34 Trickle-Bed Reactors: Dynamic Tracer Tests, Reaction Studies, and Modeling of Reactor Performance Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
A. A . EL-HISNAWI and M . P. DUDUKOVIĆ Washington University, Chemical Reaction Engineering Laboratory, St. Louis, MO 63130 P. L . MILLS Monsanto Company, Monsanto Corporate Research, St. Louis, M O 63167
An appropriate model for trickle-bed reactor perfor mance for the case of a gas-phase, rate limiting reactant is developed. The use of the model for predictive calculations requires the knowledge of liquid-solid contacting efficiency, gas-liquid-solid mass transfer coefficients, rate constants and effectiveness factors of completely wetted catalysts, all of which are obtained by independent experiments. The ability of the model to account for changes in liquid physical properties and mass velocities and correctly predict reactor performance is demonstrated using hydrogenation of α-methylstyrene in various organic solvents as a test reaction. T r i c k l e - b e d r e a c t o r s , beds packed w i t h s m a l l porous c a t a l y s t p a r t i c l e s w i t h cocurrent gas and l i q u i d downward flow, a r e used e x t e n s i v e l y i n h y d r o d e s u l f u r i z a t i o n and h y d r o t r e a t i n g o f heavy petroleum f r a c t i o n s as w e l l as i n hydrogénation o f chemicals, o x i d a t i o n o f waste streams and i n fermentations (1, 2,, 3 ) · A l l processes o c c u r r r i n g i n t r i c k l e - b e d s can be d i v i d e d i n t o two c a t e g o r i e s with r e s p e c t to the r a t e l i m i t i n g r e a c t a n t . I n one category, l i q u i d reactant i s n o n v o l a t i l e a t the o p e r a t i n g c o n d i t i o n s used and i s r a t e l i m i t i n g . Reaction then takes p l a c e only on the wetted c a t a l y s t . The second category c o n s i s t s o f processes where e i t h e r a gas r e a c t a n t o r a h i g h l y v o l a t i l e l i q u i d r e a c t a n t i s r a t e l i m i t i n g . Reaction takes p l a c e on both dry and wetted c a t a l y s t but a t d i f f e r e n t r a t e s due t o d i v e r s e t r a n s p o r t l i m i t a t i o n s (4). In e i t h e r case i t i s necessary to know the f r a c t i o n of wetted c a t a l y s t which can be l e s s than u n i t y i n the n o n i n t e r a c t i n g g a s - l i q u i d regime ( t r i c k l e - f l o w ) (2 4^ , 5 ) · order t o p r e d i c t t r i c k l e - b e d performance, besides c o n t a c t i n g e f f i c i e n c y , the knowledge o f v a r i o u s mass t r a n s f e r c o e f f i c i e n t s , g a s - l i q u i d e q u i l i b r i a , k i n e t i c s and c a t a l y s t e f f e c t i v e n e s s a r e a l s o necessary. I
n
9
0097-6156/82/0196-0421$06.00/0 © 1982 American Chemical Society In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
422
CHEMICAL REACTION ENGINEERING
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
A number of attempts i n i n t e r p r e t i n g t r i c k l e - b e d performance appeared i n the open l i t e r a t u r e (6-14). These s t u d i e s d i d not demonstrate the p r e d i c t i v e a b i l i t y of the proposed r e a c t o r models. Some used the r e a c t i o n data i n t r i c k l e - b e d s to evaluate unknown model parameters i n order to match c a l c u l a t e d and experimental r e s u l t s (7-11). Other s t u d i e s l e f t c e r t a i n observed phenomena unexplained (6-12). The o b j e c t i v e of t h i s paper i s to develop a model f o r a gas reactant l i m i t e d r e a c t i o n i n an isothermal t r i c k l e - b e d r e a c t o r . Model parameters are evaluated by indepen dent means and model's p r e d i c t i v e a b i l i t y i s