67 Type II Photosensitized Oxygenation Reactions KLAUS GOLLNICK
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
University of Arizona, Tucson,
Ariz.
a
In Type II photo-oxygenation reactions, singlet oxygen is produced by an energy transfer process from the electronically excited light absorber. Various classes of compounds, such as polycyclic aromatic hydrocarbons, cyclic 1,3-dienes, and furans as well as olefins containing allylic hydrogens are suitable substrates for the reaction with singlet oxygen. Stereoelectronic effects exerted by olefins on the reactions with O are dealt with, and the mechanism of O formation is discussed. Preliminary results on O production and its reaction with 2,5-dimethylfuran as a function of the triplet energy of (π,π )- and (n,π )-sensitizers are reported. 1
1
2
2
1
2
*
*
p h o t o - o x y g e n a t i o n reactions of o r g a n i c c o m p o u n d s , A , i n s o l u t i o n , fry/(sensitizer) A + 0
> A0
2
2
a f f o r d i n g a d d i t i o n p r o d u c t s ( A 0 ) , m a y o c c u r as d i r e c t or i n d i r e c t (sensi 2
t i z e d ) p h o t o - o x y g e n a t i o n reactions, d e p e n d i n g o n w h e t h e r A or a m o l e cule other t h a n A — i . e . , a p h o t o s e n s i t i z e r — a b s o r b s the l i g h t . ( O n l y w h e n the e x c i t i n g photons possess w a v e l e n g t h s shorter t h a n 2000 A . m u s t ab sorption b y 0
be c o n s i d e r e d . )
2
F u r t h e r m o r e , d e p e n d i n g o n w h e t h e r free
r a d i c a l s or o n l y e l e c t r o n i c a l l y e x c i t e d molecules are i n v o l v e d as inter mediates, T y p e I processes m a y be d i s t i n g u i s h e d f r o m T y p e II processes (17). T h e b e n z o p h e n o n e - s e n s i t i z e d p h o t o - o x y g e n a t i o n of 2 - p r o p a n o l
(53)
m a y be c o n s i d e r e d as a t y p i c a l e x a m p l e of a T y p e I process, i n w h i c h the e l e c t r o n i c a l l y e x c i t e d b e n z o p h e n o n e initiates a free r a d i c a l o x i d a t i o n b y a b s t r a c t i n g a h y d r o g e n a t o m f r o m 2 - p r o p a n o l . T h e i n i t i a t i o n is t h e n followed by 0
2
a d d i t i o n to the 2 - h y d r o x y i s o p r o p y l r a d i c a l a n d r e a c t i o n
On leave of absence from the Max-Planck-Institut für Kohlenforschung, Abteilung Strahlenchemie, Mülheim an der Ruhr, Germany. a
78 In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
67.
GOLLNICK
Type II
79
Oxygenations
w i t h a h y d r o g e n d o n o r , w h i c h m a y be either another 2 - p r o p a n o l m o l e c u l e i n a c h a i n - p r o p a g a t i n g step or the b e n z o p h e n o n e k e t y l r a d i c a l i n a t e r m i n a t i o n step. T h u s , the o v e r - a l l r e a c t i o n is hy/benzophenone CH3CHOHCH3 + 0
• CH C(OH)CH
2
3
3
I OOH T h e T y p e I I p h o t o - o x y g e n a t i o n reactions w i t h w h i c h w e are c o n c e r n e d o c c u r b y a c o m p l e t e l y different m e c h a n i s m . T h e m a i n feature of these reactions is that a n " a c t i v a t e d o x y g e n " is f o r m e d d u r i n g the r e a c t i o n , w h i c h c a n react stereoselectively
with
certain substrates to g i v e
the
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
a d d i t i o n p r o d u c t s . T o d a y , w e h a v e reason to b e l i e v e that the " a c t i v a t e d o x y g e n " is the e x c i t e d singlet o x y g e n ,
1
0 . 2
P o l y c y c l i c a r o m a t i c h y d r o c a r b o n s s u c h as anthracenes,
tetracenes,
a n d pentacenes, as w e l l as c y c l o p e n t a d i e n e s , c y c l o h e x a - l , 3 - d i e n e s , c y c l o h e p t a - l , 3 - d i e n e s , a n d furans, h a v e b e e n f o u n d to b e s u i t a b l e d i e n e systems to w h i c h the singlet o x y g e n adds as a d i e n o p h i l e i n a 1 , 4 - c y c l o a d d i t i o n r e a c t i o n . T h u s , e n d o p e r o x i d e s ( t r a n s a n n u l a r p e r o x i d e s ) a n d , i n the case of furans, ozonides of the c o r r e s p o n d i n g c y c l o b u t a d i e n e s are the p r i m a r i l y p r o d u c e d , m o r e or less stable a d d i t i o n p r o d u c t s (2, 21,
22).
