Li1,*, Randall V. Martin1,2, Aaron van Donkelaar1, Brian L. Boys1, Melanie S. Hammer1, Jun-
5
Wei Xu1, Eloise A. Marais3, Adam Reff4, Madeleine Strum4, David A. Ridley5, Monica Crippa6,
6
Michael Brauer7, and Qiang Zhang8
7 8
[1] Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
9
[2] Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
10
[3] School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham,
11
UK
12
[4] U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
13
[5] Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
14
Cambridge, MA, USA
15
[6] European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate,
16
Air and Climate Unit, Via E. Fermi 2749, I-21027 Ispra (VA), Italy
17
[7] School of Population and Public Health, The University of British Columbia, Vancouver, BC,
18
Canada
19
[8] Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
20
Science, Tsinghua University, Beijing 100084, China
21
*Correspondence to: Chi Li (
[email protected])
22
1
ACS Paragon Plus Environment
Environmental Science & Technology
23
Page 2 of 27
TOC/ABSTRACT ART Global population−weighted mean PM2.5 composition 35 Sulfate
Concentration (µg m-3)
OA
BC
Nitrate Dust
Ammonium Sea salt
28
21
14
7
0
24
1990
1995
2000
2005
2010
25
ABSTRACT We interpret in situ and satellite observations with a chemical transport model (GEOS-
26
Chem, downscaled to 0.1˚ × 0.1˚) to understand global trends in population-weighted mean chemical
27
composition of fine particulate matter (PM2.5). Trends in observed and simulated population-weighted
28
mean PM2.5 composition over 1989-2013 are highly consistent for PM2.5 (-2.4 vs. -2.4 %/yr), secondary
29
inorganic aerosols (-4.3 vs. -4.1 %/yr), organic aerosols (OA, -3.6 vs. -3.0 %/yr) and black carbon (-4.3
30
vs. -3.9 %/yr) over North America, as well as for sulfate (-4.7 vs. -5.8 %/yr) over Europe. Simulated
31
trends over 1998-2013 also have overlapping 95% confidence intervals with satellite-derived trends in
32
population-weighted mean PM2.5 for 20 of 21 global regions. Over 1989-2013, most (79%) of the
33
simulated increase in global population-weighted mean PM2.5 of 0.28 µg m-3yr-1 is explained by
34
significantly (p < 0.05) increasing OA (0.10 µg m-3yr-1), nitrate (0.05 µg m-3yr-1), sulfate (0.04 µg m-3yr-
35
1
36
weighted mean PM2.5 over populous regions of South Asia (0.94 µg m-3yr-1), East Asia (0.66 µg m-3yr-1),
37
Western Europe (-0.47 µg m-3yr-1) and North America (-0.32 µg m-3yr-1). Trends in area-weighted mean
38
and population-weighted mean PM2.5 composition differ significantly.
) and ammonium (0.03 µg m-3yr-1). These four components predominantly drive trends in population-
39 40
INTRODUCTION
41
Atmospheric aerosols have major roles in air quality,1, 2 visibility3-5 and climate.6-8 Particles with an
42
aerodynamic diameter of 2.5 µm or less (PM2.5) are a leading risk factor for global morbidity and
43
mortality.9-12 Not only does over 85% of the world’s current population live where annual estimated
44
PM2.5 is above the World Health Organization (WHO) guideline of 10 µg/m,13, 14 but recent cohort
45
studies also reveal an association of mortality rates with long-term exposure to PM2.5 concentrations at
46
levels below the WHO guideline,15-17 implying the need for further mitigation efforts.18 Changes in 2
ACS Paragon Plus Environment
Page 3 of 27
Environmental Science & Technology
47
PM2.5 mass concentration are driven by changes in its chemical composition due to variations in
48
emissions and atmospheric processes.1, 19, 20 Understanding trends in PM2.5 components can help inform
49
source contributions and future mitigation efforts. Since the 1980s, regulations in developed regions
50
have dramatically reduced emissions of primary particles and precursor gases, while the rapidly growing
51
economies of developing countries have led to steeply rising energy consumption and pollutant
52
emissions.20-24 Given the established impacts of PM2.5 on human health, improved understanding of how
53
these changes affect trends in global PM2.5 burden and composition is warranted.
54
A few regions have long-term in situ measurements of PM2.5 and its chemical composition. These
55
measurements revealed regionally coherent decreases over North America in PM2.5,25-27 ammonium,28-30
56
sulfate,25,
57
sulfate,28, 37, 38 nitrate28 and PM2.5.5, 27, 38 SI Table 1 summarizes these reported trends. Measurements in
58
these regions, where emissions are relatively well known, offer valuable information to test the
59
representation of PM2.5-related atmospheric processes in global models. Over regions without long-term
60
in situ data, alternative proxies of PM2.5 provide complementary trend information (SI Table S2), such
61
as global trends in satellite observations of columnar aerosol optical depth (AOD).39-41 These satellite
62
observations have been related to ground-level PM2.5 by chemical transport modeling42, 43 or statistical
63
models.44, 45 More broadly, models facilitate interpretation of these ground-based and satellite-based
64
observations to understand sources and processes affecting these trends, and their relation with chemical
65
composition.19, 46
28-32
nitrate,28,
30
organic aerosol30,
33-35
and black carbon,28,
30, 33, 36
and over Europe in
66
Chemical transport models (CTMs) have been widely used for global characterization of aerosol
67
spatiotemporal variation, with the ability to quantify the contributions from different chemical
68
composition and sources. Recent regional simulations largely reproduced observed aerosol trends over
69
North America and Europe, affirming their value for interpretation.28, 30, 34, 37 But the current generation
70
of global models suffers from relatively coarse resolution that introduces spatial misalignment between
71
population density and modeled PM2.5 that inhibits direct assessment of PM2.5 exposure using models
72
alone. Case studies indicate that mortality estimates due to PM2.5 at a typical resolution of current global
73
simulations could be systematically lower compared to estimates at finer resolutions.47, 48 Thus in this
74
study we combine the attributes of satellite observations at fine resolution with process-level
75
information offered by CTM simulations. We spatially redistribute the CTM-modeled PM2.5
76
composition with satellite-based PM2.5 estimates at 0.1˚ resolution, to produce a 25-year assessment of
77
global population-weighted PM2.5 chemical composition from 1989 to 2013. We evaluate this 3
ACS Paragon Plus Environment
Environmental Science & Technology
Page 4 of 27
78
downscaled simulation versus in situ observations where available. Then we apply this downscaled
79
simulation to investigate global changes in population-weighted mean PM2.5 chemical composition, to
80
further understand the intrinsic drivers of trends in PM2.5 exposure.
81 82
MATERIALS AND METHODS
83
Observations and complementary data
84
We collect long-term observation data about PM2.5 and its chemical composition over North America
85
and Europe, and the global ground-based PM2.5 measurements collected for the Global Burden of
86
Disease Study (GBD)14. Population data at 0.1˚ × 0.1˚ resolution are also used for exposure estimation.
87
Details on data selection and processing are described in the Supporting Information (SI).
88
For model downscaling to a resolution more relevant to population exposure, we use the global
89
satellite-based PM2.5 estimates at 0.1˚ × 0.1˚ resolution13 that merged satellite AOD retrievals from 7
90
different algorithms inversely weighted by their errors against AERONET, converted AOD to PM2.5
91
using simulated PM2.5-AOD relationships, and then statistically fused (geographically weighted
92
regression) these PM2.5 estimates with ground-based measurements. We use the 5-year average data
93
between 2008-2012 (referred to as Meansat) when more ground-based PM2.5 records (over 4000) are
94
available for statistical calibration.
95
We evaluate simulated trends in global PM2.5 using mostly independent satellite-based PM2.5 trends
96
(referred to as Trendsat). The 1998-2013 annual variations in global PM2.5 were inferred from the
97
SeaWiFS and MISR sensors that have long-term calibration stability.42, 49 PM2.5 trends for 1999-2012
98
from these estimates show unbiased consistency with in situ measurements over the eastern US.42 The
99
absolute concentrations of Trendsat are also calibrated to Meansat to match the 2008-2012 mean while
100
preserving the original trends. The annual mean PM2.5 data to calculate Meansat and Trendsat are obtained
101
directly from the publicly available archive.50 Although Meansat and Trendsat contain some common
102
elements (e.g. both using AOD from SeaWiFS and MISR, and PM2.5-AOD relationship in GEOS-Chem),
103
we attempt to isolate their independent information by focusing on the spatial distribution of absolute
104
concentrations from Meansat, and on temporal variation from Trendsat to evaluate the downscaled
105
simulation.
4
ACS Paragon Plus Environment
Page 5 of 27
Environmental Science & Technology
106
GEOS-Chem simulation and downscaling
107
We use the GEOS-Chem CTM (version 11-01; http://www.geos-chem.org), including updated emission
108
inventories and meteorological data from a consistent reanalysis (MERRA-2), to simulate the global
109
evolution of PM2.5 chemical composition over 1989-2013. More details about the simulation and
110
historical emissions are provided in the SI.
111
The current generation of global models does not sufficiently resolve spatial variation in PM2.5 to
112
adequately estimate population exposure.47, 48 Thus we follow Lee et al.51 to downscale the simulation to
113
0.1˚ × 0.1˚ resolution to match the PM2.5 magnitude and spatial variation in the 2008-2012 Meansat. This
114
downscaled simulation (referred to as Simds) does not modify the modeled fraction or the simulated
115
relative temporal variation of PM2.5 composition, since we apply to all years the same scale factors
116
(namely, the 0.1˚ × 0.1˚ spatial map of ratios in the 2008-2012 mean of Meansat versus the simulation).
