Trimethoxyboroxine—An Extinguishing Agent for Metal Fires J. D. COMMERFORD, D. L. CHAMBERLAIN, JR., and J. W. SHEPHERD 1
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on October 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch013
Callery Chemical Company, Callery, Pa.
Metal fires present a serious problem to the producers a n d processers of such metals as magnesium, tita nium, a n d zirconium. Titanium a n d zirconium in the form of sponge, a n d all of these metals in the form of chips or turnings, will ignite easily a n d , when burn ing, their combustion will be supported even by nitro gen. Trimethoxyboroxine, a n organic ester of boric oxide, is a liquid having unique characteristics which are useful for extinguishing such metal fires. It has been used to extinguish magnesium chip fires, mag nesium casting fires, molten magnesium spill fires, titanium turning fires, titanium sponge fires, titanium powder fires, a n d zirconium sponge fires, a n d also to control small sodium a n d sodium-potassium alloy fires.
Trimethoxyboroxine is a colorless liquid p r e p a r e d b y t h e r e a c t i o n o f m e t h y l b o r a t e w i t h b o r i c o x i d e . I t was first r e p o r t e d (2) b y Schiff i n 1867 a n d w a s assigned t h e f o r m u l a B O ( O C H ) . M o r e recently i t has been d e s i g n a t e d B g C ^ O C H g ^ . Goubeau a n d K e l l e r (1) r e p o r t e d t h e p r e p a r a t i o n a n d c h a r a c t e r i z a t i o n o f s e v e r a l s u b s t i t u t e d boroxines, i n c l u d i n g t r i m e t h o x y b o r o x i n e , i n 1951. T h e y cite t h e molecular weight a n d t h e R a m a n s p e c t r a as e v i d e n c e f o r t h e c y c l i c s t r u c t u r e s h o w n b e l o w . 3
Ο CH 0—B^
^B—OCH
3
3
A A \
/
Β
I
OCH3 T h e p r o p o s e d c y c l i c s t r u c t u r e i s i s o e l e c t r o n i c w i t h benzene a n d b o r a z i n e . T h e o r g a n i c c h a r a c t e r i s t i c s of t h i s s u b s t a n c e a r e p a r t i c u l a r l y n o t i c e a b l e i n i t s miscibility w i t h m a n y organic liquids. A m o n g t h e compounds w i t h w h i c h i t i s m i s c i b l e a r e ( T a b l e I ) : p h t h a l a t e esters, h a l o g e n a t e d h y d r o c a r b o n s , a n d t r i e t h y l p h o s p h a t e , w h i c h m a y be of i n t e r e s t as c o m p o n e n t s of s p e c i a l t y e x t i n g u i s h i n g agents. 1
Present address, S t a n f o r d Research I n s t i t u t e , Menlo P a r k , C a l i f .
158
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
COMMERFORD, CHAMBERLAIN, AND SHEPHERD—TRIMETHOXYBOROXINE
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on October 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch013
Table I.
Solubility of Organic Liquids in Trimethoxyboroxine
Solute Benzene Toluene Xylene 2,3-Dimethylbutane n-Pentane Ligroin Dimethyl ether Isopropyl ether Methyl ethyl ketone Dimethylformamide Carbon disulfide Carbon tetrachloride Chlorobromomethane Triethyl phosphate 2-Ethylhexyl phthalate 1
Solubility, Grams/Ml. T M B
0.6 0.45
159 at 2 5 ° C .
Remarks
Separates on cooling Separates on cooling Separates on cooling
Solution warms on mixing Viscosity Viscosity Viscosity Viscosity
of 0.8 molal soin. = 44.6 cs. at 32°F.° of 0.9 molal soin. = 37.1 cs.at32°F. 36.5 cs. at 32°F. of 1.1 molal soin. of 0.1 molal soin. = 123 cs. at 32°F.
Viscosity of T M B at 32°F., 122.8 cs.
