Ultralow Thermal Conductivity in Diamond-Like Semiconductors

27 mins ago - ...
4 downloads 4 Views 4MB Size
Article Cite This: Chem. Mater. XXXX, XXX, XXX−XXX

pubs.acs.org/cm

Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects Brenden R. Ortiz,*,† Wanyue Peng,‡ Lídia C. Gomes,§,# Prashun Gorai,†,∥ Taishan Zhu,§ David M. Smiadak,‡ G. Jeffrey Snyder,⊥ Vladan Stevanović,†,∥ Elif Ertekin,§ Alexandra Zevalkink,‡ and Eric S. Toberer*,†,∥ †

Colorado School of Mines, Golden, Colorado 80401, United States Michigan State University, East Lansing, Michigan 48824, United States § University of Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States # National Center for Supercomputing Applications, Urbana, Illinois 61801, United States ∥ National Renewable Energy Laboratory, Golden, Colorado 80401, United States ⊥ Northwestern University, Evanston, Illinois 60208, United States ‡

S Supporting Information *

ABSTRACT: In this work, we discover anomalously low lattice thermal conductivity (50 cm2/(Vs) at 300 °C) in Hg-containing systems, leading to predicted zT > 1.5 in Cu2HgGeTe4 and Cu2HgSnTe4 under optimized doping. In addition to introducing a potentially new p-type thermoelectric material, this work provides (1) a strategy to use the proximity of phase transitions to increase point defect phonon scattering, and (2) a means to quantify the power of a given point defect through inexpensive phonon calculations.



Database (ICSD)30 has culminated in the identification of several new material classes for thermoelectric applications, including the n-type Zintl phases.38,39 Here, we focus on the ptype quaternary diamond-like semiconductors (DLS), another promising class of materials that consistently appears in our set of candidate thermoelectrics. The DLS are a chemically rich family of compounds that can be derived from the diamond silicon prototype via simple electron counting rules (i.e., Grimm−Sommerfeld rule).40 Figure 1 shows the derivation of the binary, ternary, and quaternary DLS from the diamond prototype. The diverse chemistry observed in the DLS is fundamentally tied to the number of cation mutations that preserve tetrahedral

INTRODUCTION Widespread application of the Material Genome Initiative (MGI) promises to revolutionize the discovery and realization of next-generation materials for a diverse set of applications including photovoltaics,1−9 batteries,1,2,10−20 catalysis,1,2,21−29 and thermoelectrics.1,2,30−37 Fundamental to the success of MGI-inspired approaches is the leveraging of computational material science and ab initio calculations to survey a broad chemical space for a desired suite of properties. Our prior work in thermoelectrics led to the development of a computationally efficient figure of merit, which can be evaluated in a highthroughput fashion.30,31 Our approach combines semiempirical analysis of experimental data and density functional theory (DFT) electronic structure calculations to predict complex, scattering-dependent transport coefficients (e.g., the intrinsic carrier mobility μ0 and lattice thermal conductivity κL). Our high-throughput search of the Inorganic Crystal Structure © XXXX American Chemical Society

Received: February 28, 2018 Revised: April 16, 2018

A

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX

Article

Chemistry of Materials

Figure 1. Zincblende, chalcopyrite, stannite, and kesterite structures are derivatives of the diamond lattice. Simple electron counting rules permit cation mutation so long as the net valence electron count is unchanged. All structures are tetrahedrally coordinated with a 1:1 cation:anion ratio (e.g., GaAs, ZnS, ZnSiP2, CuInSe2, Cu2ZnSnTe4). The quaternary DLS exhibit multiple cation ordering motifs (e.g., stannite and kesterite), which are in close energetic proximity to one another. As expected from the relative stability of the structures, the DLS can be particularly prone to cation disorder and antisite defects. For simplicity, we do not consider other modifications to the diamond lattice that preserve tetrahedral coordination but shift the unit cell away from the cubic and tetragonal Bravais lattices (e.g., wurtzite, wurtz-stannite).