117
SI Table S3 contains a comparison of annual PM2.5 from Simds versus the global ground-based database
118
collected for GBD. Globally and regionally, fine-scale information from Meansat improves the spatial
119
representation of PM2.5 in Simds compared to the pure simulation.
120
Trend analysis and evaluation
121
We summarize time series as linear trends to aid presentation. Following commonly adopted methods in
122
previous studies (e.g. SI Tables S1 and S2), we analyze data over a long time period (i.e. over ~10 years)
123
to reduce random errors and to detect systematic trends. In addition to trends over 1989-2013, short-term
124
trends over 2002-2013 are included to summarize more recent trends during the periods of denser in situ
125
observations, and these over 1998-2013 are also calculated to facilitate comparison with Trendsat. Details
126
on the trend analysis are contained in the SI.
127 128
RESULTS AND DISCUSSION
129
Emission trends
130
SI Figure S2 shows time series of annual area-weighted mean emissions of major aerosol and precursor
131
species over GBD regions, and SI Table S5 lists trends in these regional emissions over 1989-2013.
132
Substantial reductions in anthropogenic and total emissions of SO2, NOx, OC and BC are found over
133
North America, Asia-Pacific and Europe, whereas increases in these species are substantial over Asia.
134
Reductions are dramatic in SO2, OC and BC emissions before ~1996, with a transitional slow down 5
ACS Paragon Plus Environment
Environmental Science & Technology
Page 6 of 27
135
afterwards over Central Asia, Central Europe and Eastern Europe.23, 24 SO2 emissions over East Asia
136
also show a transition from increasing to decreasing at ~2006.21,
137
increasing or insignificant trends except over Europe where NH3 emissions decrease. Strong inter-
138
annual variation in OC and BC emissions occurs over biomass burning regions such as Eastern Europe
139
(including Siberia), Southeast Asia, Tropical Latin America and Central Sub−Saharan Africa, and in
140
mineral dust emissions from desert regions.
141
In situ trends
142
Figure 1 shows the spatial distribution over North America of annual trends in PM2.5 and its composition
143
from the downscaled simulation (Simds), overlaid with observed trends for two periods. The
144
observations show significant (p < 0.05) decrease in population-weighted mean (PWM) PM2.5 of -0.26
145
µg m-3yr-1 over 1989-2013, increasing in magnitude to -0.44 µg m-3yr-1 over 2002-2013, with larger
146
decreases in the east than in the western interior. The collocated Simds well reproduces the composite
147
PWM trends within 0.06 µg m-3yr-1. Steeper reductions in PWM sulfate, nitrate and ammonium at
148
measurement sites over 2002-2013 than over 1989-2013 are indicated by both the observations and
149
Simds, due to inclusion of more urban sites from EPA_CSN as well as stronger emission reductions in
150
recent years (SI Figure S2). These secondary inorganic aerosols (SIA) largely drive the PM2.5 decreases
151
over North America, with significant decreases (p < 0.05) in PWM concentration over 1989-2013 in
152
both the observations (-0.31 µg m-3yr-1 or -4.3 %/yr) and Simds (-0.28 µg m-3yr-1 or -4.1 %/yr), and more
153
pronounced decreases over 2002-2013 in both the observations and Simds. The Simds shows relatively
154
weaker performance for nitrate trends, similar to recent simulations,28, 53, 54
52
NH3 emissions generally have
30
possibly due to bias in
55
155
simulated HNO3,
uncertainties in NH3 emissions, and non-linear sensitivity of nitrate partitioning
156
to SO2, NOx and NH3 emissions.56, 57 The observed and simulated annual decreases in PM2.5 and SIA are
157
largely consistent with trends in winter and summer (SI Figure S3-S4). Steeper decreases in sulfate and
158
ammonium are observed in summer than in winter, a seasonal variation that is captured by Simds,
159
reflecting faster photochemistry in summer that more closely connects emission changes to local
160
concentration changes.58 Meanwhile nitrate generally has higher concentration and stronger absolute
161
decreases in winter when colder temperatures favor its formation.57
162
Observed significant (p < 0.05) reductions in PWM OA partially drive the PM2.5 trends, and are
163
consistent with the collocated Simds (-0.16 vs. -0.11 µg m-3yr-1) over 1989-2013. This reduction in OA
164
reflects different seasonal mechanisms in Simds. Over winter (SI Figure S3), natural OA sources are 6
ACS Paragon Plus Environment
Page 7 of 27
Environmental Science & Technology
165
weak and simulated OA trends are similar to the annual trends, driven by reductions in anthropogenic
166
OC emissions (SI Figure S2). Over summer (SI Figure S4), observed decreases in OA over the
167
southeastern US are well represented in Simds, due primarily to inclusion of an aqueous formation
168
mechanism of isoprene SOA,59 which yields an SOA decrease driven by reductions in sulfate,34
169
consistent with observational evidence.60, 61 Meanwhile over 2002-2013, Simds underestimates observed
170
PWM OA trends, driven by weaker wintertime OA trends in the simulation relative to observations (SI
171
Figure S3), due to increasing anthropogenic wood burning62 and OC emissions in the east after 2008.
172
BC has significant (p < 0.05) decreases (-2.5 – -4.3 %/yr) in both the observations and Simds
173
because of reductions in BC emission, despite small absolute changes. Finally, weak and mostly
174
insignificant trends in PWM dust and sea salt are observed and simulated.
175
SI Figure S5 shows the spatial distribution of trends in sulfate and PM2.5 over Europe. Significant
176
(p < 0.05) reductions in annual PWM sulfate observed over 1989-2013 (-0.15 µg m-3yr-1) and over 2002-
177
2013 (-0.12 µg m-3yr-1) are seasonally consistent with Simds. The slower sulfate decline and fewer
178
significant trends over 2002-2013 in both the observations and Simds reflect slower SO2 emission
179
reductions (SI Figure S2), consistent with previous investigations.37, 38 The PWM PM2.5 over all sites
180
trend downward at p < 0.1 in observations and Simds over 2002-2013, driven mostly by sites over
181
western Europe while most eastern sites have insignificant trends. The stronger reductions in observed
182
PWM PM2.5 are disproportionately influenced by a single site near the Po Valley of Italy (IT0004R), and
183
the paucity of sites across Europe. Excluding this site reduces the observed annual PWM trends by 75%
184
(-0.15 µg m-3yr-1 or -1.4 %/yr), yielding better agreement with the collocated Simds (-0.23 µg m-3yr-1 or -
185
1.6 %/yr).
186
SI Table S6 summarizes the network-composite PWM concentrations and trends between Simds
187
and in situ data after spatial and temporal collocation. Observed and simulated PWM trends agree within
188
their 95% confidence intervals (CIs) for 33 of the 35 cases. All components except dust and sea salt
189
have decreasing and significant trends in observations, which are mostly well reproduced by Simds. The
190
importance of SIA and OA in driving PWM PM2.5 trends over North America is apparent in both
191
observations and Simds. The Simds underestimates observed OA and its trends in IMPROVE and NAPS,
192
which is an unresolved issue in current CTMs, likely due to missing anthropogenic sources and
193
uncertainties in SOA modeling.63 The Simds also underestimates PWM BC, partially due to
7
ACS Paragon Plus Environment
Environmental Science & Technology
Page 8 of 27
194
heterogeneity of BC64 not resolved in Simds. Our estimates of OA and BC contribution to PWM PM2.5
195
and its trends likely represent lower bounds.
196
In summary, Simds generally well represents observed trends in PM2.5 and its composition across
197
North America and Europe, where emissions are relatively well known. We find greater OA influence
198
than in previous GEOS-Chem simulations30, 42 due to stronger trends in OC emissions,22, 65 and to an
199
aqueous isoprene SOA mechanism.34 The overall consistency of Simds with measurements supports its
200
applicability to represent atmospheric processes to understand the chemical components driving PM2.5
201
trends. We next evaluate the performance of Simds where emissions are less well known.
202
Global trends in PM2.5
203
SI Figure S6 shows global PM2.5 trends over 1998-2013 in Trendsat and Simds. The two datasets exhibit a
204
high degree of consistency in the spatial distribution of trends and significance. Both datasets show
205
significant (p < 0.1) increases over eastern Africa, India, China and the Middle East, and decreases over
206
North America, western Africa and Europe. Regional mismatches are found from forest fires over boreal
207
Canada and Russia, with little impact on regional PWM trends due to low population. The spatial
208
distribution of trends from the two datasets are significantly correlated (r = 0.67, slope = 0.75), with
209
even higher correlation (r = 0.85, slope = 0.76) where both datasets suggest significant trends at p < 0.1.
210
Both Trendsat and Simds show significant (p < 0.05) increases in global PWM PM2.5 (0.53 vs. 0.37 µg m-
211
3
yr-1), with overlapping 95% CIs.
212
SI Table S7 lists the annual PWM PM2.5 and trends over 21 GBD regions for 1998-2013. The
213
downscaling substantially improves the accuracy of PWM PM2.5 over several regions e.g. South Asia,
214
Southern Latin America and Central Asia, where the original simulated PWM PM2.5 underestimates the
215
satellite-based estimates by more than a factor of 2. This improvement reinforces the value of bringing
216
together the satellite observations and simulation. The annual trends from Trendsat and Simds have
217
overlapping 95% CIs for 20 regions (except Oceania with ~0.1% of global population), and consistency
218
in their significance (at 90% confidence) for the first 15 regions that comprise 91% of the global
219
population. Both datasets also suggest the most pronounced and significant (p < 0.05) increases over
220
South Asia (0.97 vs. 0.99 µg m-3yr-1) and East Asia (1.32 vs. 0.86 µg m-3yr-1), in contrast with decreases
221
over High-income North America (-0.31 vs. -0.39 µg m-3yr-1), Western Europe (-0.23 vs. -0.23 µg m-3yr-
222
1
223
and South Asia drive increases in global PWM PM2.5. Two other developing regions (Southeast Asia
) and Central Europe (-0.23 vs. -0.30 µg m-3yr-1). Increases over the densely populated regions of East
8
ACS Paragon Plus Environment
Page 9 of 27
Environmental Science & Technology
224
and Southern Sub-Saharan Africa) and two arid regions (Eastern Sub-Saharan Africa & North Africa
225
and Middle East) also show significant and consistent increases (p < 0.1) in both datasets. This overall
226
agreement in regional PWM trends provides further confidence in the ability of Simds to resolve trends
227
on a global scale. We further extend the analysis of Simds to long-term global trends in PM2.5
228
composition in the context of Trendsat.