I n t h e p r e p a r a t i o n of t r i m e t h o x y b o r o x i n e f o r use as a m e t a l fire e x t i n g u i s h i n g agent, s o l d b y C a l l e r y u n d e r t h e t r a d e m a r k T B M , m o r e e m p h a s i s h a s been p l a c e d o n obtaining a composition of m a t t e r w i t h a certain density a n d viscosity rather t h a n a p u r e c h e m i c a l . T h i s i s because these p r o p e r t i e s h a v e effects o n n o z z l e s p r a y p a t t e r n s a n d t h e e m p t y i n g t i m e o f t h e e x t i n g u i s h e r . T r i m e t h o x y b o r o x i n e m a y be c o n s i d e r e d as a c o m p o n e n t o f t h e s y s t e m m e t h y l b o r a t e - b o r i c o x i d e . I n t h i s s y s t e m t h e d e n s i t y a p p e a r s t o change i n a r e g u l a r m a n n e r w i t h i n c r e a s i n g t o t a l b o r i c o x i d e c o n t e n t . T h e v i s c o s i t y o f t h i s s y s t e m increases r a p i d l y , h o w e v e r , once t h e m o l e r a t i o o f b o r i c o x i d e to m e t h y l b o r a t e exceeds 1. T h e s e r e l a t i o n s h i p s are s h o w n i n F i g u r e s 1 a n d 2. F i g u r e 2 i s a p l o t o f v i s c o s i t y vs. t e m p e r a t u r e o n a p o r t i o n o f A S T M V i s c o s i t y C h a r t E . T h e I .30
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
160
ADVANCES IN CHEMISTRY SERIES
50000 20000 10000 5000 >
2000
• s Ν
1000
Ν
500
χ.
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on October 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch013
"boo ζ u υ
§ >
< u ζ
Θ
200
Ν
s
100
v
Ν
50 40 30 15 3)
10
V
7.5
5.0
MOLE % B 2 O 3
4.0 5.0
©
55
®
49
©42.5 2.0
30
70
40 50 60 TEMPERATURE, F .
80
90
100
110
e
Figure 2.
Viscosity of compositions in the system boric oxide -methyl borate vs. temperature ASTM Viscosity Chart Ε
l a t t e r i s a m o d i f i e d s e m i l o g p a p e r w h i c h gives s t r a i g h t - l i n e p l o t s f o r t h e v i s c o s i t i e s o f p e t r o l e u m p r o d u c t s a n d o t h e r N e w t o n i a n fluids. I t c a n b e seen t h a t t r i m e t h o x y b o r o x i n e m a y b e c o n s i d e r e d a N e w t o n i a n fluid. T w o r e a c t i o n s o f t r i m e t h o x y b o r o x i n e o c c u r d u r i n g its use as a m e t a l fire e x t i n g u i s h i n g agent. U n d e r t h e influence o f heat, t r i m e t h o x y b o r o x i n e b r e a k s d o w n i n t o m e t h y l b o r a t e a n d b o r i c oxide as s h o w n i n E q u a t i o n 1. M o r e i m p o r t a n t , b o r i c oxide i s also t h e p r i n c i p a l p r o d u c t f r o m t h e c o m b u s t i o n of t r i m e t h o x y b o r o x i n e i n a i r as i s i n d i c a t e d i n E q u a t i o n 2. B 03(OCH3)3-^^ B(OCH ) + Β Λ 3
3
2B 03(OCH )3 + 9 0 3
3
2
-> 3 B 0 2
3
(1)
3
+ 9H 0 + 3C0 2
2
(2)
M e t a l fires a r e difficult t o e x t i n g u i s h because of t h e g r e a t r e a c t i v i t y o f t h e m a t e r i a l s a t t h e i r i g n i t i o n t e m p e r a t u r e s . A t these t e m p e r a t u r e s t h e y w i l l c o m b i n e w i t h m a n y m a t e r i a l s w h i c h a r e o r d i n a r i l y c o n s i d e r e d t o b e r e l a t i v e l y i n e r t , s u c h as n i t r o g e n . T h e r e f o r e , effective e x t i n g u i s h i n g of a m e t a l fire is o b t a i n e d o n l y b y c o m p l e t e exclusion of t h e atmosphere o r b y cooling t h e mass of t h e m e t a l below i t s i g n i t i o n t e m p e r a t u r e . T h e s e effects a r e u s u a l l y o b t a i n e d b y b l a n k e t i n g t h e fire w i t h a d r y i n e r t s o l i d m a t e r i a l t o exclude t h e a t m o s p h e r e o r b y a p p l y i n g a n o r g a n i c l i q u i d w h i c h has a h i g h heat of v a p o r i z a t i o n t o cool the m a s s b e l o w t h e i g n i t i o n t e m p e r a t u r e .