t e s t e d . Reaction K i n e t i c s Reaction Order, Rate Constants and A c t i v a t i o n Energy ( S l u r r y Reactor). Hydrogentation of α-methylstyrene was s e l e c t e d f o r a t e s t r e a c t i o n . This r e a c t i o n has been s t u d i e d e x t e n s i v e l y by a number of i n v e s t i g a t o r s (6, 11, 14, 15» 17)· Previous s t u d i e s used Pd/A&2C>3 or Pd-black c a t a l y s t s i n α-methylstyrene-cumene mixtures. We wanted to v e r i f y the k i n e t i c s of t h i s r e a c t i o n i n v a r i o u s s o l v e n t s of d i f f e r e n t p h y s i c a l p r o p e r t i e s (cyclohexane, hexane (u.v.), hexane (A.C.S), toluene, 2-propanol) and examine the e f f e c t of Pd c o n c e n t r a t i o n on the r a t e . The above s o l v e n t s were to be u t i l i z e d i n t r i c k l e - b e d r e a c t i o n s t u d i e s a l s o to pro v i d e a range of l i q u i d p h y s i c a l p r o p e r t i e s . The k i n e t i c experiments were performed i n the 2.6 l i t e r semibatch, s t i r r e d s l u r r y r e a c t o r shown i n F i g u r e 1 (with the c a t a l y s t basket No. 10 removed). A known amount of s o l v e n t as w e l l as the known mass of f i n e l y c r u s h e d ( d = 0.005 cm) a c t i v a t e d c a t a l y s t (0.5% Pd and 2.5% Pd on Α ^ Ο β ) were charged i n t o the r e a c t o r . Hydrogen was bubbled through the s l u r r y and a t the beginning of each run a known amount of α-methylstyrene (ams) was i n j e c t e d so that the i n i t i a l c o n c e n t r a t i o n was between 1x10"* (gmol/cm^) and 6xl0~^(mol/cm^). The c a t a l y s t l o a d i n g was between 1 and 2 ( g / l i t ) and the temperature range between 10°C and 35°C was covered. I t was shown that s t i r r i n g r a t e and hydrogen flow r a t e had no e f f e c t on the r e a c t i o n r a t e . The t e s t s done to assure that i n t r i n s i c k i n e t i c r a t e was measured and other experimental d e t a i l s are described by El-Hisnawi (18). p
The r e a c t i o n i s found to be zeroth order w i t h respect to α-methylstyrene and approximately f i r s t order w i t h respect to hydrogen i n a l l s o l v e n t s as shown i n Table I . Reaction dependence on hydrogen i n cyclohexane s o l v e n t i s shown i n F i g u r e 2 and a t y p i c a l Arrhenius p l o t i s presented i n F i g u r e 3. Reaction r a t e i s independent of Pd c o n c e n t r a t i o n ( s t r u c t u r e i n s e n s i t i v e ) i n pure nonpolar s o l v e n t s (cyclohexane, hexane (U.V.)) but becomes s t r u c ture s e n s i t i v e ( i . e . dependent on Pd concentration) i n s o l v e n t s w i t h i m p u r i t i e s or which are more p o l a r . The a c t i v a t i o n energy of 10.2 kcal/mol found i n cyclohexane agreed w e l l w i t h the one determined by Germain et a l . ( 6 ) .
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Figure 1.
Experimental equipment for both intrinsic and apparent reaction studies.
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
6
ι
Ci
δ. » s
ce
F
fi"
>
W H
ι
W
4*
Ο)
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2-propanol
Toluene
Hexane (ACS) grade
Hexane (u.v) grade
Cyclohexane
Solvent
Table I .
4
3.477 χ 1 0
3
5 e
-
1
0
'
8
0
0
8 3 5 3 / R T
/
R
T
P
P
H
H
P„ 2
H
H
P„ 2 P„ 2
H
2 0 0 / R T
9 2 8 0 / R T
5.04 χ 1 0 e -
4
7.1 χ 1 0 e -
'
8 0 0 0 / R T
1 0
2.307 χ 10 e -
5
10.25 χ 10 e -
u H
Rate(mol/g Pd s ) ;P 0.5% Pd 2
2.5% Pd
2
1.091 χ 1 0
4.99 χ 1 0
4
e
4
e
-
-
6
8
1
2.724 χ 1 0 e -
0
0
0
0
0
/
/
R
R
T
T
H
P„ 2 H
P„ 2 P„
8 1 8 0 / R T
Same as with 0.5% Pd.
Same as with 0.5% Pd.
(atm)
Summary o f I n t r i n s i c Reaction Rates i n V a r i o u s Solvents
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
6
34.