229
Global trends in PM2.5 composition
230
Figure 2 shows trends in PM2.5 mass and composition from Simds over 1989-2013. The spatial pattern of
231
simulated PM2.5 trends is similar (r = 0.81) to that over the shorter 1998-2013 period, with a slightly
232
weaker global PWM trend of 0.28 µg m-3yr-1, driven by stronger reductions over Europe and weaker
233
increases over Asia in the 1990s. OA makes the largest individual contribution to the increase in global
234
PWM PM2.5, with a significant PWM trend of 0.10 µg m-3yr-1, driven by substantial increases (> 0.2 µg
235
m-3yr-1) over eastern China and India. This is despite substantial decreases (< -0.2 µg m-3yr-1) in OA
236
over less populous tropical biomass burning regions driven by trends in the fire inventory (SI Figure
237
S2). Sulfate and ammonium have similar spatial distribution (r = 0.93) in annual trends, with
238
pronounced increases (> 0.1 µg m-3yr-1) over India and China and pronounced decreases (< -0.1 µg m-
239
3
240
global PWM trends in sulfate (0.04 µg m-3yr-1) and ammonium (0.03 µg m-3yr-1) are also driven by
241
densely populated regions of South and East Asia. The global PWM nitrate trend of 0.05 µg m-3yr-1
242
exhibits the most pronounced increases (> 0.1 µg m-3yr-1) over China and northern India, and decreases
243
(< -0.1µg m-3yr-1) over the US and Europe. BC trends have similar spatial distribution (r = 0.78) with
244
OA trends, with smaller yet significant contribution (0.02 µg m-3yr-1) to global PWM PM2.5 trends. Dust
245
trends exhibit a dipole with decreases over the western Sahara (< -0.2 µg m-3yr-1) and increases over the
246
eastern Sahara and Arabic Peninsula (> 0.3 µg m-3yr-1); its global PWM trend of 0.03 µg m-3yr-1 reflects
247
these compensating effects. Sea salt trends are minor and insignificant. Trends in PM2.5 composition are
248
similar over the period of satellite observations (SI Figure S7), with largely consistent global PWM
249
trends albeit smaller areas of significant trends.
yr-1) over North America and Europe, driven by trends in regional SO2 emissions (SI Figure S2). The
250
Simds shows an increase in global PWM PM2.5 from 26.7 µg m-3 in 1990 to 32.0 µg m-3 in 2013,
251
consistent with the GBD 2013 study (26.4 µg m-3 in 1990 and 31.8 µg m-3 in 2013).14 These trends are
252
primarily of anthropogenic origin, consistent with recent studies on PM2.5 air quality20,
253
AOD.
19, 68
42, 66, 67
and -3
SIA and OA account for 79% of the significant increase in global PWM PM2.5 (0.28 µg m yr9
ACS Paragon Plus Environment
Environmental Science & Technology
Page 10 of 27
254
1
255
contrast, PM2.5 trends are driven by OA from open fires over tropical rainforests and by mineral dust
256
over North Africa and the Arabic Peninsula. Reddington et al.69 reported recent air quality
257
improvements driven by decreasing OA due to fewer deforestation fires over the Amazon. Boys et al.42
258
attributed the satellite-based PM2.5 trends over the Arabic Peninsula to dust. We further examine the
259
regional driving components based on analysis of regional time series in the next section.
260
Regional trends in populated-weighted mean PM2.5 composition
), and drive PWM PM2.5 trends over densely populated regions (North America, Europe and Asia). In
261
Figure 3 summarizes annual concentrations and trends in PWM PM2.5 and its composition over 21
262
GBD regions from the downscaled simulation and satellite-based estimates. Below we discuss regional
263
trends over 1989-2013.
264
Densely populated regions
265
The regions of South and East Asia have the largest increases in PWM PM2.5, consistent with long-term
266
increases in aerosol loading from satellite AOD39, 40 and visibility observations70, 71 (SI Tables S1 and
267
S2). SIA and OA account for over 90% of these increases. OA is the leading contributor to PWM PM2.5
268
increases over South Asia and the second largest contributor over East Asia. The OA trends over these
269
two regions largely determines its role as the leading contributor to global PWM PM2.5 increases.
270
Over South Asia, OA makes the largest contribution to the annual PWM PM2.5 concentration (38%)
271
and trends (43%), consistent with measurements of high OA fractions in PM2.5,72,
73
272
extensive agricultural and biofuel burning in this region. The residential sector, primarily biofuel
273
burning, accounts for the largest (39%) sectoral fraction of energy consumption in India.21 Lacey et al.74
274
estimated that eliminating residential solid fuel use in India and Bangladesh could avoid ~60 thousand
275
premature deaths from outdoor PM2.5 each year, ~90% of which is associated with OA, illustrating the
276
value of reducing OC emissions across this region.72, 75
reflecting the
277
Over East Asia, nitrate has the largest trends, contributing to 35% of the annual increase in PWM
278
PM2.5, due to continuously increasing NOx and NH3 emissions and to decreasing SO2 emissions since
279
2006 (SI Figure S2). Over 2006-2013, PWM PM2.5 in East Asia insignificantly (p > 0.1) decreases in
280
Trendsat and Simds, despite significantly (p < 0.05) increasing nitrate (0.28 µg m-3yr-1). This recent
281
reversal of PM2.5 trends over China is consistent with other investigations44, 76 (SI Tables S1 and S2),
282
and implies the role of nitrate in driving recent and future PM2.5 trends over China77-79 after recent 10
ACS Paragon Plus Environment
Page 11 of 27
Environmental Science & Technology
283
reductions in SO2 and sulfate.52 China has made progress in reducing NOx emissions after 2011 as
284
observed by satellite observations,80 but reducing nitrate could also benefit from reductions in NH3
285
emissions.56, 79, 81, 82
286
Southeast Asia also has significant increases in PM2.5 especially over the Mainland (e.g. SI Figure
287
S6). Sulfate and ammonium drive the PWM PM2.5 trends, accounting for over 65% of the simulated
288
PWM PM2.5 increase, consistent with the steady increases in fuel consumption (e.g. 275% increase in
289
coal burning from 1990 to 2003), and in SO2 and NH3 emissions over this region.83, 84 OA accounts for
290
45% of PWM PM2.5, revealing the importance of open and residential burning.85 But OA trends are
291
insignificant due to strong meteorologically driven inter-annual variation of fires.86
292
Three populous regions have significant decreases in PWM PM2.5 in both the simulation and
293
satellite-based estimates: Western Europe, High-income North America and Central Europe. Over the
294
two European regions, more than 80% of PWM PM2.5 trends are explained by SIA, with especially
295
pronounced decreases in the 1990s when SO2 emissions decreased more rapidly (SI Figure S2). Nitrate
296
is a prominent component over Europe that comprises over 25% of PWM PM2.5 concentrations.
297
Simulations and observations also indicate that the nitrate contribution to particle mass over Europe
298
usually is similar to sulfate except during summer.28, 87, 88 Simultaneous reductions in NOx and NH3
299
emissions (SI Figure S2) yield a pronounced nitrate decrease, accounting for 15-19% of PWM PM2.5
300
trends. Over High-income North America, the driving roles of sulfate and OA, accounting for 69% of
301
PWM PM2.5 decreases, are consistent with our previous discussions based on in situ data, and with an
302
extensive body of literature (SI Table S1).
303
For these 6 populated regions, PM2.5 chemical components generally exhibit consistent
304
contributions to PWM PM2.5 trends in all seasons due to seasonally consistent emission changes (SI
305
Figure S8-S11). Dust invasion in spring and summer to South Asia, and in spring to East Asia results in
306
seasonal enhancements in the dust fraction in PWM PM2.5 concentration, but makes insignificant
307
contribution to its trends. East Asia has higher PWM PM2.5 and OA concentrations and increases in
308
winter with intensive coal and wood burning for domestic heating, and in fall with enhanced agricultural
309
burning.89, 90 Europe has the highest PWM PM2.5 in winter driven by higher nitrate. North America has
310
higher PM2.5 in summer associated with OA and sulfate.
11
ACS Paragon Plus Environment
Environmental Science & Technology
Page 12 of 27
311
Arid regions
312
Trends in SIA and OA are weak or variable over the two largest desert regions (North Africa and Middle
313
East, and Western Sub-Saharan Africa), where dust explains most of the annual PWM PM2.5
314
concentrations (> 65%) and trends (> 75%). The opposite regional trends and significance levels are
315
well captured by Simds over 1998-2013, and are consistent with prior trend analysis of dust91, 92 and
316
AOD93,
317
dominant but its importance is less pronounced (accounting for 33% of PWM PM2.5 and 57% of its
318
increase) due to steady increases in SIA, OA and BC associated with anthropogenic emissions (SI
319
Figure S2). Over Southern Sub-Saharan Africa with weaker dust emissions and stronger increases in
320
anthropogenic emissions, the dust contribution is negligible compared to the driving role of ammoniated
321
sulfate.