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
COMMERFORD, CHAMBERLAIN, AND SHEPHERD—TRIMETHOXYBOROXINE
161
T r i m e t h o x y b o r o x i n e , b e i n g a l i q u i d , possesses t h e a d v a n t a g e s o f t h e o r g a n i c l i q u i d e x t i n g u i s h i n g agents i n t h a t i t c a n b e a p p l i e d as a s t r e a m o r a s p r a y d e p e n d i n g u p o n the c o n d i t i o n s of t h e fire. T h e i n o r g a n i c c o m p o n e n t of t r i m e t h o x y b o r o x i n e , b o r i c o x i d e , w h i c h is regenerated b y e i t h e r t h e r m a l d e c o m p o s i t i o n o r c o m b u s t i o n , i s a v e r y effective e x t i n g u i s h i n g agent. A t t h e t e m p e r a t u r e o f t h e b u r n i n g m e t a l , b o r i c o x i d e m e l t s t o a flux w h i c h flows o v e r t h e h o t m e t a l a n d excludes t h e a t m o s p h e r e .
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on October 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch013
A s a r e s u l t o f these c h a r a c t e r i s t i c s m e t a l fire e x t i n g u i s h m e n t w i t h t r i m e t h o x y b o r o x i n e is f r e q u e n t l y m o r e r a p i d t h a n w i t h o t h e r e x t i n g u i s h i n g agents, less e x t i n g u i s h i n g agent i s r e q u i r e d , a n d f r e q u e n t l y m o r e u n b u r n e d m e t a l is r e c o v e r a b l e . In ad dition, t h e products of combustion ( E q u a t i o n 2) are v i r t u a l l y nontoxic. I n t h e case of c h i p o r sponge fires, b u r n i n g o c c u r s o v e r a c o n s i d e r a b l e a r e a a n d i n a d d i t i o n penetrates w i t h i n the mass. T r i m e t h o x y b o r o x i n e should be a p p l i e d over t h e e n t i r e a r e a i n a s t r e a m , i n c l u d i n g p a r t i c u l a r l y t h e h o t t e s t p o i n t s w h e r e t h e fire i s p r o g r e s s i n g i n w a r d . C a s t i n g fires a r e c h a r a c t e r i z e d b y i n t e n s e l y w h i t e spots o n t h e surface w h e r e b u r n i n g is o c c u r r i n g as w e l l as b y a g e n e r a l fire o v e r a n y p o o l s of molten metal that m a y have formed. A g a i n t r i m e t h o x y b o r o x i n e s h o u l d be d i r e c t e d t o w a r d s t h e h o t t e s t spots i n a s t r a i g h t s t r e a m . H o w e v e r , i f a l a r g e m o l t e n p o o l i s p r e s e n t , care s h o u l d b e exercised t o a v o i d d i s t u r b i n g t h e s u r f a c e . I n s u c h cases, m o s t efficient use of t r i m e t h o x y b o r o x i n e w i l l be o b t a i n e d i f i t i s a l l o w e d t o flow o v e r t h e m o l t e n fire o r i f i t is a p p l i e d as a s p r a y . T h e s e c o n d a r y fire f r o m t h e c o m b u s t i o n of t r i m e t h o x y b o r o x i n e i s c h a r a c t e r i z e d b y g r e e n i s h flames 2 t o 3 feet h i g h . T h e r e is also a c l o u d of w h i t e s m o k e . T h i s fire subsides q u i c k l y w h e n t h e a p p l i c a t i o n of t r i m e t h o x y b o r o x i n e i s s t o p p e d . One a p p l i c a t i o n o f t r i m e t h o x y b o r o x i n e is u s u a l l y sufficient t o e x t i n g u i s h t h e m e t a l fire. I f s m a l l areas o f b u r n i n g m a t e r i a l a r e m i s s e d , s h o r t b u r s t s o f t r i m e t h o x y b o r o x i n e w i l l q u e n c h t h e m r a p i d l y . I f t o o m u c h t r i m e t h o x y b o r o x i n e is used, a s m a l l s e c o n d a r y fire w i t h green flames 2 t o 3 inches h i g h w i l l c o n t i n u e t o b u r n f o r s e v e r a l m i n u t e s . A t t h i s p o i n t t h e v i g o r o u s fire m a y be c o n s i d e r e d o u t . H o w e v e r , t h e residue w i l l b e q u i t e h o t . T h e residue c a n b e left t o c o o l b y itself o r , i n c e r t a i n cases i f t h e r e i s t h e d a n g e r o f i g n i t i n g o t h e r flammable m a t e r i a l s , a s t r e a m of w a t e r c a n b e used t o c o o l the u n b u r n e d m e t a l .