EL-HISNAWI ET AL.
•06
α u oo
•04 —
425
Trickle-Bed Reactors
I
1
/
dp s 0.005 cm —
OÙ ω
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
ce os
υ
on
•01
y
ι P
u
H
Figure 2.
1
•5
1*5 (atm)
2
Reaction rate of AMS hydrogénation as a function of hydrogen partial pressure in cyclohexane.
•05
ι
ι
i
dp m 0.005em
k .04
E s 10.2 kcal/mol.
\ u
00 rj
.03
ce
on
c o υ to
Φ
•02
.015 3.2
I
I
3.3
3.4
1/T
Figure 3.
x ίο
3
Ί
.
3.5
(κ" ) 1
Reaction rate as function of reaction temperature in cyclohexane solvent.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
426
CHEMICAL REACTION ENGINEERING
C a t a l y s t E f f e c t i v e n e s s F a c t o r (Basket R e a c t o r ) . The e f f e c t i v e n e s s f a c t o r s of the c a t a l y s t p a r t i c l e s to be used i n t r i c k l e bed s t u d i e s were determined i n a stagnant basket r e a c t o r (Figure 1 ) . The p a r t i c l e s were c y l i n d r i c a l extrudates (0.13x0.56 cm) w i t h 0.5% Pd and 2.5% Pd d i s t r i b u t e d i n a s h e l l l a y e r on the o u t s i d e o f the p a r t i c l e . The e f f e c t i v e n e s s f a c t o r s of completely wetted p e l l e t s i n the basket a t d i f f e r e n t temperatures are p r e sented i n F i g u r e 4. The apparent a c t i v a t i o n energy v a r i e d between 4.5 and 5.4 (kcal/mol) c l e a r l y i n d i c a t i n g s t r o n g pore d i f f u s i o n a l e f f e c t s i n a l l s o l v e n t s . However, there was an order of magnitude d i f f e r e n c e i n the e f f e c t i v e n e s s f a c t o r between hexane and c y c l o hexane s o l v e n t .
T r i c k l e - B e d Reactor Model Development Reactor model f o r the t e s t r e a c t i o n of α-methylstyrene hydro génation i s developed based on the f o l l o w i n g assumptions: 1. Reaction occurs only i n the l i q u i d phase on the s o l i d c a t a l y s t . 2. Reaction i s f i r s t order i n gas r e a c t a n t . 3. Gas and l i q u i d stream are i n p l u g flow. 4. Reactor i s i s o t h e r m a l . 5. Gaseous reactant c o n c e n t r a t i o n i n the gas phase i s constant throughout the r e a c t o r . 6. A f r a c t i o n of the c a t a l y s t e x t e r n a l s u r f a c e ( T I C E ) covered by a f l o w i n g l i q u i d f i l m w h i l e the r e s t i s exposed t o a t h i n stagnant l i q u i d f i l m . Assumption 2 was v e r i f i e d by already reported k i n e t i c s t u d i e s . A water cooled r e a c t o r w i t h low feed c o n c e n t r a t i o n s o f α-methylstyrene operated between 15°C and 20°C s a t i s f i e s assumptions 1 and 4 due to low v o l a t i l i t y o f the l i q u i d r e a c t a n t and due to s m a l l o v e r a l l heat e f f e c t s , r e s p e c t i v e l y . Pure hydrogen i n l a r g e excess i s used as the gas feed s a t i s f y i n g assumption 5. Assumption 3 i s s a t i s f a c t o r y as shown by t r a c e r s t u d i e s (19, 20). T r a c e r s t u d i e s , d e s c r i b e d i n the next s e c t i o n , a l s o demonstrate t h a t e x t e r n a l c o n t a c t i n g i s not complete a t lower l i q u i d mass v e l o c i t i e s i n agreement w i t h assumption 6. I t remains to be determined whether the c a t a l y s t s u r f a c e not covered w i t h the f l o w i n g l i q u i d f i l m s or r i v u l e t s i s dry or i n contact w i t h a s t a g nant l i q u i d f i l m . The d i f f e r e n t i a l equations d e s c r i b i n g the model (Ml) and the r e s u l t i n g e x p r e s s i o n f o r c o n v e r s i o n are summarized i n Table IIA. A s i m p l i f i e d model i s developed by assuming n e g l i g i b l e changes of the d i s s o l v e d gas r e a c t a n t along the r e a c t o r . T h i s model (M2) u t i l i z e s the concept of the o v e r a l l gas-flowing l i q u i d - s o l i d and gas-(stagnant l i q u i d ) - s o l i d mass t r a n s f e r c o e f f i c i e n t s . The governing equations and the r e s u l t i n g expres s i o n f o r conversion are summarized i n Table IIB. I
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
S
EL-HisNAWi
ET AL.
