Tuning the Photophysical and Redox Properties of Metallocorroles by

Sep 22, 2014 - Facile procedures were developed for selective iodination of aluminum and gallium corroles; crystallographic characterization shows tha...
1 downloads 0 Views 1MB Size
Article pubs.acs.org/IC

Tuning the Photophysical and Redox Properties of Metallocorroles by Iodination Jenya Vestfrid,† Israel Goldberg,*,‡ and Zeev Gross*,† †

Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel



S Supporting Information *

ABSTRACT: Facile procedures were developed for selective iodination of aluminum and gallium corroles; crystallographic characterization shows that the main structural aspects are not changed (the macrocycle remains planar). Absorption maxima are redshifted by 3−5 nm/iodine, singlet lifetimes are reduced to Cl > Br > I. This comprehension has recently been demonstrated to be of prime importance for the electrocatalytic hydrogen evolution reaction by fluorinated cobalt corrole.30



CONCLUSIONS We have demonstrated facile and selective iodination of aluminum and gallium corroles and shown that it induces significant changes onto the photophysical properties. The absorption and emission spectra are shifted to the red, but less than for porphyrins, because the macrocycle remains planar. Comparison between the tris- and the tetra-derivatives revealed that while the effect of an additional iodine atom on absorption spectra is small, the emission properties are much more sensitive. The iodinated corroles display prompt fluorescence, phosphorescence, and delayed thermal fluorescence, all at room temperature. Electrochemical investigations suggest that the effect on redox potentials is additive for each additional halogen and that halogenation of the β-pyrrole periphery shifts the oxidation potential by practically the same amount for the four halides. The conclusions of this work are of large importance for the design of metallocorroles that are best suited for the various applications6,8,9 where they play a major role, such as catalysts for energy- and medicine-relevant small molecules (proton, oxygen, water, and reactive oxygen/nitrogen species),10,12,13 photodynamic processes,11 and dye sensitized solar cells.7



EXPERIMENTAL SECTION

Materials. Reagents (Aldrich) and solvents were used without further purification. Silica gel 60 (230−400 mesh) was used for column chromatography. 1-Al, 1-Ga, and 4-Al were synthesized as previously reported.31,3c Synthetic Methods. Synthesis of 3-Al. 1-Al (30 mg, 30 μmol) and I2 (780 mg, 3 mmol) were dissolved in toluene (7 mL), pyridine (600 μL, 7.6 mmol) was added, and the solution was stirred for 1 h under reflux. This was followed by washing with a 10% Na2S2O3 solution, drying over Na2SO4, and evaporating solvent. The greenpurple solid material was purified by chromatography (hexanes/ DCM/EtOAc = 5:5:1 with a few drops of pyridine). Crystallization of the product from DCM/hexanes and a drop of pyridine afforded pure 3-Al (19 mg, 54% yield). 1H NMR (400 MHz, C6D6): δ 9.9 (s, 1H), 8.8 (overlapping doublets, 2H), 8.5 (overlapping doublets, 2H), 5.7 (broad t, 2H), 5.3 (broad, 4H), 4.5 (broad, 4H). 19F NMR (376 MHz, C6D6): δ −138.51 (unresolved m, 6F, ortho-F), −152.59 (t, 1F, paraF), −152.93 (t, 1F, para-F), −153.23 (t, 1F, para-F), −162.32 (dt, 2F, 10-meta-F), −163.27 (unresolved, 4F, 5,15-meta-F). HRMS (TOF, ES−): [M − OH−] = C37H5N4OF15AlI3, calculated for m/z = E