coordination. Because of the flexibility of the cation sublattice, it is common to see multiple cation ordering motifs exist within close energetic proximity to each other.41 This is most evident in the quaternary systems, where the principle ordered variants stannite (I4̅2m) and kesterite (I4̅) rarely differ in total energy calculations by 10 meV/atom.42−47 Note that other cation orderings are observed in the literature, and alloys between the stannite and kesterite structures invoke nontrivial changes in atomic occupancies and ordering.48 Further, distinguishing between the kesterite and stannite structures without high-level structural characterization (e.g., neutron, resonant X-ray diffraction) can be difficult in cases where the elements share similar atomic numbers.41,49 The close proximity of multiple cation ordering motifs naturally extends to the concept of cation disorder. There is a plethora of experimental evidence from the photovoltaic community evidencing disorder and the impact on optical and electronic properties in the sulfide and selenide DLS (e.g., CZTS, CZTSe).50−58 While the photovoltaic community must often contend with disorder as a challenge (e.g., reduced carrier lifetime, recombination), there exists an opportunity to leverage the disorder within the quaternary DLS to impede phonon transport and reduce the lattice thermal conductivity. Despite heavy investment into CZTS and CZTSe by the photovoltaic community, DLS with heavier group IIB (e.g., Cd, Hg) elements and heavier chalcogenides (e.g., Te) have not been well characterized within other fields. The potential for strong point defect phonon scattering arising from increased disorder, combined with our prior high-throughput predictions,30 make the quaternary telluride DLS a particularly interesting search space for thermoelectric materials. To date, the thermoelectric community has seen limited success in bulk, polycrystalline DLS. The most notable exception is Si0.8Ge0.2, although the innately high lattice thermal conductivity and low anharmonicity of Si and Ge have required extensive materials engineering (alloying, nanostructuring, grain boundary engineering) to produce successful high-temperature thermoelectric modules.59−64 The literature is also ripe with studies investigating the thermoelectric properties of individual nanowires or nanodots,65−75 although such form factors are generally prohibitive for practical thermoelectric applications. Literature also predominantly focuses on the binary DLS, with comparatively infrequent mention of the ternary and quaternary analogues. Existing literature on some selenide

materials (e.g., Cu2FeSnSe4, Cu2CdSnSe4, Cu2ZnGeSe4) indicates that the quaternary materials do possess significantly reduced lattice thermal conductivity (∼1 W/mK at 300 °C) as compared to the binary and ternary counterparts.41,76−83 On average, the reduction of the lattice thermal conductivity is consistent with the introduction of more complex cells and the increased potential for disorder. Existing searches have failed to find any quaternary DLS with zT exceeding unity. Notable compositions include Cu2.15Co0.8Mn0.05SnS4 (zT ≈ 0.8, 500 °C), 81 Cu 2.10 Cd 0.90 SnSe 4 (zT ≈ 0.6, 425 °C), 77 and Cu2.2Fe0.6SnSe4 (zT ≈ 0.4, 475 °C).76 Current literature is heavily biased toward research on the selenide and sulfide DLS, with a dearth of telluride research. Additionally, there are no works that attempt to correlate chemistry with transport beyond a singular compound or alloy. In this work, we begin by performing a computational assessment of all DLS (>140 unique calculations) within the ICSD adhering to the diamond, zincblende, chalcopyrite, or stannite prototypes. Note that all calculations are uploaded to our open-access Web site www.tedesignlab.org. We find that the most promising candidates include a set of quaternary tellurides Cu2IIBIVTe4 (IIB: Zn, Cd, Hg) (IV: Si, Ge, Sn). As this series spans a wide enough chemical space to begin to resolve the connection between chemistry and transport, these nine materials will serve as our model system for this study. Experimentally, we observe that bulk samples of the DLS present as heavily doped p-type semiconductors with assynthesized carrier densities in the 1019−1021 cm−3 range. Some compounds exhibit relatively high hole mobilities (>50 cm2/ (Vs) at 300 °C) alongside exceptionally low lattice thermal conductivity ( 1.5 at 300 °C under optimized doping. A combination of high-temperature X-ray diffraction (XRD), synchrotron XRD, high-temperature resonant ultrasound spectroscopy (RUS), and high-temperature transport measurements indicates that cation disorder plays a fundamental role in the reduction of the lattice thermal conductivity in the Hgcontaining samples. In particular, the antisite defects HgCu and CuHg appear to possess unusually strong phonon scattering strength, significantly reducing phonon lifetimes when compared to the lighter Zn and Cd analogues. The propensity of these materials to form antisite defects between relatively B