Trickle-Bed Reactors
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
34.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
427
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
428
CHEMICAL REACTION ENGINEERING
4
ι
1—I
I I I II
'
ι
3 X
c, 2
2.5% pa
J
' 40
10
ι ι ι t 60 M
S Figure 4c.
Catalyst effectiveness factor as a function of thiele modulus (ψ) in cyclohexane.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
34.
EL-HISNAWI
Table I I . IIA.
Model Equations
Model Ml
dC " SL Ί Γ " U
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
429
Trickle-Bed Reactors
ETAL.
n
k
(Tl)
a
» v- e » > B *W'CE C A,LS - n (Ι-ε,,ΧΙ-η^) k„ ν C A, gLS B' ~ 'CE' v
x
A T C
dC (T2)
a
\S
k
«Ws*
LS
(C
gLS V S
C
)
k
v
n
""V
n
(T3)
C
C
E A,LS
k
(T4)
C
A,e- A,gLS " v " " V ^ C E * A,gLS
C (z)
(T5)
a
ao
2-0
C
n
"
Equilibrium feed
(T6)
Non-equilibrium feed
(T7)
(
A,L *> 2 »
C
0
X
ao "SI, a L nk d-e)c v
( 1 A e
-V {—ÎTH-} k S gLS ex
CE
(
η k V *LS
''ex n
a
^LS LS λ - 1+ (ka) g*
k
\S
v
V
Oca) L t
.
)
+ 1
0
S
ex
1+ k
(T8)
S
LS ex
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
(T9)
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
430
CHEMICAL REACTION ENGINEERING
Table I I . IIB.
Model Equations
(continued)
Model M2 dC
' SL dT "
n
U
k
s
a
k
gLS V S
C
( C
LS
a
k
CE c"A AT .C -n L S "k „ν ( l - e jB (ΐ-ru,) CE C A,gLS Λ
« d-e*>B
C
A,e- A,LS
(C
)
C
X
e
α
C
(z)
L — SL
U
k
n
v
A,e- A,gLS> "
η
k
(Tll)
C
CE A,LS
C
v
A,gLS
(η k
C
V
A
'
CE
'CE
)
A
(T12)
(T13)
αο
ζ « 0
" B X„ - 7Γ—^ ao
Π
"
(T10)
(T14)
e
1 + (Bi)
t
(Bi)
D
J
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
34.
EL-HiSNAWi ET AL.
431
Trickle-Bed Reactors
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
The equipment used i n t r a c e r s t u d i e s i s presented i n F i g u r e 5 while d e t a i l s a r e given elsewhere (20). I t has already been shown that c o n t a c t i n g e f f i c i e n c y determined by equation (2) i s i n good agreement w i t h the values i n f e r r e d from r e a c t i o n s t u d i e s (22, 23). I n t h i s study the data base was f u r t h e r expanded u s i n g the a d d i t i o n a l f i v e hydrocarbon s o l v e n t s . The e x i s t i n g data f o r dynamic s a t u r a t i o n (dynamic holdup d i v i d e d by bed p o r o s i t y ) i n the t r i c k l e - f l o w regime (18, 20, 21, 24, 25) can be c o r r e l a t e d by the f o l l o w i n g equation: ω
- ο ΛΟΙ η 0.344 -0.197 = 2.021 Re^ Ga^ n
β
/ 0
v (3)
The average e r r o r f o r the 105 data p o i n t s i s -7.1% w i t h a standard d e v i a t i o n o f the e r r o r o f 26.1%. The data (65 points) for e x t e r n a l c o n t a c t i n g e f f i c i e n c y i n the t r i c k l e - f l o w regime (11, 18, 20, 21) can be c o r r e l a t e d by: n
ι t i l t> 0.146 „ -0.071 = 1.617 R e Ga
C E
L
„v (4)
L
E v a l u a t i o n o f L i q u i d - S o l i d Contacting
Efficiency
T r a c e r methods proposed by Schwartz e t a l . (19) and Colombo et a l . (21) were used t o determine t o t a l and e x t e r n a l c a t a l y s t c o n t a c t i n g e f f i c i e n c y . These techniques have been d e s c r i b e d elsewhere (22). T o t a l c o n t a c t i n g e f f i c i e n c y , ï)ç d e f i n e d as the f r a c t i o n of t o t a l ( e x t e r n a l and i n t e r n a l ) c a t a l y s t area contacted by l i q u i d can be obtained by: 9
β
(K } (u } A app l a l n a TF μ u (K ) " ( la~ ιΜ^ρ A
L F
m
( d i f f e r e n c e i n f i r s t moment f o r adsorbing and nonadsorbing t r a c e r impulse response i n t r i c k l e - f l o w ) ( d i f f e r e n c e i n f i r s t moment o f the above two t r a c e r s i n l i q u i d f i l l e d column a t same l i q u i d flow-rate) (1)