O l e f i n s c o n t a i n i n g at least one a l l y l i c h y d r o g e n are s u i t a b l e substrates a n d are of s p e c i a l i m p o r t a n c e a n d interest w i t h r e g a r d to the i n t r i n s i c m e c h a n i s m i n v o l v e d i n their reactions w i t h singlet o x y g e n . A l l y l i c h y d r o peroxides are f o r m e d , b u t the m e c h a n i s m of their f o r m a t i o n is c l e a r l y d i s t i n c t f r o m that b y w h i c h a l l y l i c h y d r o p e r o x i d e s are p r o d u c e d i n ther m a l or photochemically initiated
(see
example
above
for a T y p e
I
p r o c e s s ) a u t o x i d a t i o n reactions. T h i s has u n e q u i v o c a l l y b e e n s h o w n w i t h o p t i c a l l y active l i m o n e n e as a substrate,
w h i c h gives rise to different
p r o d u c t s i n free r a d i c a l a n d T y p e I I p h o t o - o x y g e n a t i o n reactions 57,
(22,
61). W h i l e , f o r e x a m p l e , the t h e r m a l a u t o x i d a t i o n r e a c t i o n of ( + ) - l i m o
nene ( 1 )
proceeds as a free r a d i c a l c h a i n r e a c t i o n (61),
the photosensi
t i z e d o x y g e n a t i o n of 1 occurs a c c o r d i n g to the scheme s h o w n at the t o p of the next p a g e (51,
52).
P h e n o m e n o l o g i c a l l y , this r e a c t i o n m a y be d e s c r i b e d as o c c u r r i n g i n three steps: ( 1 ) A t t a c h m e n t of o x y g e n to one of the c a r b o n atoms of the d o u b l e b o n d ( i n the s c h e m e to C i ) . ( 2 ) S h i f t of the d o u b l e b o n d to the a l l y l i c p o s i t i o n ( C , C ) ( 3 ) M i g r a t i o n of the a l l y l i c h y d r o g e n to the t e r m i n u s of the p e r o x y group. 2
3
M e c h a n i s t i c a l l y , h o w e v e r , the r e a c t i o n p r o b a b l y takes p l a c e c o n c e r t e d f a s h i o n i n v o l v i n g a c y c l i c s i x - m e m b e r e d t r a n s i t i o n state 22,45,56,57).
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
in a (13,
80
OXIDATION
hv/sensitizer/0
OF
ORGANIC
2
COMPOUNDS
1
III
l I C2=C3"
Ci
I OOH unidentified product
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
13%
10%
(2) reduction
X.„
l(+)
H
1
/'
(a-)H
CH
I
*
Y y
M
la 1) sens./h /0 . (2) reduction v
2
T h e f o l l o w i n g results are i n f a v o r of the a s s u m e d c o n c e r t e d r e a c t i o n : (1) O n l y those a l l y l i c h y d r o g e n s are u s e d i n the r e a c t i o n w h i c h are c i s - o r i e n t e d w i t h respect to the o x y g e n attack o n the d o u b l e b o n d carbons, as w a s d e m o n s t r a t e d w i t h 7«-D- a n d 7/?-D-cholesterol (45) affording 5a-hydroperoxy-A -cholesten-3/?-ol (58). 6
(2) T r i a l k y l s u b s t i t u t e d ethylenes s u c h as l i m o n e n e (57) a n d 1m e t h y l c y c l o h e x e n e (50) g i v e rise to ratios of t e r t i a r y - s e c o n d a r y h y d r o peroxides of a b o u t 44 to 56, w h i l e o p e n - c h a i n olefins s u c h as t r i m e t h y l ethylene, l , l - d i m e t h y l - 2 - e t h y l e t h y l e n e , 2,6-dimethyl-2-octene, m y r c e n e , 0 - c i t r o n e l l o l , l i n a l o o l , a n d l , l - d i m e t h y l - 2 - b e n z y l e t h y l e n e g i v e ratios of t e r t i a r y - s e c o n d a r y h y d r o p e r o x i d e s b e t w e e n 54 to 46 a n d 60 to 40 (31, 43, 47, 60, 63, 66). Since there is n o h y d r o g e n a b s t r a c t i o n p r i o r to o x y g e n a d d i t i o n to one of the d o u b l e b o n d carbons, this a d d i t i o n m u s t b e t h e first step if a m u l t i s t e p r e a c t i o n takes p l a c e . W h a t e v e r the s o - f o r m e d inter mediates m a y be, h o w e v e r , d i r a d i c a l species s u c h as 8 a or 8 b, or i o n i c species s u c h as 9 a or 9 b [the latter has b e e n suggested b> some authors (37, 67)], secondary h y d r o p e r o x i d e s s h o u l d be p r o d u c e d almost e x c l u s i v e l y f r o m the n o n s t e r i c a l l y h i n d e r e d olefins since i n the case of the p e r o x y intermediates, 8 a a n d 9a, the most stable ( t e r t i a r y ) a l k y l r a d i c a l or c a r b o n i u m i o n , r e s p e c t i v e l y , s h o u l d b e f o r m e d , a n d i n the case of the
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
67.