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX

Article

Chemistry of Materials

flowing argon to minimize oxidation. The elastic moduli were determined using the Quasar2000 CylModel software package. Hall effect and resistivity measurements were performed using the Van der Pauw geometry on a home-built apparatus.84 Measurements were conducted up to 300 °C under dynamic vacuum (5 μm) in size and are unlikely to contribute to the thermal conductivity appreciably (e.g., nanostructuring). All high-temperature XRD patterns can be found in Figures S8−S16. The Zn-containing compounds (Figures S8−S10) show a linear peak shift toward lower angles, consistent with the expected thermal expansion behavior. To a small extent, the Cd-containing compounds (Figures S11−S13) begin to exhibit nonlinear behavior at elevated temperatures. By far, however, the Hg-containing samples show the most nonlinear behavior. To visualize the high-temperature evolution of the structure, Figure 5 shows the peak shift for the (112), (220), (204),

Figure 4. Predicted thermoelectric performance (color) for the quaternary Cu2IIBIVTe4 DLS compounds using the single parabolic band (SPB) model at 300 °C. Compounds generally present as near degenerately doped (1020−1021 cm−3) p-type semiconductors. Experimentally realized zT with as-synthesized carrier concentration (black) is overlaid on the predictions. The improved zT in all Hgcontaining samples can be attributed to the significantly reduced lattice thermal conductivity, although the improvement in Cu2HgGeTe4 and Cu2HgSnTe4 is also due to improved electronic mobility. Optimization of zT will require an order of magnitude reduction in carrier density for the Hg-containing samples.

PGEC behavior in these samples. We first turn our attention to the connection between crystal structure, elastic properties, thermal transport, and phonon structure to understand the origins of the abnormally low lattice thermal conductivity in the Cu2IIBIVTe4 family of materials. Structure and Phase Transitions. The DLS are nominally ordered variants of the diamond prototype, although the literature is ripe with reports of native disorder, antisite defects, order−disorder transitions, and off-stoichiometry.50−58,99−103 The possibility of strong cation disorder may influence the strength of point-defect scattering in the DLS, particularly in the quaternary systems (greater number of cation combinatorics). As such, we begin by applying a combination of hightemperature diffraction and Rietveld analysis to characterize any structural features, which may explain the abnormally low lattice thermal conductivity exhibited by the DLS. As noted before, it can be nontrivial to distinguish between the stannite and kesterite structures via lab X-ray diffraction, particularly in cases where the Z-number of elements is similar (e.g., Cu−Zn disorder in CZTS or CZTSe). Consistent with our total energy calculations (Table S1), all members of the Cu2(IIB)(IV)Te4 family of materials are reported as stannite within the ICSD, although there are reports suggesting that both Cu2ZnGeTe4 and Cu2HgSnTe4 may possess hightemperature transformations to either wurtz-stannite or kesterite, consistent with a disordering process.100,101,103 Unlike CZTS or CZTSe, however, the Hg-containing samples should have the necessary Z-number contrast to resolve the subtle difference between the stannite and kesterite refinements. A powder sample of the most promising sample, Cu2HgGeTe4, was sent to Argonne National Lab (BM-11) for high-resolution synchrotron data. The associated Rietveld refinement and associated structural data can be found in Figure S7. The sample is predominantly Cu2HgGeTe4 with a minor ( 1.5 at 300 °C under optimized doping. The transport behavior of these compounds is reminiscent of the phonon-glass-electron-crystal concept, although the DLS possess markedly simpler structure when compared to most PGEC materials. A combination of high-temperature resonant ultrasound spectroscopy, high-temperature XRD, high-temperature transport, and synchrotron XRD suggests an abundance of antisite defects in the Cu2IIBIVTe4 family of materials. Likely driven by the energetic proximity of the stannite and kesterite cation orderings, the defects contribute strongly to the suppressed lattice thermal conductivity in the Hg-containing systems via point-defect phonon scattering. Remarkably, the seemingly high density of antisite defects does not appear to degrade the hole transport within these materials. Our investigation used phonon calculations to probe the strength of particular antisite defects by calculating the overlap integral between the atom-decomposed phonon density of states. This demonstrates the unusually strong point-defect scattering potential of HgCu and CuHg antisite defects, which qualitatively match our observations regarding the unusually low lattice thermal conductivity in Hg-containing systems. Thus, this work not only introduces a potentially relevant p-type thermoelectric material, but also provides strategies for harnessing shallow energy landscapes (e.g., energetic proximity of stannitekesterite) for reducing κL through point-defect phonon scattering.





ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b00890. Additional structural, computational, and experimental transport data to augment the results (PDF)



REFERENCES

(1) Curtarolo, S.; Hart, G. L.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12, 191−201. (2) Green, M. L.; et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 2017, 4, 011105-1−011105-18. (3) Castelli, I. E.; Olsen, T.; Datta, S.; Landis, D. D.; Dahl, S.; Thygesen, K. S.; Jacobsen, K. W. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 2012, 5, 5814−5819. (4) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 2013, 117, 13902−13913. (5) Kanal, I. Y.; Owens, S. G.; Bechtel, J. S.; Hutchison, G. R. Efficient computational screening of organic polymer photovoltaics. J. Phys. Chem. Lett. 2013, 4, 1613−1623. (6) Ørnsø, K. B.; Garcia-Lastra, J. M.; Thygesen, K. S. Computational screening of functionalized zinc porphyrins for dye sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 19478−19486. (7) Zakutayev, A. Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A 2016, 4, 6742−6754. (8) Yu, L.; Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 2012, 108, 068701-1−068701-5. (9) Deng, Z.; Wei, F.; Sun, S.; Kieslich, G.; Cheetham, A. K.; Bristowe, P. D. Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 2016, 4, 12025−12029. (10) Beal, M. S.; Hayden, B. E.; le Gall, T.; Lee, C. E.; Lu, X.; Mirsaneh, M.; Mormiche, C.; Pasero, D.; Smith, D. C.; Weld, A.; Yada, C.; Yokoish, S. High throughput methodology for synthesis, screening, and optimization of solid state lithium ion electrolytes. ACS Comb. Sci. 2011, 13, 375−381. (11) Jain, A.; Hautier, G.; Morre, C.; Kang Byoungwoo, K.; Lee, J.; Chen, H.; Twu, N.; Ceder, G. A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries. J. Electrochem. Soc. 2012, 159, 622−633. (12) Liu, M.; Rong, Z.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A. Spinel compounds as multivalent battery cathodes: a systemic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8, 964−974. (13) Qu, X.; Jain, A.; Rajput, N. N.; Cheng, L.; Zhang, Y.; Ong, S. P.; Brafman, M.; Maginn, E.; Curtiss, L. A.; Persson, K. A. The Electrolyte Genome project: A big data approach in battery materials discovery. Comput. Mater. Sci. 2015, 103, 56−67.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. ORCID

Brenden R. Ortiz: 0000-0002-1333-7003 Taishan Zhu: 0000-0001-9462-5666 L

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX

Article

Chemistry of Materials (14) Cheng, L.; Assary, R. S.; Qu, X.; Jain, A.; Ong, S. P.; Rajput, N. N.; Persson, K.; Curtiss, L. A. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 2015, 6, 283−291. (15) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ping, O. S.; Ceder, G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 2011, 21, 17147−17153. (16) Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P. Recharging lithium battery research with first-principles methods. MRS Bull. 2011, 36, 185−191. (17) Ceder, G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 2010, 35, 693−701. (18) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 235121-1−235121-8. (19) Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 2011, 23, 3495−3508. (20) Mueller, T.; Hautier, G.; Jain, A.; Ceder, G. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem. Mater. 2011, 23, 3854−3862. (21) Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 2004, 3, 810−815. (22) Yazaydın, A. O.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; LeVan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R. Screening of metal- organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 2009, 131, 18198−18199. (23) Spivack, J. L.; et al. Combinatorial discovery of metal cocatalysts for the carbonylation of phenol. Appl. Catal., A 2003, 254, 5− 25. (24) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37−46. (25) Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937−943. (26) Sehested, J.; Larsen, K.; Kustov, A.; Frey, A.; Johannessen, T.; Bligaard, T.; Andersson, M.; Nørskov, J.; Christensen, C. Discovery of technical methanation catalysts based on computational screening. Top. Catal. 2007, 45, 9−13. (27) Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H.; Liu, P.; Nørskov, J. K. High throughput experimental and theoretical predictive screening of materials- A comparative study of search strategies for new fuel cell anode catalysts. J. Phys. Chem. B 2003, 107, 11013−11021. (28) Linic, S.; Jankowiak, J.; Barteau, M. A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J. Catal. 2004, 224, 489−493. (29) Andersson, M. P.; Bligaard, T.; Kustov, A.; Larsen, K. E.; Greeley, J.; Johannessen, T.; Christensen, C. H.; Nørskov, J. K. Toward computational screening in heterogeneous catalysis: Paretooptimal methanation catalysts. J. Catal. 2006, 239, 501−506. (30) Yan, J.; Gorai, P.; Ortiz, B. R.; Miller, S.; Barnett, S. A.; Mason, T.; Stevanović, V.; Toberer, E. S. Material Descriptors for Predicting Thermoelectric Performance. Energy Environ. Sci. 2015, 8, 983−994. (31) Gorai, P.; Gao, D.; Ortiz, B.; Miller, S.; Barnett, S. A.; Mason, T.; Lv, Q.; Stevanović, V.; Toberer, E. S. T. E. Design Lab: A virtual laboratory for thermoelectric material design. Comput. Mater. Sci. 2016, 112, 368−376. (32) Wang, S.; Wang, Z.; Setyawan, W.; Mingo, N.; Curtarolo, S. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 2011, 1, 0210121−021012-8.