and i t has been shown t o be u n i t y i n the hydrocarbon systems used (20, 22). E x t e r n a l c o n t a c t i n g e f f i c i e n c y , n , d e f i n e d as the f r a c t i o n o f e x t e r n a l c a t a l y s t area i n contact with f l o w i n g l i q u i d i s obtained a s : C E
_r eo'app Λ (D ) , M eo
m
η
0Ε
LF T T
(apparent e f f e c t i v e d i f f u s i v i t y i n t r i c k l e - f l o w ) ( e f f e c t i v e d i f f u s i v i t y i n l i q u i d f i l l e d column) ^2)
where the d i f f u s i v i t i e s a r e e x t r a c t e d from the v a r i a n c e o f the impulse response. Tracer s t u d i e s a l s o give i n f o r m a t i o n on dynamic holdup (22).
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
CHEMICAL REACTION ENGINEERING
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
432
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
34.
EL-fflSNAWI ET
AL.
Trickle-Bed Reactors
433
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
w i t h an average e r r o r of -2.5% and standard d e v i a t i o n of the e r r o r of 8.7%. Both dynamic s a t u r a t i o n and l i q u i d - s o l i d c o n t a c t i n g e f f i c i e n c y are found to c o r r e l a t e w e l l w i t h l i q u i d mass v e l o c i t y , not to c o r r e l a t e w i t h Reynolds number alone, to i n c r e a s e w i t h i n c r e a s e d l i q u i d v e l o c i t y and t o decrease w i t h i n c r e a s e d p a r t i c l e diameter. Surface t e n s i o n f o r c e s do not seem to p l a y a r o l e i n t r i c k l e - f l o w regime but become important i n the high g a s - l i q u i d i n t e r a c t i o n (pulsing) regime. Equations (3) and (4) e s t a b l i s h a r e l a t i o n s h i p between c o n t a c t i n g e f f i c i e n c y and dynamic s a t u r a t i o n : 0.244 "CE
=
(5)
1 , 0 2
Discussion
of R e a c t i o n Studies i n a T r i c k l e - B e d
Reactor
R e a c t i o n s t u d i e s were performed i n the apparatus shown i n F i g u r e 5. Both 0.5% Pd and 2.5% Pd c a t a l y s t s were used i n cyclohexane and A.C.S. grade hexane s o l v e n t s . In F i g u r e 6 experimental r e s u l t s f o r c o n v e r s i o n as a f u n c t i o n of l i q u i d s u p e r f i c i a l v e l o c i t y are compared to the p r e d i c t i o n s of model Ml f o r the 0.5% Pd c a t a l y s t and cyclohexane s o l v e n t . Equa t i o n (4) i s used to p r e d i c t c o n t a c t i n g e f f i c i e n c y . The c o r r e l a t i o n of Dwivedi and Upadhyay (26) i s used to evaluate f l o w i n g l i q u i d to s o l i d mass t r a n s f e r c o e f f i c i e n t , k^s, and the c o r r e l a t i o n of Goto and Smith (24) i s used t o determine the g a s - l i q u i d v o l u m e t r i c mass t r a n s f e r c o e f f i c i e n t , (ka)g£. The B i o t number on the i n a c t i v e l y wetted s u r f a c e , B i - kgLS Vp/D ex, of 7 i s based on the assumed stagnant l i q u i d f i l m mean thxckness of 0.01 cm. F i g u r e 6 (curve 1) i l l u s t r a t e s that the a v a i l a b l e mass t r a n s f e r c o r r e l a t i o n s are inadequate i n p r e d i c t i n g the observed e x p e r i mental r e s u l t s . T h i s i s to be expected s i n c e these c o r r e l a t i o n s are based on data obtained i n absence of r e a c t i o n . I t i s known that t r a n s p o r t c o e f f i c i e n t s are enhanced by the presence of r e a c t i o n and t h i s has been shown i n t r i c k l e - b e d s a l s o (27). This n e c e s s i t a t e s i n t r o d u c t i o n of two enhancement f a c t o r s : E\ f o r the f l o w i n g l i q u i d - s o l i d mass t r a n s f e r c o e f f i c i e n t , k^s, and E2 f o r the v o l u m e t r i c g a s - l i q u i d mass t r a n s f e r c o e f f i c i e n t , ( k a ) j t . Comparison of experimental and p r e d i c t e d c o n v e r s i o n when the t r a n s p o r t c o e f f i c i e n t s as c a l c u l a t e d from the c o r r e l a t i