94
over these two regions (SI Table S2). Over Eastern Sub-Saharan Africa, dust remains
322
Dust exhibits strong meteorologically driven inter-annual variation and seasonality, thus its trends
323
exhibit varying significance levels and contributions to PWM PM2.5 trends in different periods and
324
seasons over these 4 regions (SI Figure S8-S11). For example, the simulation indicates highest dust
325
intensity in winter and lowest in summer over Eastern Sub-Saharan Africa, where dust is the dominant
326
driver of PWM PM2.5 increases in winter, while OA becomes the leading contributor in summer.
327
Tropical biomass burning regions
328
PWM PM2.5 changes over Tropical Latin America and Central Sub-Saharan Africa are driven by OA
329
from biogenic sources and biomass burning. Insignificantly (p > 0.1) decreasing PWM PM2.5 in the
330
satellite-based estimates over 1998-2013 are reproduced by the simulation, consistent with recent
331
decreases in AOD69, 95 (SI Table S2) and burning intensities69, 96, 97 over these regions. Similar to the
332
desert regions, strong inter-annual variation of fire intensity97, 98 leads to variable tendencies in different
333
periods in PWM PM2.5 and OA over these two regions. Trends in OA and PM2.5 over 1989-2013 are
334
more uncertain for regions with PM2.5 dominated by open fire sources, due to weaker constraints on fire
335
emissions from satellite observations in early years (1989-1996).99 The PWM PM2.5 trends are solely
336
driven by OA over Central Sub-Saharan Africa for all seasons, while SIA plays the dominant role over
337
Tropical Latin America in winter (SI Figure S8) and spring (SI Figure S9) when the intensity of burning
338
is low.
12
ACS Paragon Plus Environment
Page 13 of 27
Environmental Science & Technology
339
Other regions
340
Insignificant PWM PM2.5 trends are consistently indicated by both the satellite-based estimates and the
341
simulation over High-income Asia Pacific, Southern Latin America and Australasia. Increasing pollutant
342
transport from China5, 100, 101 compensates for the effects of decreasing local emissions (SI Figure S2)
343
and partially explains the insignificant trends over High-income Asia Pacific in recent years. Over the
344
two small dust source regions in the Southern Hemisphere, Simds attributes the insignificant trends in
345
PWM PM2.5 to counteracting effects of different components, i.e., increasing SIA and dust in Southern
346
Latin America and increasing SIA in Australasia counteracts decreasing OA driven by recent decreases
347
in open burning91.
348
The remaining 6 regions, containing 9% of the global population, exhibit less consistency in the
349
magnitude and significance (at p < 0.1) of PWM PM2.5 trends in Trendsat and Simds. Over Central Latin
350
America and Eastern Europe, mismatches in certain years (e.g. 1999-2000 over Central Latin America
351
and 2005-2006 over Eastern Europe) are partially explained by uncertainties in open fire inventories.
352
Over Central Asia and Andean Latin America, the satellite-based estimates suggest significant increases
353
(p < 0.05) in PWM PM2.5 over 1998-2013, consistent with significant SIA increases in the simulation
354
over both regions. Meanwhile the simulation has insignificant trends in total PWM PM2.5 due to
355
compensating effects of other components (e.g. dust over Central Asia and OA over Andean Latin
356
America). The Caribbean and Oceania have strong influences from external transport in Simds. For
357
example, the high dust fraction (31%) in annual PWM PM2.5 over the Caribbean reflects transport from
358
the western African coast in spring and summer.94, 102
359
Contrasts with area-weighted trends
360
Many long-term analyses of regional aerosol composition have focused on area-weighted mean (AWM)
361
or multi-station mean values.19, 26, 28, 32, 37 We find significantly different concentrations and trends in
362
PWM (Figure 3) and AWM (SI Figure S12) PM2.5 composition over the 21 GBD regions. Over
363
populated regions, all PWM trends exceed AWM trends, since higher PM2.5 concentrations generally
364
coexist with higher population densities. For example, PWM PM2.5 concentrations and trends are about
365
twice those of AWM PM2.5 over High-income North America and Eastern Europe. Similarly, SIA
366
generally has higher contributions to PWM PM2.5 and trends than in the AWM case over most regions.
367
In contrast, the contribution of natural dust to PWM PM2.5 concentration is smaller than in the AWM
368
case, especially over regions with both broad desert and populated cities (e.g. Australasia and the 13
ACS Paragon Plus Environment
Environmental Science & Technology
Page 14 of 27
369
African arid regions), because the dustiest regions generally have lower population density. Similarly,
370
the contributions of OA to PWM PM2.5 and its trends are also smaller in the PWM cases than in the
371
AWM cases over biomass burning regions (e.g. Tropical Latin America). The global AWM PM2.5 trend
372
of 0.06 µg m-3yr-1 is distinctively weaker than the significant PWM trends of 0.53 µg m-3yr-1 in Trendsat.
373
In summary, population weighting yields significant differences from area weighting, with implications
374
for conclusions about the dominant PM2.5 components and their contributions to PM2.5 trends.
375
Overall, we found that Simds reproduced the significant reductions in PWM concentrations of PM2.5
376
chemical composition across North America and Europe, and exhibited consistency with satellite-based
377
estimates of PM2.5 trends. Globally, population weighting, along with updated emission inventories and
378
OA processes contributed to our finding that OA is the leading contributor to the global increase in
379
PWM PM2.5 over 1989-2013, followed by nitrate and sulfate. Our analysis also identified regional
380
differences in PM2.5 trends and its key drivers, implying the need for ongoing attention to regional
381
variation in emissions and chemistry. Despite the insights from this study, further work is needed in key
382
areas. Finer resolution simulations would better resolve fine-scale and nonlinear processes affecting
383
PM2.5 production and loss. Outstanding issues in current CTMs (e.g. underestimation of OA63,
384
uncertainties in inter-annual variation in open fire emissions, and regional biases in dust103 and nitrate54)
385
continue to warrant attention. Ongoing work to reduce uncertainties in emission inventories, especially
386
beyond North America and Europe would further improve the accuracy of trends in PM2.5 composition
387
and their contributions to PM2.5 trends. Future developments of satellite remote sensing of aerosol
388
properties and accumulation of long-term data in emerging global PM2.5 speciation networks73 would
389
offer valuable observational constraints.
390 391
ASSOCIATED CONTENT
392
Supporting information: Detailed description of literature results, data processing, GEOS-Chem
393
simulation, historical emission inventories and trend analysis method. Seven supplemental tables and 12
394
figures are included to support the main text.
395 396
AUTHOR INFORMATION
397
Corresponding Author: *Phone: +19024832832; Email:
[email protected] 14
ACS Paragon Plus Environment
Page 15 of 27
398
Environmental Science & Technology
Notes: The authors declare no competing financial interest.
399 400
ACKNOWLEDGEMENT
401
This work was supported by the Natural Science and Engineering Research Council of Canada. Chi Li
402
was partially supported by a Killam Predoctoral Scholarship, and an ACEnet Research Fellowship. We
403
acknowledge
404
(http://views.cira.colostate.edu/fed/DataWizard/), the Environment and Climate Change Canada
405
(http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en) and the World Data Centre for Aerosol
406
(http://ebas.nilu.no) for hosting the in situ data. We also thank the developers of the emission inventories
407
and meteorological data used in this study.