(33) Shiomi, J.; Esfarjani, K.; Chen, G. Thermal conductivity of halfHeusler compounds from first-principles calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 104302-1−104302-9. (34) Madsen, G. K. Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 2006, 128, 12140− 12146. (35) Yang, J.; Li, H.; Wu, T.; Zhang, W.; Chen, L.; Yang, J. Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties. Adv. Funct. Mater. 2008, 18, 2880−2888. (36) Broido, D.; Malorny, M.; Birner, G.; Mingo, N.; Stewart, D. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922-1−231922-3. (37) Gorai, P.; Stevanović, V.; Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 5, 170531−17053-16. (38) Ortiz, B. R.; Gorai, P.; Krishna, L.; Mow, R.; Lopez, A.; McKinney, R.; Stevanovic, V.; Toberer, E. S. Potential for high thermoelectric performance in n-type Zintl compounds: a case study of Ba doped KAlSb4. J. Mater. Chem. A 2017, 5, 4036−4046. (39) Ortiz, B. R.; Gorai, P.; Stevanovic, V.; Toberer, E. S. Thermoelectric Performance and Defect Chemistry in n-Type Zintl KGaSb4. Chem. Mater. 2017, 29, 4523−4534. (40) Grimm, H. G.; Sommerfeld, A. Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit den chemischen Valenzzahlen. Eur. Phys. J. A 1926, 36, 36−59. (41) Adachi, S. Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors, 1st ed.; Wiley: New York, 2015; Vol. 1. (42) Chen, S.; Walsh, A.; Luo, Y.; Yang, J.-H.; Gong, X.; Wei, S.-H. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 195203-1−195203-8. (43) Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H. Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 2009, 94, 0419031−041903-3. (44) Persson, C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 2010, 107, 053710-1−053710-8. (45) Nakamura, S.; Maeda, T.; Wada, T. Phase stability and electronic structure of In-free photovoltaic materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4. Jpn. J. Appl. Phys. 2010, 49, 1212031−121203-6. (46) Nakamura, S.; Maeda, T.; Wada, T. Phase stability and electronic structure of In-free photovoltaic materials Cu2IISnSe4 (II: Zn, Cd, Hg). Jpn. J. Appl. Phys. 2011, 50, 05FF01-1−05FF01-6. (47) Zhang, Y.; Sun, X.; Zhang, P.; Yuan, X.; Huang, F.; Zhang, W. Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J. Appl. Phys. 2012, 111, 063709-1−063709-6. (48) Schorr, S.; Hoebler, H.-J.; Tovar, M. A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineral. 2007, 19, 65−73. (49) Schorr, S. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 2011, 95, 1482−1488. (50) Paris, M.; Choubrac, L.; Lafond, A.; Guillot-Deudon, C.; Jobic, S. Solid-State NMR and Raman spectroscopy to address the local structure of defects and the tricky issue of the Cu/Zn disorder in Cupoor, Zn-rich CZTS materials. Inorg. Chem. 2014, 53, 8646−8653. (51) Schelhas, L.; Stone, K.; Harvey, S.; Zakhidov, D.; Salleo, A.; Teeter, G.; Repins, I.; Toney, M. Point defects in Cu2ZnSnSe4 (CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition. Phys. Status Solidi B 2017, 254, 1700156-1− 1700156-7. (52) Mendis, B. G.; Shannon, M. D.; Goodman, M. C.; Major, J. D.; Claridge, R.; Halliday, D. P.; Durose, K. Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovoltaics 2014, 22, 24−34. M