Type II
GOLLNICK
81
Oxygenations
p e r e p o x y intermediates, 8b a n d 9b, the a t t a c k i n g r a d i c a l or c a t i o n is m o r e strongly b o n d e d to the c a r b o n w i t h the smallest n u m b e r of a l k y l s u b s t i t u ents (94). O b v i o u s l y , there is not m u c h d i s c r i m i n a t i o n b e t w e e n the t w o d o u b l e b o n d c a r b o n atoms, a n d the slight d e v i a t i o n s f r o m 1 to 1 ratios i n a l l these cases are p r o b a b l y d u e to stereochemical rather t h a n electronic effects exerted b y the olefins o n the r e a c t i o n w i t h singlet o x y g e n . O O—O
O
H
— c—c—1 -
c—c—c —
III Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
H
III
8a
8b
oO—O
1
H
O
H
/+»
I
III
III 9a
9b
( 3 ) A c c o r d i n g to the results o b t a i n e d i n c o n f o r m a t i o n a l analysis, l i m o n e n e ( i n s o l u t i o n at r o o m t e m p e r a t u r e ) assumes a h a l f - c h a i r c o n f o r m a t i o n w i t h the i s o p r o p e n y l g r o u p i n a n e q u a t o r i a l p o s i t i o n (6, 34) (see F o r m u l a l a ) . A s the e n h a n c e d f o r m a t i o n of 2 as c o m p a r e d w i t h 3 a n d the 1 to 1 ratio of 6 a n d 7 s h o w , there is no steric h i n d r a n c e exerted b y the e q u a t o r i a l side c h a i n o n a n o x y g e n attack at C i or C . T h e r e f o r e , the stereoselective r e a c t i o n of l i m o n e n e w i t h s i n g l e t o x y g e n as r e v e a l e d b y the p r o d u c t d i s t r i b u t i o n must be c a u s e d b y a n e n h a n c e d r e a c t i v i t y of the q u a s i - a x i a l ( a ' ) h y d r o g e n s at C a n d C as c o m p a r e d w i t h the corre s p o n d i n g q u a s i - e q u a t o r i a l (e ) h y d r o g e n s . F u r t h e r m o r e , the 1 to 1 r a t i o of 6 a n d 7 a n d t h e i r e n h a n c e d p r o d u c t i o n as c o m p a r e d w i t h the f o r m a t i o n of 4 a n d 5 m u s t b e caused b y the f a c t that the C — H b o n d of the m e t h y l g r o u p c a n a p p r o a c h ( o n b o t h sides of the l i m o n e n e m o l e c u l e ) the p e r p e n d i c u l a r a r r a n g e m e n t w i t h respect to the d o u b l e b o n d p l a n e , necessary f o r d e v e l o p i n g the n e w d o u b l e b o n d , even better t h a n a q u a s i - a x i a l r i n g a l l y l h y d r o g e n . T h e i n c r e a s e d r e a c t i v i t y of a l l y l i c h y d r o g e n s , — C H > q u a s i - a x i a l > q u a s i - e q u a t o r i a l , has b e e n f o u n d to be a g e n e r a l p h e n o m e n o n (17, 45, 57). 2
3
6
f
3
( 4 ) T h e t e r t i a r y h y d r o p e r o x i d e s f o r m e d f r o m the o p e n - c h a i n olefins m e n t i o n e d above a l l c o n t a i n trans-substituted d o u b l e b o n d s (63, 66). A s one c a n see f r o m m o d e l s , the most stable c o n f o r m a t i o n s of these olefins ( g e n e r a l f o r m u l a 10) are those i n w h i c h one of the a l l y l i c h y d r o g e n s at C is e c l i p s e d w i t h the d o u b l e b o n d ( l 0 a , b ) . R e a c t i o n w i t h the other a l l y l i c h y d r o g e n m u s t therefore give rise to trans-substituted d o u b l e b o n d s . T h e c o n f o r m a t i o n a l i s o m e r 10c, w h i c h w o u l d g i v e rise to ciss u b s t i t u t e d d o u b l e b o n d s b y a concerted r e a c t i o n , is e x p e c t e d to b e h i g h l y 3
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
82
OXIDATION
OF ORGANIC
COMPOUNDS
H I