the
Federal
Land
Manager
408
15
ACS Paragon Plus Environment
Environmental
Database
Environmental Science & Technology
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
Page 16 of 27
REFERENCES 1. Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S., Particulate matter, air quality and climate: lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, (14), 8217-8299. 2. West, J. J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M. L.; Brauer, M.; Carmichael, G.; Costa, D. L.; Dockery, D. W.; Kleeman, M.; Krzyzanowski, M.; Künzli, N.; Liousse, C.; Lung, S.-C. C.; Martin, R. V.; Pöschl, U.; Pope, C. A.; Roberts, J. M.; Russell, A. G.; Wiedinmyer, C., “What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health”. Environ. Sci. Technol. 2016, 50, (10), 4895-4904. 3. Wang, K.; Dickinson, R. E.; Liang, S., Clear sky visibility has decreased over land globally from 1973 to 2007. Science 2009, 323, (5920), 1468-1470. 4. Malm, W. C.; Sisler, J. F.; Huffman, D.; Eldred, R. A.; Cahill, T. A., Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 1994, 99, (D1), 1347-1370. 5. Li, C.; Martin, R. V.; Boys, B. L.; van Donkelaar, A.; Ruzzante, S., Evaluation and application of multidecadal visibility data for trend analysis of atmospheric haze. Atmos. Chem. Phys. 2016, 16, (4), 2435-2457. 6. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA 2013. 7. Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M. S., Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 2005, 438, (7071), 1138-1141. 8. Wild, M., Global dimming and brightening: A review. J. Geophys. Res. 2009, 114, (D10); DOI 10.1029/2008JD011470. 9. Forouzanfar, M. H.; Afshin, A.; Alexander, L. T.; Anderson, H. R.; Bhutta, Z. A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F. J.; Cohen, A. J.; Dandona, L.; Estep, K.; Ferrari, A. J.; Frostad, J. J.; Fullman, N.; Gething, P. W.; Godwin, W. W.; Griswold, M.; Kinfu, Y.; Kyu, H. H.; Larson, H. J.; Liang, X.; Lim, S. S.; Liu, P. Y.; Lopez, A. D.; Lozano, R.; Marczak, L.; Mensah, G. A.; Mokdad, A. H.; Moradi-Lakeh, M.; Naghavi, M.; Neal, B.; Reitsma, M. B.; Roth, G. A.; Salomon, J. A.; Sur, P. J.; Vos, T.; Wagner, J. A.; Wang, H.; Zhao, Y.; Zhou, M.; Aasvang, G. M.; Abajobir, A. A.; Abate, K. H.; Abbafati, C.; Abbas, K. M.; Abd-Allah, F.; Abdulle, A. M.; Abera, S. F.; Abraham, B.; Abu-Raddad, L. J.; Abyu, G. Y.; Adebiyi, A. O.; Adedeji, I. A.; Ademi, Z.; Adou, A. K.; Adsuar, J. C.; Agardh, E. E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A. A.; Ajala, O. N.; Akinyemiju, T. F.; Al-Aly, Z.; Alam, K.; Alam, N. K. M.; Aldhahri, S. F.; Aldridge, R. W.; Alemu, Z. A.; Ali, R.; Alkerwi, A. a.; Alla, F.; Allebeck, P.; Alsharif, U.; Altirkawi, K. A.; Martin, E. A.; Alvis-Guzman, N.; Amare, A. T.; Amberbir, A.; Amegah, A. K.; Amini, H.; Ammar, W.; Amrock, S. M.; Andersen, H. H.; Anderson, B. O.; Antonio, C. A. T.; Anwari, P.; Ärnlöv, J.; Artaman, A.; Asayesh, H.; Asghar, R. J.; Assadi, R.; Atique, S.; Avokpaho, E. F. G. A.; Awasthi, A.; Quintanilla, B. P. A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M. C.; Balakrishnan, K.; Barac, A.; Barber, R. M.; Barker-Collo, S. L.; Bärnighausen, T.; Barquera, S.; Barregard, L.; Barrero, L. H.; Basu, S.; Batis, C.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Bell, M. L.; Bello, A. K.; Bennett, D. A.; Bensenor, I. M.; Berhane, A.; Bernabé, E.; Betsu, B. D.; Beyene, A. S.; Bhala, N.; Bhansali, A.; Bhatt, S.; Biadgilign, S.; Bikbov, B.; Bisanzio, D.; Bjertness, E.; Blore, J. D.; Borschmann, R.; Boufous, S.; Bourne, R. R. A.; Brainin, M.; Brazinova, A.; Breitborde, N. J. K.; Brenner, H.; Broday, D. M.; Brugha, T. S.; Brunekreef, B.; Butt, Z. A.; Cahill, L. E.; Calabria, B.; Campos-Nonato, I. R.; Cárdenas, R.; Carpenter, D. O.; Casey, D. C.; Castañeda-Orjuela, C. A.; Rivas, J. C.; Castro, R. E.; Catalá-López, F.; Chang, J.-C.; Chiang, P. P.C.; Chibalabala, M.; Chimed-Ochir, O.; Chisumpa, V. H.; Chitheer, A. A.; Choi, J.-Y. J.; Christensen, H.; Christopher, D. J.; Ciobanu, L. G.; Coates, M. M.; Colquhoun, S. M.; Cooper, L. T.; Cooperrider, K.; Cornaby, L.; Cortinovis, M.; Crump, J. A.; Cuevas-Nasu, L.; Damasceno, A.; Dandona, R.; Darby, S. C.; Dargan, P. I.; das Neves, J.; Davis, A. C.; Davletov, K.; de Castro, E. F.; De la Cruz-Góngora, V.; De Leo, D.; Degenhardt, L.; Del Gobbo, L. C.; del Pozo-Cruz, B.; Dellavalle, R. P.; Deribew, A.; Jarlais, D. C. D.; Dharmaratne, S. D.; Dhillon, P. K.; Diaz-Torné, C.; Dicker, D.; Ding, E. L.; Dorsey, E. R.; Doyle, K. E.; Driscoll, T. R.; Duan, L.; Dubey, M.; Duncan, B. B.; Elyazar, I.; Endries, A. Y.; Ermakov, S. P.; Erskine, H. E.; Eshrati, B.; Esteghamati, A.; Fahimi, S.; Faraon, E. J. A.; Farid, T. A.; Farinha, C. S. e. S.; Faro, A.; Farvid, M. S.; Farzadfar, F.; Feigin, V. L.; 16
ACS Paragon Plus Environment
Page 17 of 27
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
Environmental Science & Technology
Fereshtehnejad, S.-M.; Fernandes, J. G.; Fischer, F.; Fitchett, J. R. A.; Fleming, T.; Foigt, N.; Foreman, K.; Fowkes, F. G. R.; Franklin, R. C.; Fürst, T.; Futran, N. D.; Gakidou, E.; Garcia-Basteiro, A. L.; Gebrehiwot, T. T.; Gebremedhin, A. T.; Geleijnse, J. M.; Gessner, B. D.; Giref, A. Z.; Giroud, M.; Gishu, M. D.; Goenka, S.; Gomez-Cabrera, M. C.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S. V.; Gotay, C. C.; Goto, A.; Gouda, H. N.; Gugnani, H. C.; Guillemin, F.; Guo, Y.; Gupta, R.; Gupta, R.; Gutiérrez, R. A.; Haagsma, J. A.; Hafezi-Nejad, N.; Haile, D.; Hailu, G. B.; Halasa, Y. A.; Hamadeh, R. R.; Hamidi, S.; Handal, A. J.; Hankey, G. J.; Hao, Y.; Harb, H. L.; Harikrishnan, S.; Haro, J. M.; Hassanvand, M. S.; Hassen, T. A.; Havmoeller, R.; Heredia-Pi, I. B.; Hernández-Llanes, N. F.; Heydarpour, P.; Hoek, H. W.; Hoffman, H. J.; Horino, M.; Horita, N.; Hosgood, H. D.; Hoy, D. G.; Hsairi, M.; Htet, A. S.; Hu, G.; Huang, J. J.; Husseini, A.; Hutchings, S. J.; Huybrechts, I.; Iburg, K. M.; Idrisov, B. T.; Ileanu, B. V.; Inoue, M.; Jacobs, T. A.; Jacobsen, K. H.; Jahanmehr, N.; Jakovljevic, M. B.; Jansen, H. A. F. M.; Jassal, S. K.; Javanbakht, M.; Jayatilleke, A. U.; Jee, S. H.; Jeemon, P.; Jha, V.; Jiang, Y.; Jibat, T.; Jin, Y.; Johnson, C. O.; Jonas, J. B.; Kabir, Z.; Kalkonde, Y.; Kamal, R.; Kan, H.; Karch, A.; Karema, C. K.; Karimkhani, C.; Kasaeian, A.; Kaul, A.; Kawakami, N.; Kazi, D. S.; Keiyoro, P. N.; Kemp, A. H.; Kengne, A. P.; Keren, A.; Kesavachandran, C. N.; Khader, Y. S.; Khan, A. R.; Khan, E. A.; Khan, G.; Khang, Y.-H.; Khatibzadeh, S.; Khera, S.; Khoja, T. A. M.; Khubchandani, J.; Kieling, C.; Kim, C.-i.; Kim, D.; Kimokoti, R. W.; Kissoon, N.; Kivipelto, M.; Knibbs, L. D.; Kokubo, Y.; Kopec, J. A.; Koul, P. A.; Koyanagi, A.; Kravchenko, M.; Kromhout, H.; Krueger, H.; Ku, T.; Defo, B. K.; Kuchenbecker, R. S.; Bicer, B. K.; Kuipers, E. J.; Kumar, G. A.; Kwan, G. F.; Lal, D. K.; Lalloo, R.; Lallukka, T.; Lan, Q.; Larsson, A.; Latif, A. A.; Lawrynowicz, A. E. B.; Leasher, J. L.; Leigh, J.; Leung, J.; Levi, M.; Li, X.; Li, Y.; Liang, J.; Liu, S.; Lloyd, B. K.; Logroscino, G.; Lotufo, P. A.; Lunevicius, R.; MacIntyre, M.; Mahdavi, M.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Malta, D. C.; Manamo, W. A. A.; Mapoma, C. C.; Marcenes, W.; Martin, R. V.; Martinez-Raga, J.; Masiye, F.; Matsushita, K.; Matzopoulos, R.; Mayosi, B. M.; McGrath, J. J.; McKee, M.; Meaney, P. A.; Medina, C.; Mehari, A.; Mejia-Rodriguez, F.; Mekonnen, A. B.; Melaku, Y. A.; Memish, Z. A.; Mendoza, W.; Mensink, G. B. M.; Meretoja, A.; Meretoja, T. J.; Mesfin, Y. M.; Mhimbira, F. A.; Miller, T. R.; Mills, E. J.; Mirarefin, M.; Misganaw, A.; Mock, C. N.; Mohammadi, A.; Mohammed, S.; Mola, G. L. D.; Monasta, L.; Hernandez, J. C. M.; Montico, M.; Morawska, L.; Mori, R.; Mozaffarian, D.; Mueller, U. O.; Mullany, E.; Mumford, J. E.; Murthy, G. V. S.; Nachega, J. B.; Naheed, A.; Nangia, V.; Nassiri, N.; Newton, J. N.; Ng, M.; Nguyen, Q. L.; Nisar, M. I.; Pete, P. M. N.; Norheim, O. F.; Norman, R. E.; Norrving, B.; Nyakarahuka, L.; Obermeyer, C. M.; Ogbo, F. A.; Oh, I.-H.; Oladimeji, O.; Olivares, P. R.; Olsen, H.; Olusanya, B. O.; Olusanya, J. O.; Opio, J. N.; Oren, E.; Orozco, R.; Ortiz, A.; Ota, E.; Pa, M.; Pana, A.; Park, E.-K.; Parry, C. D.; Parsaeian, M.; Patel, T.; Caicedo, A. J. P.; Patil, S. T.; Patten, S. B.; Patton, G. C.; Pearce, N.; Pereira, D. M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M. R.; Piel, F. B.; Pillay, J. D.; Plass, D.; Polinder, S.; Pond, C. D.; Pope, C. A.; Pope, D.; Popova, S.; Poulton, R. G.; Pourmalek, F.; Prasad, N. M.; Qorbani, M.; Rabiee, R. H. S.; Radfar, A.; Rafay, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M. H. U.; Rahman, S. U.; Rai, R. K.; Rajsic, S.; Raju, M.; Ram, U.; Rana, S. M.; Ranganathan, K.; Rao, P.; García, C. A. R.; Refaat, A. H.; Rehm, C. D.; Rehm, J.; Reinig, N.