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX

Article

Chemistry of Materials (53) Valakh, M. Y.; Kolomys, O.; Ponomaryov, S.; Yukhymchuk, V.; Babichuk, I.; Izquierdo-Roca, V.; Saucedo, E.; Perez-Rodriguez, A.; Morante, J.; Schorr, S.; Bodnar, I. V. Raman scattering and disorder effect in Cu2ZnSnS4. Phys. Status Solidi RRL 2013, 7, 258−261. (54) Scragg, J. J.; Choubrac, L.; Lafond, A.; Ericson, T.; PlatzerBjö rkman, C. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl. Phys. Lett. 2014, 104, 041911-1− 041911-4. (55) Rey, G.; Redinger, A.; Sendler, J.; Weiss, T. P.; Thevenin, M.; Guennou, M.; el Adib, B.; Siebentritt, S. The band gap of Cu2ZnSnSe4: Effect of order-disorder. Appl. Phys. Lett. 2014, 105, 112106-1−112106-4. (56) Scragg, J. J.; Larsen, J. K.; Kumar, M.; Persson, C.; Sendler, J.; Siebentritt, S.; Platzer Björkman, C. Cu-Zn disorder and band gap fluctuations in Cu2ZnSn (S, Se) 4: Theoretical and experimental investigations. Phys. Status Solidi B 2016, 253, 247−254. (57) Rudisch, K.; Ren, Y.; Platzer-Björkman, C.; Scragg, J. Orderdisorder transition in B-type Cu2ZnSnS4 and limitations of ordering through thermal treatments. Appl. Phys. Lett. 2016, 108, 231902-1− 231902-4. (58) Valentini, M.; Malerba, C.; Menchini, F.; Tedeschi, D.; Polimeni, A.; Capizzi, M.; Mittiga, A. Effect of the order-disorder transition on the optical properties of Cu2ZnSnS4. Appl. Phys. Lett. 2016, 108, 211909-1−211909-5. (59) Scoville, N.; Bajgar, C.; Rolfe, J.; Fleurial, J.-P.; Vandersande, J. Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles. Nanostruct. Mater. 1995, 5, 207−223. (60) Basu, R.; Bhattacharya, S.; Bhatt, R.; Roy, M.; Ahmad, S.; Singh, A.; Navaneethan, M.; Hayakawa, Y.; Aswal, D.; Gupta, S. Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A 2014, 2, 6922−6930. (61) Abeles, B.; Cohen, R. Ge-Si thermoelectric power generator. J. Appl. Phys. 1964, 35, 247−248. (62) Lee, H.; Vashaee, D.; Wang, D.; Dresselhaus, M. S.; Ren, Z.; Chen, G. Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 2010, 107, 094308-1−094308-7. (63) Wang, X.; Lee, H.; Lan, Y.; Zhu, G.; Joshi, G.; Wang, D.; Yang, J.; Muto, A.; Tang, M.; Klatsky, J.; Song, S.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 2008, 93, 193121-1−193121-3. (64) Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670−4674. (65) Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J.; Cabot, A. Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060−4063. (66) Ibáñez, M.; Cadavid, D.; Anselmi-Tamburini, U.; Zamani, R.; Gorsse, S.; Li, W.; López, A. M.; Morante, J. R.; Arbiol, J.; Cabot, A. Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J. Mater. Chem. A 2013, 1, 1421−1426. (67) Mingo, N. Thermoelectric figure of merit and maximum power factor in III-V semiconductor nanowires. Appl. Phys. Lett. 2004, 84, 2652−2654. (68) Martin, P. N.; Aksamija, Z.; Pop, E.; Ravaioli, U. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 2010, 10, 1120−1124. (69) Zou, X.; Chen, X.; Huang, H.; Xu, Y.; Duan, W. Enhanced thermoelectric figure of merit in thin GaAs nanowires. Nanoscale 2015, 7, 8776−8781. (70) Vo, T. T.; Williamson, A. J.; Lordi, V.; Galli, G. Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 2008, 8, 1111−1114. (71) Wu, P. M.; Paschoal, W.; Kumar, S.; Borschel, C.; Ronning, C.; Canali, C. M.; Samuelson, L.; Pettersson, H.; Linke, H. Thermoelectric characterization of electronic properties of GaMnAs nanowires. J. Nanotechnol. 2012, 2012, 1−5.