u n f a v o r e d because of strong steric r e p u l s i o n b e t w e e n t h e R g r o u p a n d the m e t h y l g r o u p at C i w h i c h is cis to this R g r o u p . T h e f o r m a t i o n of intermediates s u c h as 8 or 9 i n a m u l t i s t e p r e a c t i o n w o u l d also e x p l a i n the o c c u r r e n c e of the t h e r m o d y n a m i c a l l y m o r e stable trans-substituted d o u b l e b o n d s i n t h e tertiary h y d r o p e r o x i d e s . H o w e v e r , t h e n e a r l y e x c l u sive f o r m a t i o n of t h e s e c o n d a r y h y d r o p e r o x i d e , 15, f r o m l , l - d i m e t h y l - 2 i s o p r o p y l e t h y l e n e , 13 (22,63, 66), supports t h e a s s u m p t i o n of a c o n c e r t e d r e a c t i o n : T h e most stable c o n f o r m a t i o n of 13 is 13a, i n w h i c h the a l l y l i c h y d r o g e n at C n e e d e d f o r t h e f o r m a t i o n of the t e r t i a r y h y d r o p e r o x i d e , 14, is e c l i p s e d w i t h t h e d o u b l e b o n d , the most u n f a v o r a b l e p o s i t i o n a n a l l y l i c h y d r o g e n c a n assume f o r a c o n c e r t e d reaction w i t h o x y g e n . T h e r e fore, the p r o d u c t i o n of 14 s h o u l d b e almost suppressed. O n t h e other h a n d , i f t h e tertiary h y d r o p e r o x i d e s ( 1 1 ) w e r e f o r m e d b y a m u l t i s t e p r e a c t i o n , one w o u l d expect a reasonable a m o u n t of 14 to b e f o r m e d f r o m 13 b y the same m e c h a n i s m .
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
3
( 5 ) M e t h y l groups s u c h as t h e C - m e t h y l groups of a-pinene, 16 (54), A - c a r e n e , 18 (23,62), A - c a r e n e , 22, a n d t h e A - c a r e n e s , 25 a n d 2 7 (19), or the a n g u l a r m e t h y l groups a t t a c h e d to C i i n c e r t a i n steroids (10, 45, 46, 55, 58) m a y c o m p l e t e l y s h i e l d t h e d o u b l e b o n d against a n attack of the singlet o x y g e n . T h u s , steric s h i e l d i n g effects i n a d d i t i o n to c o n f o r m a t i o n a l effects exerted b y t h e a l l y l i c h y d r o g e n s cause t h e stereoselectivity 8
3
4
2
0
H
R 10
10b
10a
H 10c H
OOH
OOH
11
12
54-60%
46-40%
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
67.
GOLLNICK
16
Type II
83
Oxygenations
16a
17
of T y p e I I p h o t o - o x y g e n a t i o n reactions. I n t e r e s t i n g l y e n o u g h , the o b s e r v e d p r o d u c t d i s t r i b u t i o n f r o m A - c a r e n e was e x p l a i n e d (23) b y assum i n g that of the t w o b o a t c o n f o r m a t i o n s , 18a a n d 18b, o n l y the closed-boat f o r m , 18 b, takes p a r t i n the h y d r o p e r o x i d a t i o n r e a c t i o n since o n l y if this is the case, the p r o d u c t ratios of 19 to ( 2 0 + 2 1 ) a n d of 2 0 to 21 s h o u l d be 1 to 1. T h e attack of o x y g e n o n the a-side of 18 at C a n d C s h o u l d f o l l o w a statistical p a t t e r n a n d the a-hydrogens at C a n d C s h o u l d b e as a v a i l a b l e as the a l l y l i c h y d r o g e n s of the C - m e t h y l g r o u p . O n the other h a n d , a ^-attack o n 1 8 b s h o u l d be c o m p l e t e l y p r e v e n t e d b y the C - m e t h y l g r o u p . R e c e n t l y , it was s h o w n that A - c a r e n e exists to about 9 3 % i n the closed-boat c o n f o r m a t i o n ( 1 8 b ) at 2 0 ° C . ( I ) at w h i c h the p h o t o - o x y g e n a t i o n r e a c t i o n was c a r r i e d out. 3
3
2
4
5
1 0
8
3
I n p r e p a r a t i v e o r g a n i c c h e m i s t r y , m u c h use has b e e n m a d e of the stereoselective T y p e II p h o t o - o x y g e n a t i o n r e a c t i o n since the p r i m a r i l y p r o d u c e d a l l y l i c h y d r o p e r o x i d e s c a n be r e d u c e d u n d e r r e t e n t i o n of c o n figuration. H o w e v e r , d e p e n d i n g o n the n a t u r e of the a l l y l i c h y d r o p e r -
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
84 oxides
OXIDATION
and
the
particular
reaction
OF
conditions
ORGANIC
applied
COMPOUNDS
IEE
(temperature,
concentrations of the substrates, solvents, e t c . ) , secondary reactions
may
occur—e.g., rearrangements of a l l y l i c tertiary h y d r o p e r o x i d e s to secondary a l l y l i c h y d r o p e r o x i d e s , e l i m i n a t i o n of w a t e r f r o m secondary a l l y l i c h y d r o peroxides to y i e l d «,/?-unsaturated ketones, a n d f r a g m e n t a t i o n of a l l y l i c h y d r o p e r o x i d e s to c a r b o n y l c o m p o u n d s .