Test Fires S e v e r a l m e t a l fires were i g n i t e d a n d e x t i n g u i s h e d w i t h t r i m e t h o x y b o r o x i n e . T h e t r i m e t h o x y b o r o x i n e w a s used i n s t a n d a r d w a t e r - t y p e e x t i n g u i s h e r s p r e s s u r i z e d w i t h d r y n i t r o g e n . T h e s e e x t i n g u i s h e r s h a v e s e v e r a l features w h i c h l i m i t t h e effective use of t r i m e t h o x y b o r o x i n e . A t p r e s e n t , o t h e r l a b o r a t o r i e s a r e w o r k i n g o n p r o g r a m s t o develop better equipment a n d techniques of a p p l i c a t i o n . T h e trimethoxyboroxine used i n these tests c o n f o r m e d t o t h e specifications s h o w n i n T a b l e I I .
Table II. Physical Properties of Trimethoxyboroxine Property Total % B 0 3 « 2
Specific gravity at 25°C. Viscosity at 25°C. Turbidity Pour point Refractive index, n & Flash point (COC) ° 6
2
Typical Product 59.7 1.216 13.0 cs. 100 -22°F. 1.3986 90°F.
° Theoretical for trimethoxyboroxine is 60.0% boric oxide. Turbidity determined as % transmission of white light. b
B r o k e n z i r c o n i u m sponge ( 2 0 - m e s h ) w a s used f o r o n e fire; 4 p o u n d s of sponge were a r r a n g e d i n a p y r a m i d a b o u t 9 inches i n d i a m e t e r a n d were i g n i t e d . T h e fire spread r a p i d l y over t h e surface. T r i m e t h o x y b o r o x i n e was a p p l i e d i n a straight
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
162
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on October 12, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch013
s t r e a m f o r 10 seconds a n d c o m p l e t e l y e x t i n g u i s h e d t h e fire. L e s s t h a n 0.5 g a l l o n o f t r i m e t h o x y b o r o x i n e w a s used. A f t e r t h e residue cooled, i t w a s b r o k e n o p e n . Under t h e c r u s t o f b o r i c oxide t h e r e r e m a i n e d a l a r g e percentage o f u n b u r n e d z i r c o n i u m . T h e residue w a s e x t r e m e l y difficult t o r e i g n i t e . A p r o p a n e t o r c h h a d t o b e u s e d t o b u r n t h e b o r i c oxide f r o m t h e surface o f t h e z i r c o n i u m b e f o r e i g n i t i o n o c c u r r e d . A t i t a n i u m sponge fire w a s e x t i n g u i s h e d w i t h s i m i l a r r e s u l t s . A n o t h e r fire w a s s t a r t e d w i t h g r a n u l a r t i t a n i u m sponge a n d t h e n a b l o c k of sponge 8 x 8 x 8 inches w a s p l a c e d o n t o p . I t i g n i t e d r a p i d l y a n d t h e fire b u r n e d u p w a r d . A g a i n less t h a n 0.5 g a l l o n o f t r i m e t h o x y b o r o x i n e w a s sufficient t o e x t i n g u i s h t h e fire. O n e x a m i n a t i o n of t h e l a r g e piece o f sponge i t w a s f o u n d t h a t t h e i n w a r d p e n e t r a t i o n o f t h e fire w a s halted. T r i