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A. L.; Rivera, J. A.; Roba, H. S.; Rodriguez, A.; RodriguezRamirez, S.; Rojas-Rueda, D.; Roman, Y.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Saleh, M. M.; Sanabria, J. R.; Sanchez-Niño, M. D.; Sánchez-Pimienta, T. G.; Sandar, L.; Santomauro, D. F.; Santos, I. S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schmidhuber, J.; Schmidt, M. I.; Schneider, I. J. C.; Schöttker, B.; Schutte, A. E.; Schwebel, D. C.; Scott, J. G.; Seedat, S.; Sepanlou, S. G.; Servan-Mori, E. E.; Shaheen, A.; Shahraz, S.; Shaikh, M. A.; Levy, T. S.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Sheth, K. N.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shin, M.-J.; Shiri, R.; Shishani, K.; Shiue, I.; Shrime, M. G.; Sigfusdottir, I. D.; Silva, D. A. S.; Silveira, D. G. A.; Silverberg, J. I.; Simard, E. P.; Sindi, S.; Singh, A.; Singh, J. A.; Singh, P. K.; Slepak, E. L.; Soljak, M.; Soneji, S.; Sorensen, R. J. D.; Sposato, L. A.; Sreeramareddy, C. T.; Stathopoulou, V.; Steckling, N.; Steel, N.; Stein, D. J.; Stein, M. B.; Stöckl, H.; Stranges, S.; Stroumpoulis, K.; Sunguya, B. F.; Swaminathan, S.; Sykes, B. L.; Szoeke, C. E. I.; Tabarés-Seisdedos, R.; Takahashi, K.; Talongwa, R. T.; Tandon, N.; Tanne, D.; Tavakkoli, M.; Taye, B. W.; Taylor, H. R.; Tedla, B. A.; Tefera, W. M.; Tegegne, T. K.; Tekle, D. Y.; Terkawi, A. S.; Thakur, J. S.; Thomas, B. A.; Thomas, M. L.; Thomson, A. J.; Thorne-Lyman, A. L.; Thrift, A. G.; Thurston, G. D.; Tillmann, T.; Tobe-Gai, R.; Tobollik, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J. A.; Tran, B. X.; Dimbuene, Z. T.; Tsilimparis, N.; Tura, A. K.; Tuzcu, E. M.; Tyrovolas, S.; Ukwaja, K. N.; Undurraga, E. A.; Uneke, C. J.; Uthman, O. A.; van Donkelaar, A.; van Os, J.; Varakin, Y. Y.; 17
ACS Paragon Plus Environment
Environmental Science & Technology
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
Page 18 of 27
Vasankari, T.; Veerman, J. L.; Venketasubramanian, N.; Violante, F. S.; Vollset, S. E.; Wagner, G. R.; Waller, S. G.; Wang, J. L.; Wang, L.; Wang, Y.; Weichenthal, S.; Weiderpass, E.; Weintraub, R. G.; Werdecker, A.; Westerman, R.; Whiteford, H. A.; Wijeratne, T.; Wiysonge, C. S.; Wolfe, C. D. A.; Won, S.; Woolf, A. D.; Wubshet, M.; Xavier, D.; Xu, G.; Yadav, A. K.; Yakob, B.; Yalew, A. Z.; Yano, Y.; Yaseri, M.; Ye, P.; Yip, P.; Yonemoto, N.; Yoon, S.-J.; Younis, M. Z.; Yu, C.; Zaidi, Z.; Zaki, M. E. S.; Zhu, J.; Zipkin, B.; Zodpey, S.; Zuhlke, L. J.; Murray, C. J. L., Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 2016, 388, (10053), 1659-1724. 10. Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris Jr, B. G.; Speizer, F. E., An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, (24), 17531759. 11. Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D., Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health 2013, 12, (1); DOI 10.1186/1476-069X-12-43. 12. US EPA, Integrated science assessment for particulate matter. US Environmental Protection Agency Washington, DC, EPA/600/R-08/139F 2009. 13. van Donkelaar, A.; Martin, R. V.; Brauer, M.; Hsu, N. C.; Kahn, R. A.; Levy, R. C.; Lyapustin, A.; Sayer, A. M.; Winker, D. M., Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, (7), 3762-3772. 14. Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R. V.; Dentener, F.; Dingenen, R. v.; Estep, K.; Amini, H.; Apte, J. S., Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 2015, 50, (1), 79-88. 15. Crouse, D. L.; Peters, P. A.; van Donkelaar, A.; Goldberg, M. S.; Villeneuve, P. J.; Brion, O.; Khan, S.; Atari, D. O.; Jerrett, M.; Pope III, C. A., Risk of Nonaccidental and Cardiovascular Mortality in Relation to Longterm Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 2012, 120, (5), 708-714. 16. Correia, A. W.; Pope, C. A.; Dockery, D. W.; Wang, Y.; Ezzati, M.; Dominici, F., The Effect of Air Pollution Control on Life Expectancy in the United States: An Analysis of 545 US counties for the period 2000 to 2007. Epidemiology (Cambridge, Mass.) 2013, 24, (1), 23-31. 17. Pinault, L.; Tjepkema, M.; Crouse, D. L.; Weichenthal, S.; van Donkelaar, A.; Martin, R. V.; Brauer, M.; Chen, H.; Burnett, R. T., Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environmental Health 2016, 15, (1); DOI 10.1186/s12940-016-0111-6. 18. Apte, J. S.; Marshall, J. D.; Cohen, A. J.; Brauer, M., Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, (13), 8057-8066. 19. Chin, M.; Diehl, T.; Tan, Q.; Prospero, J. M.; Kahn, R. A.; Remer, L. A.; Yu, H.; Sayer, A. M.; Bian, H.; Geogdzhayev, I. V.; Holben, B. N.; Howell, S. G.; Huebert, B. J.; Hsu, N. C.; Kim, D.; Kucsera, T. L.; Levy, R. C.; Mishchenko, M. I.; Pan, X.; Quinn, P. K.; Schuster, G. L.; Streets, D. G.; Strode, S. A.; Torres, O.; Zhao, X. P., Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 2014, 14, (7), 3657-3690. 20. Daskalakis, N.; Tsigaridis, K.; Myriokefalitakis, S.; Fanourgakis, G. S.; Kanakidou, M., Large gain in air quality compared to an alternative anthropogenic emissions scenario. Atmos. Chem. Phys. 2016, 16, (15), 97719784. 21. Lu, Z.; Zhang, Q.; Streets, D. G., Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos. Chem. Phys. 2011, 11, (18), 9839-9864. 22. Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C. M.; Wei, C., Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13, (15), 7531-7549. 23. Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C., Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 2016, 16, (6), 3825-3841. 18
ACS Paragon Plus Environment
Page 19 of 27
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
Environmental Science & Technology
24. Vestreng, V.; Myhre, G.; Fagerli, H.; Reis, S.; Tarrasón, L., Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos. Chem. Phys. 2007, 7, (13), 3663-3681. 25. Brook, J. R.; Dann, T. F.; Bonvalot, Y., Observations and Interpretations from the Canadian Fine Particle Monitoring Program. J. Air Waste Manag. Assoc. 1999, 49, (9), 35-44. 26. US EPA, Our Nation’s Air – Status and Trends Through 2015, US Environmental Protection Agency Washington, DC 2016. 27. Wang, K.; Dickinson, R.; Su, L.; Trenberth, K., Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011. Atmos. Chem. Phys. 2012, 12, (19), 9387-9398. 28. Xing, J.; Mathur, R.; Pleim, J.; Hogrefe, C.; Gan, C. M.; Wong, D. C.; Wei, C.; Gilliam, R.; Pouliot, G., Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. Atmos. Chem. Phys. 2015, 15, (5), 2723-2747. 29. Silvern, R. F.; Jacob, D. J.; Kim, P. S.; Marais, E. A.; Turner, J. R.; Campuzano-Jost, P.; Jimenez, J. L., Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol. Atmos. Chem. Phys. 2017, 17, (8), 5107-5118. 30. Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W. T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D., Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 1: Aerosol trends and radiative forcing. Atmos. Chem. Phys. 2012, 12, (7), 3333-3348. 31. Malm, W. C.; Schichtel, B. A.; Ames, R. B.; Gebhart, K. A., A 10-year spatial and temporal trend of sulfate across the United States. J. Geophys. Res. 2002, 107, (D22); DOI 10.1029/2002JD002107. 32. Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M. L., Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 2012, 12, (21), 10353-10365. 33. Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Frank, N. H., Spatial and Temporal Trends in PM2.5 Organic and Elemental Carbon across the United States. Adv. Meteorol. 2013, 2013, 13; DOI 10.1155/2013/367674. 34. Marais, E.A.; Jacob, D.J.; Turner, J. R.; Mickley, L. J., Evidence of 1991-2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls. Environ. Res. Lett. 2017; DOI 10.1088/17489326/aa69c8. 35. Zhang, L.; Henze, D. K.; Grell, G. A.; Torres, O.; Jethva, H.; Lamsal, L. N., What factors control the trend of increasing AAOD over the United States in the last decade? J. Geophys. Res. 2017, 122, (3), 1797-1810. 36. Murphy, D. M.; Chow, J. C.; Leibensperger, E. M.; Malm, W. C.; Pitchford, M.; Schichtel, B. A.; Watson, J. G.; White, W. H., Decreases in elemental carbon and fine particle mass in the United States. Atmos. Chem. Phys. 2011, 11, (10), 4679-4686. 37. Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A., Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos. Chem. Phys. 2015, 15, (16), 9477-9500. 38. Tørseth, K.; Aas, W.; Breivik, K.; Fjæraa, A. M.; Fiebig, M.; Hjellbrekke, A. G.; Lund Myhre, C.; Solberg, S.; Yttri, K. E., Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009. Atmos. Chem. Phys. 2012, 12, (12), 5447-5481. 39. Hsu, N.; Gautam, R.; Sayer, A.; Bettenhausen, C.; Li, C.; Jeong, M.; Tsay, S.; Holben, B., Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037-8053. 40. Yoon, J.; Burrows, J. P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D. Y.; Richter, A.; Hilboll, A., Changes in atmospheric aerosol loading retrieved from space-based measurements during the past decade. Atmos. Chem. Phys. 2014, 14, (13), 6881-6902. 41. Mehta, M.; Singh, R.; Singh, A.; Singh, N.; Anshumali, Recent global aerosol optical depth variations and trends — A comparative study using MODIS and MISR level 3 datasets. Remote. Sens. Environ. 2016, 181, 137-150. 42. Boys, B.; Martin, R.; van Donkelaar, A.; MacDonell, R.; Hsu, N.; Cooper, M.; Yantosca, R.; Lu, Z.; Streets, D. G.; Zhang, Q., Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter. Environ. Sci. Technol. 2014, 48, (19), 11109-11118. 19