F u r t h e r m o r e , T y p e I processes
(free radical chain autoxidation reactions) reactions,
s u b s t i t u t e d olefins) serve as substrates
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
may accompany
especially w h e n r e l a t i v e l y u n r e a c t i v e
olefins
(17).
19
20
21
50%
27%
23%
22
23
24
18%
82%
Type
(mono-
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
II
or d i -
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
67.
Type II
GOLLNICK
Oxygenations
85
27 Generally,
tetraalkyl-substituted double bonds react w i t h
singlet
o x y g e n at faster rates t h a n d o t r i a l k y l - s u b s t i t u t e d d o u b l e b o n d s , w h i c h i n t u r n react faster t h a n d i a l k y l - s u b s t i t u t e d ones ( 2 2 , 50, 63, 66). A c c o r d i n g to the r e a c t i o n sequence o f T y p e I I p h o t o - o x y g e n a t i o n reactions g i v e n b e l o w , t h e r e a c t i o n o f a substrate w i t h singlet o x y g e n ( S t e p 9 ) competes w i t h t h e spontaneous d e a c t i v a t i o n of singlet o x y g e n ( S t e p 8 ) . F r o m t h e v a r i a t i o n o f the rate o f o x y g e n c o n s u m p t i o n w i t h the c o n c e n t r a t i o n o f the substrate, k /k 8
9
c a n b e d e t e r m i n e d f o r v a r i o u s substrates.
Since kg r e
m a i n s constant u n d e r s i m i l a r r e a c t i o n c o n d i t i o n s , r e l a t i v e reactivities o f the substrates t o w a r d s singlet o x y g e n c a n b e o b t a i n e d (56). I n T a b l e I, r e l a t i v e free energies o f a c t i v a t i o n , A A F * , for the r e a c t i o n o f singlet o x y g e n at C i a n d C o f different olefins a r e g i v e n , c a l c u l a t e d f r o m e x p e r i m e n t a l 2
k /k 8
9
values w i t h t e t r a m e t h y l e t h y l e n e
(TME)
( 2 8 ) as t h e reference
compound: A A F * = RTlnfc
rel
(T = 2 9 3 K . , reaction temperature) 0
(1)
with —
( ^ / ^ . T M E )
.substr. /
Psubstr.
%
P T M E
M
E
^substr.
i n w h i c h p is t h e factor w h i c h accounts f o r t h e p r o d u c t d i s t r i b u t i o n a n d n is t h e n u m b e r o f e q u i v a l e n t t r a n s i t i o n states l e a d i n g to a p a r t i c u l a r product.
I n o r d e r to d e t e r m i n e n , t h e e q u i v a l e n c e of o n e r i n g - a l l y l i c
h y d r o g e n to three C H - a l l y l i c h y d r o g e n s i n a c o n c e r t e d r e a c t i o n has b e e n 3
assumed.
Furthermore, no distinction between
quasi-axial a n d quasi-
e q u a t o r i a l h y d r o g e n s was m a d e .
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
OXIDATION
O F ORGANIC
T a b l e I.
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
2
Relative
TME
^8/^-9,8ubstr.
}
Compound
1
COMPOUNDS
Moles/L.
^8/^9,8
28
0.003
1.00
30
0.055
0.055 0.045 0.07
a
b
33
0.030
0.100
36
1.20
0.0025 0.0020° 0.002 0.0082 b
c
40
42
26.0
0.18
0.00012
0.0166
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
m
Free
67.
Type II
GOLLNICK
87
Oxygenations
E n e r g i e s of A c t i v a t i o n
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
Reaction at
AAF*, Kcal./Mole, Reaction at
Pi
n
p
n
0.50
4
0.50
4
0
0
0.54
2
0.46
4
1.25
1.75
0.44 ( M ) 0.06(R)
2 2
0.44 ( M ) 0.06(R)
2 2
1.01(M) 2.17(R)
1.01(M) 2.17(R)
0.45
2
0.40 ( M ) 0.15(R)
2 2
3.15
3.20 ( M ) 3.79(H)
0.50
2
0.50
2
4.86
4.86
0.55
2
0.45
4
1.93
2.44
t
2
%
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
OXIDATION OF ORGANIC COMPOUNDS
HI
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
Table I.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
67.