o n s are m u l t i p l i e d by v a r i o u s assumed values of t h e i r r e s p e c t i v e enhance ment f a c t o r s i s a l s o shown i n F i g u r e 6. Agreement w i t h data seems only a c h i e v a b l e when both Εχ and E2 are l a r g e r than u n i t y . The b e s t f i t (minimizing the sum of the squares of the d e v i a t i o n s ) of the data i s obtained w i t h Εχ - 2.5, E2 - 5.7 and B i n =5.2 (dashed l i n e i n F i g u r e 6 ) . The s i m p l i f i e d lumped parameter model (M2) can a l s o be used to match the data of F i g u r e 6. T h i s suggests the f o l l o w i n g c o r r e l a t i o n s f o r the o v e r a l l mass t r a n s f e r c o e f f i c i e n t s i n presence of r e a c t i o n . s
D
e
g
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
434
CHEMICAL REACTION ENGINEERING
U g (cm/sec) L
Figure 6. Predicted and experimental reactor conversions as a function of liquid superficial velocity. [Model Ml]—Bi = 5.2. Key: A, experimental results. D
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
34.
23.0
Sc
0 , 4 L
435
Trickle-Bed Reactors
EL-HiSNAWi ET AL.
1.3
1^
(6)
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
(7)
Model p r e d i c t i o n s a r e now t e s t e d a g a i n s t experimental r e s u l t s f o r cyclohexane s o l v e n t and 2.5% Pd c a t a l y s t , hexane (A.C.S. grade) s o l v e n t and 0.5% Pd and 2.5% Pd c a t a l y s t . The r e s u l t s a r e presented i n F i g u r e s 7-9. The p r e d i c t i o n s o f model Ml a r e based on unchanged enhancement f a c t o r s f o r the l i q u i d s o l i d and g a s - s o l i d mass t r a n s f e r c o e f f i c i e n t s o f « 2.5 and E 2 = 5.7, r e s p e c t i v e l y . Both models match r e a c t o r performance w e l l i n the same s o l v e n t (cyclohexane) but on a d i f f e r e n t c a t a l y s t (Figure 7 ) . However, the simpler model (M2) p r e d i c t s r e a c t o r performance b e t t e r i n a d i f f e r e n t s o l v e n t (hexane) on both c a t a l y s t s (Figures 8-9). T h i s suggests that t r a n s p o r t c o e f f i c i e n t s k and kgLg obtained from equations (6) and (7) and used i n model M2 a r e l e s s a f f e c t e d by change i n r e a c t i o n r a t e s than the enhancement f a c t o r s Εχ and E 2 which a r e used with model Ml. The assumption that the f r a c t i o n (1-TICE) °f e x t e r n a l c a t a l y s t s u r f a c e i s dry, as used by some other i n v e s t i g a t o r s (11), r e s u l t s i n a very l a r g e B i p which cannot e x p l a i n o r even match the observed experimental r e s u l t s . Dryout o f a c a t a l y s t s u r f a c e appears p o s s i b l e only when much l a r g e r temperature gradients a r e present. On the other hand the assumption o f TlcE 1 everywhere leads to u n r e a l i s t i c dependence o f mass t r a n s f e r c o e f f i c i e n t s on l i q u i d v e l o c i t y . Matching the data w i t h a s i n g l e parameter model (an o v e r a l l mass t r a n s f e r c o e f f i c i e n t ) r e s u l t s i n too high an e f f e c t o f v e l o c i t y on such a parameter and i n the l o s s o f model predictive a b i l i t y for d i f f e r e n t solvents. s
=
Conclusions Dynamic t r a c e r t e s t s can be used t o determine dynamic holdup and c a t a l y s t c o n t a c t i n g which i n t r i c k l e - f l o w regime can be c o r r e l a t e d w i t h Reynolds and G a l l i l e o number. A simple r e a c t o r model f o r gas l i m i t i n g r e a c t a n t when matched t o experimental r e s u l t s f o r one s o l v e n t and one c a t a l y s t a c t i v i t y p r e d i c t s r e a c t o r performance w e l l f o r d i f f e r e n t c a t a l y s t a c t i v i t i e s and i n other s o l v e n t s over a wide range o f l i q u i d v e l o c i t i e s .