ACS Paragon Plus Environment
Environmental Science & Technology
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
Page 20 of 27
43. Geng, G.; Zhang, Q.; Tong, D.; Li, M.; Wang, S.; He, K., Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012. Atmos. Chem. Phys. 2017, 17, 9187-9203. 44. Ma, Z.; Hu, X.; Sayer, A. M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y., Satellitebased spatiotemporal trends in PM2. 5 concentrations: China, 2004–2013. Environ. Health Perspect. 2015, 124, 184-192. 45. Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D., A review of landuse regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, (33), 75617578. 46. Chen, L.-W. A.; Watson, J. G.; Chow, J. C.; DuBois, D. W.; Herschberger, L., Chemical mass balance source apportionment for combined PM2.5 measurements from U.S. non-urban and urban long-term networks. Atmos. Environ. 2010, 44, (38), 4908-4918. 47. Punger, E. M.; West, J. J., The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA. Air Qual. Atmos. Health 2013, 6, (3), 563-573. 48. Li, Y.; Henze, D. K.; Jack, D.; Kinney, P. L., The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual. Atmos. Health 2016, 9, (1), 51-68. 49. van Donkelaar, A.; Martin, R. V.; Brauer, M.; Boys, B. L., Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, (2), 135-143. 50. Global Estimates of Surface PM2.5. Atmospheric Composition Analysis Group. http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 (accessed March 13, 2017). 51. Lee, C. J.; Martin, R. V.; Henze, D. K.; Brauer, M.; Cohen, A.; Donkelaar, A. v., Response of Global Particulate-Matter-Related Mortality to Changes in Local Precursor Emissions. Environ. Sci. Technol. 2015, 49, (7), 4335-4344. 52. Wang, S.; Zhang, Q.; Martin, R. V.; Philip, S.; Liu, F.; Li, M.; Jiang, X.; He, K., Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants. Environ. Res. Lett. 2015, 10, (11); DOI 10.1088/1748-9326/10/11/114015. 53. Zhang, L.; Jacob, D. J.; Knipping, E. M.; Kumar, N.; Munger, J. W.; Carouge, C. C.; van Donkelaar, A.; Wang, Y. X.; Chen, D., Nitrogen deposition to the United States: distribution, sources, and processes. Atmos. Chem. Phys. 2012, 12, (10), 4539-4554. 54. Heald, C. L.; Collett Jr, J. L.; Lee, T.; Benedict, K. B.; Schwandner, F. M.; Li, Y.; Clarisse, L.; Hurtmans, D. R.; Van Damme, M.; Clerbaux, C.; Coheur, P. F.; Philip, S.; Martin, R. V.; Pye, H. O. T., Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos. Chem. Phys. 2012, 12, (21), 1029510312. 55. Zhu, L.; Henze, D. K.; Cady-Pereira, K. E.; Shephard, M. W.; Luo, M.; Pinder, R. W.; Bash, J. O.; Jeong, G. R., Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model. J. Geophys. Res. 2013, 118, (8), 3355-3368. 56. Holt, J.; Selin, N. E.; Solomon, S., Changes in Inorganic Fine Particulate Matter Sensitivities to Precursors Due to Large-Scale US Emissions Reductions. Environ. Sci. Technol. 2015, 49, (8), 4834-4841. 57. Pinder, R. W.; Dennis, R. L.; Bhave, P. V., Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos. Environ. 2008, 42, (6), 1275-1286. 58. Paulot, F.; Fan, S.; Horowitz, L. W., Contrasting seasonal responses of sulfate aerosols to declining SO2 emissions in the Eastern U.S.: Implications for the efficacy of SO2 emission controls. Geophys. Res. Lett. 2017, 44, (1), 455-464. 59. Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F., Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls. Atmos. Chem. Phys. 2016, 16, (3), 1603-1618. 60. Blanchard, C. L.; Hidy, G. M.; Shaw, S.; Baumann, K.; Edgerton, E. S., Effects of emission reductions on organic aerosol in the southeastern United States. Atmos. Chem. Phys. 2016, 16, (1), 215-238. 20
ACS Paragon Plus Environment
Page 21 of 27
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
Environmental Science & Technology
61. Xu, L.; Guo, H.; Boyd, C. M.; Klein, M.; Bougiatioti, A.; Cerully, K. M.; Hite, J. R.; Isaacman-VanWertz, G.; Kreisberg, N. M.; Knote, C.; Olson, K.; Koss, A.; Goldstein, A. H.; Hering, S. V.; de Gouw, J.; Baumann, K.; Lee, S.-H.; Nenes, A.; Weber, R. J.; Ng, N. L., Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. 2015, 112, (1), 37-42. 62. US EPA, 2011 National Emissions Inventory, version 2 Technical Support Document. US Environmental Protection Agency, Research Triangle Park, NC 2015. 63. Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; Bergman, T.; Berntsen, T. K.; Beukes, J. P.; Bian, H.; Carslaw, K. S.; Chin, M.; Curci, G.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Gong, S. L.; Hodzic, A.; Hoyle, C. R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevåg, A.; Koch, D.; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Mann, G. W.; Mihalopoulos, N.; Morcrette, J. J.; Müller, J. F.; Myhre, G.; Myriokefalitakis, S.; Ng, N. L.; O'Donnell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, L. M.; Schulz, M.; Sciare, J.; Seland, Ø.; Shindell, D. T.; Sillman, S.; Skeie, R. B.; Spracklen, D.; Stavrakou, T.; Steenrod, S. D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, K.; Yu, F.; Wang, Z.; Wang, Z.; Zaveri, R. A.; Zhang, H.; Zhang, K.; Zhang, Q.; Zhang, X., The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 2014, 14, (19), 10845-10895. 64. Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H., Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States. J. Geophys. Res. 2014, 119, (22), 12,832-12,849. 65. Ridley, D.A.; Heald, C.L.; Ridley, K.J.; and Kroll, J.H., Causes and consequences of decreasing atmospheric organic aerosol in the U.S. submitted to Proc. Natl. Acad. Sci. 2017 (under review). 66. Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, (7569), 367-371. 67. Silva, R. A.; Adelman, Z.; Fry, M. M.; West, J. J., The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ. Health Perspect. 2016, 124, (11), 1776. 68. Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A. K.; Astitha, M., AOD trends during 2001– 2010 from observations and model simulations. Atmos. Chem. Phys. 2015, 15, (10), 5521-5535. 69. Reddington, C. L.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W. T.; Coe, H.; Spracklen, D. V., Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geosci. 2015, 8, (10), 768-771. 70. Jaswal, A. K.; Kumar, N.; Prasad, A. K.; Kafatos, M., Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Nat. Hazards 2013, 68, (2), 929-954. 71. Che, H.; Zhang, X.; Li, Y.; Zhou, Z.; Qu, J. J., Horizontal visibility trends in China 1981–2005. Geophys. Res. Lett. 2007, 34, (24); DOI 10.1029/2007GL031450. 72. Ram, K.; Sarin, M. M.; Tripathi, S. N., Temporal Trends in Atmospheric PM2.5, PM10, Elemental Carbon, Organic Carbon, Water-Soluble Organic Carbon, and Optical Properties: Impact of Biomass Burning Emissions in The Indo-Gangetic Plain. Environ. Sci. Technol. 2012, 46, (2), 686-695. 73. Snider, G.; Weagle, C. L.; Murdymootoo, K. K.; Ring, A.; Ritchie, Y.; Stone, E.; Walsh, A.; Akoshile, C.; Anh, N. X.; Balasubramanian, R.; Brook, J.; Qonitan, F. D.; Dong, J.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Lagrosas, N.; Lestari, P.; Ma, Z.; Misra, A.; Norford, L. K.; Quel, E. J.; Salam, A.; Schichtel, B.; Segev, L.; Tripathi, S.; Wang, C.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.; Martins, J. V.; Rudich, Y.; Martin, R. V., Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos. Chem. Phys. 2016, 16, (15), 9629-9653. 74. Lacey, F. G.; Henze, D. K.; Lee, C. J.; van Donkelaar, A.; Martin, R. V., Transient climate and ambient health impacts due to national solid fuel cookstove emissions. Proc. Natl. Acad. Sci. 2017, 114, (6), 1269-1274. 75. Venkataraman, C.; Habib, G.; Eiguren-Fernandez, A.; Miguel, A. H.; Friedlander, S. K., Residential Biofuels in South Asia: Carbonaceous Aerosol Emissions and Climate Impacts. Science 2005, 307, (5714), 14541456. 76. Tang, W.; Yang, K.; Qin, J.; Niu, X.; Lin, C.; Jing, X., A revisit to decadal change of aerosol optical depth and its impact on global radiation over China. Atmos. Environ. 2017, 150, 106-115. 21