dx.doi.org/10.1021/ic501585a | Inorg. Chem. XXXX, XXX, XXX−XXX

Inorganic Chemistry

Article

(11) (a) Samaroo, D.; Vinodu, M.; Chen, X.; Drain, C. M. J. Comb. Chem. 2007, 9, 998−1011. (b) Hwang, J. Y.; Lubow, J.; Chu, D.; Ma, J.; Agdjanian, H.; Sims, J.; Gray, H. B.; Gross, Z.; Farkas, D. L.; Medina-Kauwe, L. K. Mol. Pharmaceutics 2011, 8, 2233−2243. (c) Preuss, A.; Saltsman, I.; Mahammed, A.; Pfitzner, M.; Goldberg, I.; Gross, Z.; Röder, B. J. Photochem. Photobiol., B 2014, 133, 39−46. (12) Flamigni, L.; Gryko, D. T. Chem. Soc. Rev. 2009, 38, 1635−1646. (13) (a) Kupershmidt, L.; Okun, Z.; Amit, T.; Mandel, S.; Saltsman, I.; Mahammed, A.; Bar-Am, O.; Gross, Z.; Youdim, M. B. H. J. Neurochem. 2010, 113, 363−373. (b) Mahammed, A.; Gross, Z. Catal. Sci. Technol. 2011, 1, 535−540. (c) Haber, A.; Angel, I.; Mahammed, A.; Gross, Z. J. Diabetes Complications 2013, 27, 316−321. (14) (a) Wijesekera, T.; Dupre, D.; Cader, M.; Dolphin, D. Bull. Soc. Chim. Fr. 1996, 133, 765−775. (b) Bhyrappa, P.; Purushothaman, B.; Vittal, J. J. J. Porphyrins Phthalocyanines 2003, 7, 682−692. (15) Wijesekera, T.; Matsumoto, A.; Dolphin, D.; Lexa, D. Angew. Chem., Int. Ed. Engl. 1990, 102, 1073−1074. (16) (a) Boyle, R. W.; Johnson, C. K.; Dolphin, D. J. Chem. Soc., Chem. Commun. 1995, 527−528. (b) Nakano, A.; Shimidzu, H.; Osuka, A. Tetrahedron Lett. 1998, 39, 9489−9492. (17) (a) Golubkov, G.; Bendix, J.; Gray, H. B.; Mahammed, A.; Goldberg, I.; Dibilio, A. J.; Gross, Z. Angew. Chem., Int. Ed. 2001, 40, 2132−2134. (b) Paolesse, R.; Nardis, S.; Sagone, F.; Khoury, R. G. J. Org. Chem. 2001, 66, 550−556. (c) Wasbotten, I. H.; Wondimagegn, T.; Ghosh, A. J. Am. Chem. Soc. 2002, 124, 8104−8116. (d) Mahammed, A.; Gray, H. B.; Meier-Callahan, A. E.; Gross, Z. J. Am. Chem. Soc. 2003, 125, 1162−1163. (e) Wagnert, L.; Berg, A.; Stavitski, E.; Berthold, T.; Kothe, G.; Goldberg, I.; Mahammed, A.; Simkhovich, L.; Gross, Z.; Levanon, H. Appl. Magn. Reson. 2006, 604, 591−604. (f) Palmer, J. H.; Day, M. W.; Wilson, A. D.; Henling, L. M.; Gross, Z.; Gray, H. B. J. Am. Chem. Soc. 2008, 130, 7786−7787. (g) Palmer, J. H.; Durrell, A. C.; Gross, Z.