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
CHEMICAL REACTION ENGINEERING
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
436
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
EL-msNAWi
ET AL.
Trickle-Bed Reactors
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
34.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
437
438
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
CHEMICAL REACTION ENGINEERING
Figure 9.
Reactor conversion as junction of liquid superficial velocity (hexane solvent). Bi = 8.6. Key is the same as in Figure 8. D
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
34.
EL-HiSNAWi ET A L .
439
Trickle-Bed Reactors
Legend o f Symbols a Bi
D
- i n t e r f a c i a l area (see s u b s c r i p t s f o r meaning) - B i o t number on i n a c t i v e l y wetted or dry c a t a l y s t k
< gLS V /De p
S
e x
)
5 i ^ - B i o t number on a c t i v e l y wetted c a t a l y s t ( k
v
s
o
r
k
V
D
LS p/°e e x s p / e S x) S reactant c o n c e n t r a t i o n i n l i q u i d l i q u i d reactant c o n c e n t r a t i o n d i f f u s i v i t y o f gaseous reactant i n the l i q u i d phase e f f e c t i v e d i f f u s i v i t y o f gaseous reactant i n the c a t a l y s t pellet - e f f e c t i v e mean p a r t i c l e diameter (6 V p / S ) - G a l l i l e o number ( d 3 g P L / U L ) - dynamic l i q u i d holdup - s t a t i c e x t e r n a l l i q u i d holdup - adsorption e q u i l i b r i u m constant - r a t e constant per u n i t c a t a l y s t volume - mass t r a n s f e r c o e f f i c i e n t ( i s i n g l e o r m u l t i p l e s u b s c r i p t ) - t o t a l r e a c t o r length - Reynolds number (dp u g Ρχ/μΐ.) - Schmidt number ( U I / P L D ) - e x t e r n a l area of c a t a l y s t p a r t i c l e - liquid superficial velocity - p a r t i c l e volume - volume o f the a c t i v e c a t a l y s t l a y e r - l i q u i d reactant conversion - a x i a l coordinate - bed p o r o s i t y - c a t a l y s t e f f e c t i v e n e s s f a c t o r (completely wetted p e l l e t ) - t o t a l contacting e f f i c i e n c y " external contacting e f f i c i e n c y - parameter (eq. T9) - f i r s t mement o f the impulse response - liquid viscosity - l i q u i d density - p e l l e t modulus ( V / S ) A / D - a c t i v e s h e l l modulus ( V / S A /D - dynamic s a t u r a t i o n (%/eg) - gas reactant A - adsorbing t r a c e r - apparent value - at gas-liquid equilibrium - gas-liquid - l i q u i d - i n a c t i v e l y wetted s o l i d - liquid - liquid filled - l i q u i d a c t i v e l y wetted s o l i d - nonadsorbing t r a c e r - l i q u i d feed c o n d i t i o n s - o v e r a l l (gas-active l i q u i d - s o l i d ) - two phase flow - l i q u i d r e a c t a n t (a-methylstyrene) e
CA C Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
a
D
E
dp GaL % Hgg k ki L Re^ v
SCL
S ugL Vp V X(X ζ ε η T)Q ^CE λ μ y PL φ φ cop A a app e g£ gLS L LF LS na ο s TF α e x
s
Β
L
3
" -
A
S
ex
2
2
p
L
A
p
V
e x
s
E
e x
V
E
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
440
CHEMICAL REACTION ENGINEERING
Downloaded by UCSF LIB CKM RSCS MGMT on September 1, 2014 | http://pubs.acs.org Publication Date: September 16, 1982 | doi: 10.1021/bk-1982-0196.ch034
Acknowledgements Support o f the Chemical Reaction E n g i n e e r i n g Laboratory i n which t h i s work was performed by Amoco O i l , Monsanto Company and S h e l l Development i s t r u l y a p p r e c i a t e d .