89
Type II Oxygenations
GOLLNICK
Continued R
E
A
C
T
I
O
N
A
AAF$,
T
C-1
C-2
0.05
2
0.95
4
4.48
3.17
—
-
1.00
4
—
3.83
—
-
0.94
1
—
3.43
0.50
1
0.25(M)
1
2.04
0.25 ( R )
1
0.80 ( M ) 0.20(R)
2 1
—
-
2
n
C-1
n
t
p
Kcal./Mole,
Reaction at
p
±
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
C-2
2
2.45 ( M ) 2.45(R)
—
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
1.75(M) 2.18(R)
90
OXIDATION
OF
ORGANIC
COMPOUNDS—III
Table I.
Moles/L.
Compound
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
25
0.0177
0.17
AO - * X 3
Table
(V,7r*)-Sensitizers
II.
T r i p l e t E n e r g y of
Triplet Energy; Kcal./Mole
84.5 Benzene 67.6 Fluorene Triphenylene 66.6 Biphenyl 65.7 62.2 Phenanthrene 60.9 Naphthalene 59.0 1 -Bromonaphthalene 1 -Iodonaphthalene 58.6 48.7 Pyrene 47.2 1,2-Benzanthracene Anthracene 42.0 Acenaphthylene Eosin 42.4 Erythrosin 42.0 39.4 Rose Bengal Azulene Between 31 and 3 8 29.4 Tetracene
Sensitizers
( n,7r*)-Sensitizers
Triplet Energy; Kcal./Mole
Acetone Propiophenone Xanthone Acetophenone Carbazole Benzophenone Thioxanthone Flavone 2-Naphthylphenylketone* 1-Naphthylphenylketone Fluorenone
5
6
c
c
e
d
"Triplet energies of ( 7 r , 7 r * ) - and (n,7r*) -sensitizers [taken from ( 8 ) ] . Reacting triplets are probably ( 7 r , 7 r * ) (24). " F r o m (17). F r o m (38). b
3
d
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
—
74.6 74.2 73.6 70.1 68.5 65.5 62.0 59.6 57.5 53.3
98
OXIDATION
-> %
+
^
a n d F -> ( S . . . O ) -> % 3
3
2
O F ORGANIC
+
0
3
COMPOUNDS
H I
0 , are f u n c t i o n s of t h e 2
t r i p l e t energies of the sensitizers or n o t ; because of the m e c h a n i s m g i v e n a b o v e singlet o x y g e n f o r m a t i o n s h o u l d n o t d e p e n d o n the singlet energy b u t m a y d e p e n d o n the t r i p l e t e n e r g y of t h e l i g h t absorber.
[Recently, a
q u a n t u m m e c h a n i c a l t r e a t m e n t of the m e c h a n i s m of q u e n c h i n g of t r i p l e t state m o l e c u l e s b y o x y g e n w a s c a r r i e d o u t ( 3 0 ) . T h e authors, also c o n s i d e r i n g the i n t e r a c t i o n of singlet o x y g e n w i t h singlet g r o u n d state l i g h t absorbers, c o n c l u d e that the ratio of rates f o r t h e t w o c o m p e t i n g p r o c esses is of the o r d e r of 100 to 1000—i.e., t r i p l e t q u e n c h i n g b y o x y g e n s h o u l d almost e x c l u s i v e l y b e a c c o m p a n i e d b y singlet o x y g e n f o r m a t i o n . ] Since a l l t h e d i r e c t a n d s e n s i t i z e d p h o t o - o x y g e n a t i o n reactions
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
been
carried out w i t h
" l o w - e n e r g y l i g h t absorbers''
(triplet
have
energies
l o w e r t h a n about 4 5 k c a l . p e r m o l e ) , w e e x a m i n e d a series of sensitizers w i t h t r i p l e t energies f r o m a b o u t 30 to 85 k c a l . p e r m o l e (18).
2,5-Di-
m e t h y l f u r a n , 53, w h i c h reacts w i t h singlet o x y g e n to the o z o n i d e (54) t h a t is i m m e d i a t e l y c o n v e r t e d to a m e t h o x y h y d r o p e r o x i d e , 55, i n t h e presence of m e t h a n o l the
(14,
21),
w a s u s e d as a substrate.
(7r,7r*)- a n d (n,7r*)-sensitizers
I n the presence of
given i n Table II, the dimethylfuran
i n m e t h a n o l i c s o l u t i o n took u p 1 m o l e of 0
2
p e r m o l e of d i m e t h y l f u r a n ,
O 53
O 54
(+CH OH) 3
56
55
a n d the o n l y p r o d u c t f o r m e d w a s the m e t h o x y h y d r o p e r o x i d e w h i c h w a s i d e n t i f i e d b y its m e l t i n g p o i n t , i n f r a r e d s p e c t r u m , a n d h y d r o l y s i s p r o d u c t , 56. F u r t h e r m o r e , i n a l l cases the u n c h a n g e d sensitizer w a s r e c o v e r e d i n
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
67.