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2010, 132, 9230−9231. (h) Wagnert, L.; Rubin, R.; Berg, A.; Mahammed, A.; Gross, Z.; Levanon, H. J. Phys. Chem. B 2010, 114, 14303−14308. (i) Mahammed, A.; Tumanskii, B.; Gross, Z. J. Porphyrins Phthalocyanines 2011, 15, 1275−1286. (j) Schechter, A.; Stanevsky, M.; Mahammed, A.; Gross, Z. Inorg. Chem. 2012, 51, 22− 24. (18) (a) Ngo, T. H.; Van Rossom, W.; Dehaen, W.; Maes, W. Org. Biomol. Chem. 2009, 7, 439−443. (b) Ngo, T. H.; Puntoriero, F.; Nastasi, F.; Robeyns, K.; Van Meervelt, L.; Campagna, S.; Maes, W. Chem.Eur. J. 2010, 16, 5691−5705. (c) Mahammed, A.; Botoshansky, M.; Gross, Z. Dalton Trans 2012, 41, 10938−10940. (19) (a) Nardis, S.; Mandoj, F.; Paolesse, R.; Fronczek, F. R.; Smith, K. M.; Prodi, L.; Battistini, G. Eur. J. Inorg. Chem. 2007, 2345−2352. (b) Paolesse, R. Synlett 2008, 2215−2230. (c) Du, R.-B.; Liu, C.; Shen, D.-M.; Chen, Q.-Y. Synlett 2009, 2701−2705. (d) Nardis, S.; Pomarico, G.; Mandoj, F.; Fronczek, F. R.; Smith, K. M.; Paolesse, R. J. Porphyrins Phthalocyanines 2010, 14, 752−757. (e) Zyska, B.; Schwalbe, M. Chem. Commun. 2013, 49, 3799−3801. (20) (a) Ding, T.; Aleman, E. A.; Modarelli, D. A.; Ziegler, C. J. J. Phys. Chem. A 2005, 109, 7411−7417. (b) Ventura, B.; Degli Esposti, A.; Koszarna, B.; Gryko, D. T.; Flamigni, L. New J. Chem. 2005, 29, 1559−1566. (c) Nastasi, F.; Campagna, S.; Ngo, T. H.; Dehaen, W.; Maes, W.; Kruk, M. Photochem. Photobiol. Sci. 2011, 10, 143−50. (21) (a) Shi, L.; Liu, H. Y.; Shen, H.; Hu, J.; Zhang, G. L.; Wang, H.; Ji, L. N.; Chang, C. K.; Jiang, H. F. J. Porphyrins Phthalocyanines 2009, 13, 1221−1226. (b) Shao, W.; Wang, H.; He, S.; Shi, L.; Peng, K.; Lin, Y.; Liu, H. J. Phys. Chem. B 2012, 116, 14228−34. (22) Liu, X.; Mahammed, A.; Tripathy, U.; Gross, Z.; Steer, R. P. Chem. Phys. Lett. 2008, 459, 113−118. (23) (a) Mahammed, A.; Goldberg, I.; Gross, Z. Org. Lett. 2001, 3, 3443. (b) Mahammed, A.; Gross, Z. J. Porphyrins Phthalocyanines 2002, 6, 553. (c) Balazs, Y. S.; Saltsman, I.; Mahammed, A.; Tkachenko, E.; Golubkov, G.; Levine, J.; Gross, Z. Magn. Reson. Chem. 2004, 42, 624. (d) Stefanelli, M.; Mastroianni, M.; Nardis, S.; Licoccia, S.; Fronczek, F. R.; Smith, K. M.; Zhu, W.; Ou, Z.; Kadish, K. M.; Paolesse, R. Inorg. Chem. 2007, 46, 10791.