(72) Tian, Y.; Sakr, M. R.; Kinder, J. M.; Liang, D.; MacDonald, M. J.; Qiu, R. L.; Gao, H.-J.; Gao, X. P. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 2012, 12, 6492−6497. (73) Karg, S.; Troncale, V.; Drechsler, U.; Mensch, P.; Kanungo, P. D.; Schmid, H.; Schmidt, V.; Gignac, L.; Riel, H.; Gotsmann, B. Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors. Nanotechnology 2014, 25, 305702-1−305702-9. (74) Ercolani, D.; Rossi, F.; Li, A.; Roddaro, S.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 2009, 20, 505605-1−505605-6. (75) Mensch, P.; Karg, S.; Gotsmann, B.; Kanungo, P. D.; Schmidt, V.; Troncale, V.; Schmid, H.; Riel, H. Electrical and thermoelectrical properties of gated InAs nanowires. Solid-State Device Research Conference (ESSDERC), 2013 Proceedings of the European, 2013; pp 252−255. (76) Dong, Y.; Wojtas, L.; Martin, J.; Nolas, G. S. Synthesis, crystal structure, and transport properties of quaternary tetrahedral chalcogenides. J. Mater. Chem. C 2015, 3, 10436−10441. (77) Liu, F.; Zheng, J.; Huang, M.; He, L.; Ao, W.; Pan, F.; Li, J. Enhanced thermoelectric performance of Cu2CdSnSe4 by Mn doping: experimental and first principles studies. Sci. Rep. 2015, 4, 1−7. (78) Liu, M.-L.; Chen, I.-W.; Huang, F.-Q.; Chen, L.-D. Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4. Adv. Mater. 2009, 21, 3808−3812. (79) Zeier, W. G.; Pei, Y.; Pomrehn, G.; Day, T.; Heinz, N.; Heinrich, C. P.; Snyder, G. J.; Tremel, W. Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu2Zn1-x Fe x GeSe4. J. Am. Chem. Soc. 2013, 135, 726−732. (80) Heinrich, C. P.; Day, T. W.; Zeier, W. G.; Snyder, G. J.; Tremel, W. Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu2ZnGeSe4-x S x Series of Solid Solutions. J. Am. Chem. Soc. 2014, 136, 442−448. (81) Zhang, D.; Yang, J.; Jiang, Q.; Zhou, Z.; Li, X.; Xin, J.; Basit, A.; Ren, Y.; He, X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy 2017, 36, 156−165. (82) Chetty, R.; Bali, A.; Mallik, R. C. Thermoelectric properties of indium doped Cu 2 CdSnSe 4. Intermetallics 2016, 72, 17−24. (83) Chetty, R.; Bali, A.; Femi, O.; Chattopadhyay, K.; Mallik, R. Thermoelectric Properties of In-Doped Cu2ZnGeSe4. J. Electron. Mater. 2016, 45, 1625−1632. (84) Borup, K. A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M. I.; Muller, E.; Iversen, B. B.; Snyder, G. J. Measuring Thermoelectric Transport Properties of Materials. Energy Environ. Sci. 2015, 8, 423−435. (85) Iwanaga, S.; Toberer, E. S.; LaLonde, A.; Snyder, G. J. A High Temperature Apparatus for Measurement of the Seebeck Coefficient. Rev. Sci. Instrum. 2011, 82, 63905-1−063905-6. (86) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133−1138. (87) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15−50. (88) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953−17979. (89) Belsky, A.; Hellenbrandt, M.; Karen, V. L.; Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr., Sect. B: Struct. Sci. 2002, B58, 364−369. (90) Stevanović, V.; Lany, S.; Zhang, X.; Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 115104-1− 115104-12. (91) Gorai, P.; Parilla, P.; Toberer, E. S.; Stevanovic, V. Computational Exploration of the Binary A1B1 Chemical Space for Thermoelectric Performance. Chem. Mater. 2015, 27, 6213−6221. N

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX

Article

Chemistry of Materials

(116) Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 1963, 131, 1906−1911. (117) Ortiz, B. R.; Peng, H.; Lopez, A.; Parilla, P. A.; Lany, S.; Toberer, E. S. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials. Phys. Chem. Chem. Phys. 2015, 17, 19410−19423.