GOLLNICK
Type II
Oxygenations
99
a b o u t 9 0 % y i e l d , except f o r anthracene, w h i c h w a s d i m e r i z e d to a b o u t 7 5 % d u r i n g the i r r a d i a t i o n p e r i o d , 1 - i o d o n a p h t h a l e n e w h i c h w a s p h o t o l y z e d , a n d a z u l e n e , a b o u t 1 0 % of w h i c h w a s d e s t r o y e d . I n a d d i t i o n , w e c a r r i e d o u t the t h e r m a l a u t o x i d a t i o n of 2 , 5 - d i m e t h y l f u r a n i n r e f l u x i n g m e t h a n o l a n d i s o l a t e d o n l y a b r o w n i s h , viscous o i l that possesses a d i f ferent i n f r a r e d s p e c t r u m f r o m that of 55. ( T h e m e t h o x y h y d r o p e r o x i d e , 55, is stable u n d e r these c o n d i t i o n s . ) T h e s e results c l e a r l y s h o w that a l l t h e (?r,7r*)- as w e l l as t h e (n,7r*)sensitizers i n d e p e n d e n t of t h e i r t r i p l e t energies transfer their energy to 3
0 , t h e r e b y f o r m i n g ^ o . T h e s e experiments d o n o t answer, h o w e v e r , 2
the q u e s t i o n of w h i c h singlet o x y g e n is i n v o l v e d a n d i f t h e t w o singlet Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
oxygens exert different c h e m i c a l b e h a v i o r . A t present, q u a n t u m y i e l d of 1
0 - f o r m a t i o n as w e l l as p r o d u c t f o r m a t i o n a n d p r o d u c t d i s t r i b u t i o n s 2
w i t h v a r i o u s olefinic substrates as a f u n c t i o n of the sensitizers a p p l i e d are being studied.
Literature Cited
(1) (2) (3) (4) (5)
(6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
Acharya, S. P., Tetrahedron Letters 1966, 4117. Arbuzov, Y. A., Russ. Chem. Rev. 34, 558 (1965). Arnold, S. J., Ogryzlo, E. A., Witzke, H., J. Chem. Phys. 40, 1769 (1964). Bader, L. W., Ogryzlo, E. A., Discussions Faraday Soc. 37, 46 (1964). Bowen, E. J., "The Photochemistry of Aromatic Hydrocarbon Solutions," in "Advances in Photochemistry," W. A. Noyes, Jr., G. S. Hammond, and J. N. Pitts, Jr., eds., Vol. I, p. 23, Interscience, Wiley, New York, London, Sidney, 1963. Brewster, J. H., J. Am. Chem. Soc. 81, 5493 (1959). Browne, R. J., Ogryzlo, E. A., Proc. Chem. Soc. London 1964, 177. Calvert, J. G., Pitts, J. N., Jr., "Photochemistry," Wiley, New York, Lon don, Sidney, 1966. Corey, E. J., Taylor, W. C., J. Am. Chem. Soc. 86, 3881 (1964). Eisfeld, W., Dissertation, University of Göttingen, 1965. Foote, C. S., Cheng, H., private communication. Foote, C. S., Wexler, S., J. Am. Chem. Soc. 86, 3879, 3880 (1964). Foote, C. S., Wexler, S., Ando, W., Tetrahedron Letters 1965, 4111. Foote, C. S., Wuesthoff, M. T., Wexler, S., Burstain, I. G., Denny, R., Schenck, G. O., Schulte-Elte, K. H., Tetrahedron 23, 2583 (1967). Gaffron, H., Biochem. Z. 264, 251 (1933). Gaffron, H., Z. Physik. Chem. B37, 437 (1937). Gollnick, K., Advan. Photochem., in press. Gollnick, K., Dörhöfer, G., unpublished manuscript. Gollnick, K., Schade, G., Tetrahedron Letters 1966, 2335. Gollnick, K., Schade, G., unpublished manuscript. Gollnick, K., Schenck, G. O., "1,4-Cycloaddition Reactions: the DielsAlder Reaction in Heterocyclic Syntheses," J. Hamer, ed., Chap. X, p. 255, Academic Press, New York, 1967. Gollnick, K., Schenck, G. O., Pure Appl. Chem. 9, 507 (1964). Gollnick, K., Schroeter, S., Ohloff, G., Schade, G., Schenck, G. O., Liebigs Ann. Chem. 687, 14 (1965). Hammond, G. S., Leermakers, P. A., J. Am. Chem. Soc. 84, 207 (1962).
(25) Higgins, R., Foote, C. S., Cheng, H., ADVAN. CHEM. SER. 77, 102
(1968).