electrode (diameter of the active zone: 2.8 mm; Metrohm) working electrode, a platinum wire counter electrode, and an Ag/AgCl reference electrode. The CV measurements were performed in acetonitrile solutions (HPLC grade), 0.1 M in tetrabutylammonium perchlorate (TBAP, Fluka, recrystallized twice from methanol), and 1 mM substrate at ambient temperature. Scan rates of 100 mV/s were applied. The E1/2 value for the ferrocene/ferrocenium couple under these conditions was 0.42 V.



ASSOCIATED CONTENT

S Supporting Information *

Overlaid full and partial 19F NMR spectra of 3-Ga and 4-Ga. Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *[email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS COST action PERSPECT-H2O is acknowledged for enabling J.V. to perform fast kinetics photophysical measurements in the J. Heyrovsky Institute of Physical Chemistry laboratories (Prague) of Professors Martin Hof, Tony Vlcek, and Stanislav Zalis. This research was supported by a grant from the Israel Science Foundation (Z.G.) and NEVET.



REFERENCES

(1) (a) Aviv, I.; Gross, Z. Chem. Commun. 2007, 1987−1999. (b) Paolesse, R. Synlett 2008, 15, 2215−2230. (2) Sudhakar, K.; Velkannan, V.; Giribabu, L. Tetrahedron Lett. 2012, 53, 991−993. (3) (a) Palmer, J. H.; Durrell, A. C.; Gross, Z.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2010, 132, 9230−9231. (b) Rabinovich, E.; Goldberg, I.; Gross, Z. Chem.Eur. J. 2011, 17, 12294−12301. (c) Vestfrid, J.; Botoshansky, M.; Plamer, J. H.; Durrell, A. C.; Gray, H. B.; Gross, Z. J. Am. Chem. Soc. 2011, 133, 12899−12901. (4) (a) Gross, Z.; Galili, N.; Simkhovich, L.; Saltsman, I.; Botoshansky, M.; Blaser, D.; Boese, R.; Goldberg, I. Org. Lett. 1999, 1, 599−602. (b) Paolesse, R.; Jaquinod, L.; Nurco, D. J.; Mini, S.; Sagone, F.; Boschi, T.; Smith, K. M. Chem. Commun. 1999, 14, 1307− 1308. (c) Collman, J. P.; Decréau, R. A. Tetrahedron Lett. 2003, 44, 1207−1210. (d) Gryko, D. T. J. Porphyrins Phthalocyanines 2008, 12, 906−917. (e) Kumari, P.; Chauhan, S. M. S. J. Heterocycl. Chem. 2008, 45, 779−783. (f) Zhan, H.-Y.; Liu, H.-Y.; Chen, H.-J.; Jiang, H.-F. Tetrahedron Lett. 2009, 50, 2196−2199. (5) (a) Lemon, C. M.; Brothes, P. J. J. Porphyrins Phthalocyanines 2011, 15, 809−834. (b) Barata, J. F.B.; Santos, C. I.M.; Neves, M. G. P.M.S.; Faustino, M. A. F.; Cavaleiro, J. A.S. Topics in Heterocyclic Chemistry 33; Springer: New York, 2014. (6) (a) Aviv-Harel, I.; Gross, Z. Chem.Eur. J. 2009, 15, 8382−8394. (b) Aviv-Harel, I.; Gross, Z. Coord. Chem. Rev. 2011, 717−736. (7) Walker, D. C.; Chappel, S.; Mahammed, A.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B.; Zaban, A.; Gross, Z. J. Porphyrins Phthalocyanines 2006, 10, 1259−1262. (8) Agadjanian, H.; Ma, J.; Rentsendorj, A.; Valluripalli, V.; Hwang, J. Y.; Mahammed, A.; Farkas, D. L.; Gray, H. B.; Gross, Z.; MedinaKauwe, L. K. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 610−6105. (9) Hwang, J. Y.; Agadjanian, H.; Medina-Kauwe, L. K.; Gross, Z.; Gray, H. B.; Sorasaenee, K.; Farkas, D. L.Proc. SPIE 2008, 6859, DOI: 10.1117/12.769305. (10) Luobeznova, I.; Raizman, M.; Goldberg, I.; Gross, Z. Inorg. Chem. 2005, 45, 386−394. F

dx.doi.org/10.1021/ic501585a | Inorg. Chem. XXXX, XXX, XXX−XXX

Inorganic Chemistry

Article

(24) Aronson, S.; Epstein, P.; Aronson, D. B.; Wieder, G. J. Phys. Chem. 1982, 86, 1035−1037. (25) Panda, K. P.; Padhy, S.; Ha, K.; Lee, C. Bull. Korean Chem. Soc. 2004, 25, 1421−1422. (26) Dolphin, D. The Porphyrins; Academic Press: New York, 1978; Vol. III. (27) (a) Larkin, J. M.; Donaldson, W. R.; Foster, T. H.; Knox, R. S. LLE Rev. 1998, 77, 36−47. (b) McNaught, A. D.; Wilkinson, A. IUPAC; Blackwell Scientific Publications: Oxford, 1997. (c) RohatgiMukherjee, K. K. Fundamental of Photochemistry; New Age International: New Delhi, 2006. (28) (a) Kadish, K. M.; Will, S.; Adamian, V. A.; Walther, B.; Erben, C.; Ou, Z.; Vogel, E. Inorg. Chem. 1998, 37, 4573−4577. (b) Simkhovich, L.; Mahammed, A.; Goldberg, I.; Gross, Z. Chem.Eur. J. 2001, 7, 1041−1055. (c) Shen, J.; Shao, J.; Ou, Z.; E, W.; Koszarna, B.; Gryko, D. T.; Kadish, K. M. Inorg. Chem. 2006, 45, 2251−2265. (d) Johansen, I.; Norheim, H.-K.; Larsen, S.; Alemayehu, A. B.; Conradie, J.; Ghosh, A. J. Porphyrins Phthalocyanines 2011, 15, 1335−1344. (29) Kadish, K. M. Progress in Inorganic Chemistry; John Wiley & Sons, Inc.: New York, 1986. (30) Mahammed, A.; Mondal, B.; Rana, A.; Dey, A.; Gross, Z. Chem. Commun. 2014, 50, 2725−2727. (31) (a) Mahammed, A.; Gross, Z. J. Inorg. Biochem. 2002, 88, 305− 309. (b) Weaver, J. J.; Sorasaenee, K.; Sheikh, M.; Goldschmidt, R.; Tkachenko, E.; Gross, Z.; Gray, H. B. J. Porphyrins Phthalocyanines 2004, 8, 76−81.

G

dx.doi.org/10.1021/ic501585a | Inorg. Chem. XXXX, XXX, XXX−XXX