(92) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186. (93) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188−5192. (94) Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1−5. (95) Chen, S.; Walsh, A.; Luo, Y.; Yang, J.-H.; Gong, X.; Wei, S.-H. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 195203-1−195203-8. (96) Toberer, E. S.; Zevalkink, A.; Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21, 15843−15852. (97) Agne, M.; Hanus, R.; Snyder, J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 2018, 11, 609−616. (98) Rowe, D. CRC Handbook of Thermoelectrics, 1st ed.; CRC Press: New York, 1995; Vol. 4. (99) Doverspike, K.; Dwight, K.; Wold, A. Preparation and characterization of Cu2ZnGeS4−ySey. Chem. Mater. 1990, 2, 125−189. (100) Nieves, L.; Delgado, G. E.; Marcano, G.; Power, c.; LopezRivera, S. A.; Rincon, C. Structural characterization of the hightemperature modification of the Cu2ZnGeTe4 quaternary semiconductor compound. Phys. Status Solidi B 2016, 253, 1195−1201. (101) Parasyuk, O. V.; Olekseyuk, I. D.; Piskach, L. V. X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe4-ZnTe system. J. Alloys Compd. 2005, 397, 169−172. (102) Parasyuk, O. V.; Olekseyuk, I. D.; Piskach, L. V. Phase diagram of the Cu2GeSe3-ZnSe system and crystal structure of the Cu2ZnGeSe4 compound. J. Alloys Compd. 2001, 329, 202−207. (103) Navrátil, J.; Kucek, V.; Plechácě k, T.; Č ernošková, E.; Laufek, F.; Drašar, Č ; Knotek, P. Thermoelectric Properties of Cu2HgSnSe4Cu2HgSnTe4 Solid Solution. J. Electron. Mater. 2014, 43, 3719−3725. (104) Evans, J.; Mary, T.; Vogt, T.; Subramanian, M.; Sleight, A. Negative thermal expansion in ZrW2O8 and HfW2O8. Chem. Mater. 1996, 8, 2809−2823. (105) Shirane, G.; Takeda, A. Transition energy and volume change at three transitions in barium titanate. J. Phys. Soc. Jpn. 1952, 7, 1−4. (106) Shirane, G.; Hoshino, S. On the phase transition in lead titanate. J. Phys. Soc. Jpn. 1951, 6, 265−270. (107) Azuma, M.; Chen, W.-t.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N.; Ishiwata, S.; Tucker, G. M.; Shimakawa, Y.; Attfield, J. P. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347-1−347-5. (108) Watanabe, H.; Yamada, N.; Okaji, M. Linear Thermal Expansion Coefficient of Silicon from 293 to 1000K. Int. J. Thermophys. 2004, 25, 221−236. (109) Okada, Y.; Tokumaru, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500K. J. Appl. Phys. 1984, 56, 314−320. (110) Anderson, O. L. Derivation of Watchman’s Equation for the Temperature Dependence of Elastic Moduli of Oxide Compounds. Phys. Rev. 1966, 144, 553−557. (111) Jia, T.; Chen, G.; Zhang, Y. Lattice thermal conductivity evaluated using elastic properties. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95, 155206-1−155206-6. (112) Sanditov, D. S.; Belomestnykh, V. N. Relation between the Parameters of the Elasticity Theory and Averaged Bulk Modulus of Solids. Tech. Phys. 2011, 56, 1619−1623. (113) Adachi, S. Gas and Related Materials: Bulk Semiconducting and Superlattice Properties; World Scientific: River Edge, NJ, 1994. (114) Verma, A. Bulk modulus and hardness of chalcopyrite structured solids. Mater. Chem. Phys. 2013, 139, 256−261. (115) Pereira, P. B.; Sergueev, I.; Gorsse, S.; Dadda, J.; Muller, E.; Hermann, R. P. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi B 2013, 250, 1300−1307. O

DOI: 10.1021/acs.chemmater.8b00890 Chem. Mater. XXXX, XXX, XXX−XXX