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
100
(26) (27) (28) (29) (30) (31) (32) (33) (34)
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
(35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68)
OXIDATION OF ORGANIC COMPOUNDS III
Hoijtink, G. J., Mol. Phys. 3, 67 (1960). Kautsky, H., Biochem. Z. 291, 271 (1937). Kautsky, H., deBruijn, H., Naturwissenschaften 19, 1403 (1931). Kautsky, H., deBruijn, H., Neuwirth, R., Baumeister, W., Ber. deut. Chem. Ges. 66, 1588 (1933). Kawaoka, K., Khan, A. U., Kearns, D. R., J. Chem. Phys. 46, 1842 (1967). Kenney, R. L., Fisher, G. S., J. Am. Chem. Soc. 81, 4288 (1959). Khan, A. U., Kasha, M., Ibid., 88, 1574 (1966). Khan, A. U., Kasha, M., J. Chem. Phys. 39, 2105 (1963). Klyne, W., "Progress in Stereochemistry," Vol. I, p. 81, Butterworths, London, 1954. Koblitz, W., Schumacher, H. J., Z. Physik. Chem. B35, 11 (1937). Köller, H., Diplomarbeit, University of Göttingen, 1958. Kopecky, K. R., Reich, H. J., Can. J. Chem. 43, 2265 (1965). Lamola, A. A., Herkstroeter, W. G., Dalton, J. C., Hammond, G. S., J. Chem. Phys. 42, 1715 (1965). Livingston, R., "Photochemical Autoxidation," in "Autoxidation and Anti oxidants," W. O. Lundberg, ed., Vol. I, p. 249, Interscience, Wiley, New York, London, Sidney, 1961. Livingston, R., Owens, K. E., J. Am. Chem. Soc. 78, 3301 (1956). Livingston, R., Rao, V. S., J. Phys. Chem. 63, 794 (1959). McKeown, E., Waters, W. A., J. Chem. Soc. London B 1966, 1040. Mertz, C., Diplomarbeit, University of Göttingen, 1958. Murrell, J. N., Mol. Phys. 3, 319 (1960). Nickon, A., Bagli, F., J. Am. Chem. Soc. 83, 1498 (1961). Nickon, A., Mendelson, W. L., Can. J. Chem. 43, 1419 (1965). Ohloff, G., Klein, E., Schenck, G. O., Angew. Chem. 73, 578 (1961). Porter, G., Wright, M. R., Discussions Faraday Soc. 27, 18 (1959). Roberts, J. D., Caserio, M. C., "Basic Principles of Organic Chemistry," Chaps. 7-5, 7-6, W. A. Benjamin, New York, N. Y., 1965. Schenck, G. O., Angew. Chem. 64, 12 (1952). Schenck, G. O., German Pat. 933925 (Dec. 24, 1943). Schenck, G. O., Naturwissenschaften 35, 28 (1948). Schenck, G. O., Becker, H. D., Schulte-Elte, K. H., Krauch, C. H., Chem. Ber. 96, 509 (1963). Schenck, G. O., Eggert, H., Denk, W., Liebigs Ann. Chem. 584, 177 (1953). Schenck, G. O., Eisfeld, W., unpublished manuscript. Schenck, G. O., Gollnick, K., Forschungsber. Land Nordrhein-Westfalen, No. 1256, Westdeutscher Verlag, Koln, Opladen, 1963. Schenck, G. O., Gollnick, K., Buchwald, G., Schroeter, S, Ohloff, G., Liebigs Ann. Chem. 674, 93 (1964). Schenck, G. O., Gollnick, K., Neumiiller, O. A., Ibid., 603, 46 (1957). Schenck, G. O., Koller, H., unpublished manuscript. Schenck, G. O., Mertz, C., unpublished manuscript. Schenck, G. O., Neumiiller, O. A., Ohloff, G., Schroeter, S., Liebigs Ann. Chem. 687, 26 (1965). Schenck, G. O., Schroeter, S., Ohloff, G., Chem. Ind. (London) 1962, 459. Schenck, G. O., Schulte-Elte, K. H., unpublished manuscript. Schonberg, A., Liebigs Ann. Chem. 518, 299 (1935). Schuller, W. H., Lawrence, R. V., /. Am. Chem. Soc. 83, 2563 (1961). Schulte-Elte, K. H., Dissertation, University of Gottingen, 1961. Sharp, D. B., "Abstracts of Papers," 138th Meeting, ACS, Sept. 1960, p. 79P. Singh, I. S., Becker, R. S., J. Am. Chem. Soc. 82, 2083 (1960).
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
67.
GOLLNICK
Type
II
Oxygenations
(69) Tsubomura, H., Mulliken, R. S., J. Am. Chem. Soc. 82, 5966 (1960). (70) Wilson, T., J. Am. Chem. Soc. 88, 2898 (1966). (71) Winer, A. M., Bayes, K. B., J. Phys. Chem. 70, 302 (1966). December 5, 1967.
Downloaded by MONASH UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch067
RECEIVED
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.