m e t h o x y b o r o x i n e w a s a p p l i e d as a s t r a i g h t s t r e a m t o a 1 7 - p o u n d m a g n e s i u m c h i p fire f o r 18 seconds. T h e fire w a s k n o c k e d d o w n e x c e p t f o r a f e w s m a l l spots o n one side. A s e c o n d s h o r t s p r a y i n g f o r 5 seconds c o m p l e t e l y e x t i n g u i s h e d t h e fire. T h e residue w a s a l l o w e d t o cool, t h e n i t w a s o p e n e d a n d e x a m i n e d . A b o u t 8 0 % of t h e m a g n e s i u m c h i p s were u n b u r n e d . T h e t r i m e t h o x y b o r o x i n e h a d s t o p p e d t h e i n w a r d p e n e t r a t i o n of t h e fire i n t o t h e p i l e . L e s s t h a n 0.5 g a l l o n of t r i m e t h o x y b o r o x i n e h a d been u s e d . A 16-pound magnesium casting was ignited w i t h 5 gallons of n a p h t h a . A f t e r 4 minutes t h e casting began t o melt a n d a m i n u t e later i g n i t i o n a t various spots was observed. A f t e r t h e fire h a d b u r n e d f o r 8 m o r e m i n u t e s , a s u b s t a n t i a l p o r t i o n o f t h e c a s t i n g h a d m e l t e d . T h e fire w a s b u r n i n g o v e r m o s t of t h e m o l t e n a r e a a n d o n t h e c a s t i n g . T r i m e t h o x y b o r o x i n e w a s a p p l i e d as a s t r a i g h t s t r e a m f o r 6 seconds. T h e n t h e s e c o n d a r y fire w a s a l l o w e d t o die d o w n a n d i n t e r m i t t e n t s p r a y s o f t r i m e t h o x y b o r o x i n e were d i r e c t e d a t v a r i o u s spots. T h e t o t a l e l a p s e d t i m e w a s 4 0 seconds. O n l y 3.5 p o u n d s o f t r i m e t h o x y b o r o x i n e were u s e d t o e x t i n g u i s h t h e fire c o m p l e t e l y . T r i m e t h o x y b o r o x i n e w a s a p p l i e d as a s p r a y o n a 1 2 - p o u n d s o d i u m fire s u c h as m i g h t o c c u r w i t h a s p i l l . T h e fire w a s e x t i n g u i s h e d . H o w e v e r , a f t e r 2 o r 3 m i n u t e s t h e b o r i c oxide c o a t i n g d i s s o l v e d p a r t i a l l y a n d s m a l l p a t c h e s o f t h e m e t a l surface r e i g n i t e d . T h e s e flare-ups were e x t i n g u i s h e d w i t h a s e c o n d s h o r t s p r a y i n g . A t o t a l of a b o u t 0.5 g a l l o n o f e x t i n g u i s h i n g agent w a s u s e d . W i t h fires of t h i s t y p e e x t r e m e care m u s t b e t a k e n n o t t o d i s t u r b t h e s u r f a c e of t h e m o l t e n m e t a l . I f t h e surface is a c c i d e n t a l l y b r o k e n , t h e l i q u i d m e t a l w i l l r e i g n i t e .
Literature Cited (1) Goubeau, J., Keller, H., Z. anorg. u. allgem. Chem. 267, 1-26 (1951). (2) Schiff, H., Liebigs Ann., Chem. Suppl. 5, 170 (1867). RECEIVED for review May 10, 1957. Accepted June 1, 1958.
METAL-ORGANIC COMPOUNDS Advances in Chemistry; American Chemical Society: Washington, DC, 1959.