ACS Paragon Plus Environment
Environmental Science & Technology
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
Page 22 of 27
77. Li, K.; Liao, H.; Zhu, J.; Moch, J. M., Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China. J. Geophys. Res. 2016, 121, (21), 12,985-13,008. 78. Matsui, H.; Koike, M., Enhancement of aerosol responses to changes in emissions over East Asia by gasoxidant-aerosol coupling and detailed aerosol processes. Proc. Natl. Acad. Sci. 2016, 121, (12), 7161-7171. 79. Wang, Y.; Zhang, Q. Q.; He, K.; Zhang, Q.; Chai, L., Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 2013, 13, (5), 2635-2652. 80. de Foy, B.; Lu, Z.; Streets, D. G., Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan. Sci. Rep. 2016, 6; DOI 10.1038/srep35912. 81. Pinder, R. W.; Gilliland, A. B.; Dennis, R. L., Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys. Res. Lett. 2008, 35, (12); DOI 10.1029/2008GL033732. 82. Backes, A. M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M., Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 2016, 126, 153-161. 83. Li, M.; Zhang, Q.; Kurokawa, J. I.; Woo, J. H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D. G.; Carmichael, G. R.; Cheng, Y.; Hong, C.; Huo, H.; Jiang, X.; Kang, S.; Liu, F.; Su, H.; Zheng, B., MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, (2), 935-963. 84. Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T., An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys. 2007, 7, (16), 44194444. 85. Cohen, J. B.; Lecoeur, E.; Hui Loong Ng, D., Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia. Atmos. Chem. Phys. 2017, 17, (1), 721-743. 86. Marlier, M. E.; DeFries, R. S.; Voulgarakis, A.; Kinney, P. L.; Randerson, J. T.; Shindell, D. T.; Chen, Y.; Faluvegi, G., El Nino and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change 2013, 3, (2), 131-136. 87. Schaap, M.; van Loon, M.; ten Brink, H. M.; Dentener, F. J.; Builtjes, P. J. H., Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys. 2004, 4, (3), 857-874. 88. Putaud, J. P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H. C.; Harrison, R. M.; Herrmann, H.; Hitzenberger, R.; Hüglin, C.; Jones, A. M.; KasperGiebl, A.; Kiss, G.; Kousa, A.; Kuhlbusch, T. A. J.; Löschau, G.; Maenhaut, W.; Molnar, A.; Moreno, T.; Pekkanen, J.; Perrino, C.; Pitz, M.; Puxbaum, H.; Querol, X.; Rodriguez, S.; Salma, I.; Schwarz, J.; Smolik, J.; Schneider, J.; Spindler, G.; ten Brink, H.; Tursic, J.; Viana, M.; Wiedensohler, A.; Raes, F., A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, (10), 1308-1320. 89. Zhang, X. Y.; Wang, Y. Q.; Niu, T.; Zhang, X. C.; Gong, S. L.; Zhang, Y. M.; Sun, J. Y., Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, (2), 779-799. 90. Zhang, X. Y.; Wang, Y. Q.; Zhang, X. C.; Guo, W.; Gong, S. L., Carbonaceous aerosol composition over various regions of China during 2006. J. Geophys. Res. 2008, 113, (D14); DOI 10.1029/2007JD009525. 91. Shao, Y.; Klose, M.; Wyrwoll, K.-H., Recent global dust trend and connections to climate forcing. J. Geophys. Res. 2013, 118, (19), 11,107-11,118. 92. Ganor, E.; Osetinsky, I.; Stupp, A.; Alpert, P., Increasing trend of African dust, over 49 years, in the eastern Mediterranean. Journal of Geophysical Research: Atmospheres 2010, 115, (D7); DOI 10.1029/2009JD012500. 93. Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G. L.; Lelieveld, J., Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 2016, 16, (8), 5063-5073. 94. Ridley, D. A.; Heald, C. L.; Prospero, J. M., What controls the recent changes in African mineral dust aerosol across the Atlantic? Atmos. Chem. Phys. 2014, 14, (11), 5735-5747.
22
ACS Paragon Plus Environment
Page 23 of 27
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
Environmental Science & Technology
95. Bevan, S. L.; North, P. R. J.; Grey, W. M. F.; Los, S. O.; Plummer, S. E., Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. J. Geophys. Res. 2009, 114, (D9); DOI 10.1029/2008JD011112. 96. Andela, N.; van der Werf, G. R., Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition. Nature Clim. Change 2014, 4, (9), 791-795. 97. Giglio, L.; Randerson, J. T.; van der Werf, G. R., Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. 2013, 118, (1), 317-328. 98. Duncan, B. N.; Martin, R. V.; Staudt, A. C.; Yevich, R.; Logan, J. A., Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 2003, 108, (D2); DOI 10.1029/2002JD002378. 99. Schultz, M. G.; Heil, A.; Hoelzemann, J. J.; Spessa, A.; Thonicke, K.; Goldammer, J. G.; Held, A. C.; Pereira, J. M. C.; van het Bolscher, M., Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 2008, 22, (2); DOI 10.1029/2007GB003031. 100. Aikawa, M.; Ohara, T.; Hiraki, T.; Oishi, O.; Tsuji, A.; Yamagami, M.; Murano, K.; Mukai, H., Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent. Atmos. Environ. 2010, 44, (3), 381-391. 101. Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T., Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010. Atmos. Chem. Phys. 2012, 12, (5), 2631-2640. 102. Prospero, J. M.; Lamb, P. J., African Droughts and Dust Transport to the Caribbean: Climate Change Implications. Science 2003, 302, (5647), 1024-1027. 103. Ridley, D. A.; Heald, C. L.; Kok, J. F.; Zhao, C., An observationally constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys. 2016, 16, (23), 15097-15117.
787
23
ACS Paragon Plus Environment
Environmental Science & Technology
Page 24 of 27
788
FIGURE CAPTIONS
789
Figure 1. Spatial distribution of long-term (1989-2013) and short-term (2002-2013) annual trends in
790
PM2.5 and its chemical composition from the downscaled simulation (Simds, background) and in situ
791
observations (symbols, with different shapes representing different networks). The significance (i.e. p
792
value) of derived trends over land is indicated by the opaqueness of the colors. The color scale of trends
793
for PM2.5 (saturated at ±1.0 µg m-3yr-1) and its chemical composition (saturated at ±0.4 µg m-3yr-1)
794
differ. PM2.5 is simulated at 35% RH and its individual components are presented without aerosol water,
795
for consistency with observational protocols. Composite trends (in µg m-3yr-1, with relative trends
796
in %/yr in brackets) in population-weighted mean concentration from all sites are shown for
797
observations (Obs) and spatiotemporally collocated Simds. Trends with >90% significance (p < 0.1) are
798
followed by one asterisk (*), and those with >95% significance (p < 0.05) are followed by two asterisks
799
(**).
800
Figure 2. Annual trends in global PM2.5 and its chemical composition over 1989-2013 from the
801
downscaled simulation. Aerosol water is associated with each chemical component at 35% RH. The
802
significance (i.e. p value) of derived trends over land is indicated by the opaqueness of the colors. The
803
color scale of trends for PM2.5 (saturated at ±1.0 µg m-3yr-1) and its chemical composition (saturated at
804
±0.4 µg m-3yr-1) differ. Global population-weighted mean trends (95% confidence intervals in the
805
square brackets) are shown, and trends with >95% significance (p < 0.05) are followed by two asterisks
806
(**). Boundaries in the maps correspond to the 21 GBD regions in SI Figure S1.
807
Figure 3. Regional and global variations in annual population-weighted mean (PWM) PM2.5 and its
808
composition in the downscaled simulation (Simds), with time series in satellite-based PM2.5 estimates
809
(Trendsat) shown as thick blue lines. Different colors indicate different chemical composition. Aerosol
810
water is associated with each chemical component at 35% RH. The PWM PM2.5 trends (95% confidence
811
intervals in the square brackets) with >90% significance (p < 0.1) are followed by one asterisk (*), and
812
those with >95% significance (p < 0.05) are followed by two asterisks (**). For each region, the pie
813
chart shows the 1989-2013 mean PWM concentrations in each composition with the mean PM2.5
814
concentrations in the middle, and the two bar plots show the trends of each chemical species over 1989-
815
2013 and 1998-2013, respectively. Statistically significant trends (p < 0.1) are presented with filled bars
816
while
insignificant
trends
(p
≥
0.1)
are
24
ACS Paragon Plus Environment
indicated
by
blank
bars.
Page 25 of 27
Environmental Science & Technology
817 818
Figure 1. 25
ACS Paragon Plus Environment
Environmental Science & Technology
819 820
Figure 2.
26
ACS Paragon Plus Environment
Page 26 of 27
Page 27 of 27
Environmental Science & Technology
821 822
Figure 3. 27
ACS Paragon Plus Environment