Literature Cited 1. Germain, Α . ; L'Homme, G. Α . ; Lefebvre, Α. "Chemical Engineering of Gas-Liquid-Solid Catalytic Reactions"; L'Homme, G. Α . , E d . ; Cebedoc, Liege, 1978, ρ 265. 2. Satterfield, C. Ν. AIChE J. 1975, 21, 209. 3. Goto, S.; Levec, J.; Smith, J. M. Cat. Rev.-Sci. Eng. 1977, 15, 187. 4. M i l l s , P. L.; Duduković, M. P. Chem. Eng. S c i . 1980, 35, 2267. 5. Gianetto, Α . ; Baldi, G . ; Specchia, V . ; Sicardi, S. AIChE J. 1978, 24(6), 1087. 6. Germain, Α . ; Lefebvre, Α . ; L'Homme, G. A. Adv. Chem. 1974, 133, 164. 7. Sedricks, W.; Kenney, C. N. Chem. Eng. S c i . 1973, 38, 559. 8. Goto, S.; Smith, J. M. AIChE J. 1975, 21, 714. 9. Levec, J.; Smith, J. M. AIChE J. 1976, 22, 159. 10. Satterfield, C. N . ; Ozel, F. AIChE J. 1973, 19, 1259. 11. Herskowitz, M . ; Carbonell, R. G . ; Smith, J. M. AIChE J. 1979, 25, 272. 12. Koros, R. M. Proc 4th Int. Symp. React. Eng. Dechema, Heidelberg, 1976, V o l . 1, ρ Ι Χ - 3 7 2 . 13. Germain, Α . ; Crine, M . ; Marchot, P . ; L'Homme, G. A. ACS Symp. Ser. 1978, V o l . 65, ρ 411. 14. Turek, F.; Lange, R. Chem. Eng. S c i . 1981, 36, 569. 15. Ma, Y. H. D.Sc. Thesis, MIT, 1966. 16. White, D. E.; Litt, M . ; Heymuch, G. J. I&EC Fundamentals 1974, 13, 143. 17. Jawad, A. Ph.D. Thesis, Univ. Birmingham, England, 1974. 18. El-Hisnawi, A. A. D.Sc. Thesis, Washington University, St. Louis, 1981. 19. Schwartz, J. G . ; Weger, E.; Duduković, M. P. AIChE J. 1976, 22, 953. 20. M i l l s , P. L . D.Sc. Thesis, Washington Univ. St. Louis, 1980. 21. Colombo, A. J.; Baldi, G . ; Sicardi, S. Chem. Eng. S c i . 1976, 31, 1101. 22. M i l l s , P. L.; Duduković, M. P. AIChE J. 1981, 27, 893. 23. M i l l s , P. L.; Duduković, M. P. 2nd World Congress on Chem. Eng. Montreal, October 1981, V o l . 3, ρ 143. 24. Goto, S.; Smith, J. M. AIChE J. 1975, 21, 706. 25. Charpentier, J. C. "Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions"; L'Homme, G. Α . , E d . ; Cebedoc, Liege, 1979; ρ 78. 26. Dwivedi, P. Ν . ; Uphadhyay, S. Ν. I&EC Process Des. Develop. 1977, 16, 157. 27. Baldi, G . ; Sicardi, S. Chem. Eng. S c i . 1975, 30, 617. Received April 27, 1982.
In Chemical Reaction Engineering—Boston; Wei, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.