Ultrasonic velocity in binary mixtures of alkylbenzenes at 25.degree.C

Dianne J. Luning Prak , Jim S. Cowart , Andrew M. McDaniel , and Paul C. Trulove. Journal of Chemical & Engineering Data 2014 59 (11), 3571-3585...
1 downloads 0 Views 309KB Size
402

J. Chem. Eng. Data 1983, 28,402-404

Kanazawa University, for the use of its facilities. Glossary a,/ P pis 91 9i ' ri R T Vi Xi

Yi

Z

binary interaction parameter, K total pressure, kPa vapor pressure of pure component i , kPa molecular-geometricarea parameter for component i molecular-interactionarea parameter for component i molecular volume parameter for pure component i gas constant, 8.314 &/(mol K) absolute temperature, K liquid molar volume of pure component i , cm3/mol liquid-phase mole fraction of component i vapor-phase mole fraction of component i lattice coordination number, a constant set equal to 10

Greek Letters

activity coefficient of component i area fraction defined by eq 7 area fraction defined by eq 8 Wilson binary parameter Wilson binary interaction parameter, J/mol UNIQUAC binary interaction parameter, J/mol variance of fit UNIQUAC binary parameter volume fraction defined by eq 6 fugacity coefficient of component i 1c.i

fugacity coefficient of pure component i at system temperature and Pis

Subscript i

component

Superscript S

saturation

Registry No. Acetonitrile, 75-05-8; 2-butanone, 7893-3; benzene, 7 1-43-2; methanol, 67-56-1.

Llterature Clted (1) Ohta, T.; Koyabu, J.; Nagata, I.Fluidphew E9uiiib. 1981, 7 , 65-73. (2) Dohnai, V.; Blahova, D.; Holub, R. Fluid Phase Equillb. 1982, 9 , 187-200. (3) Kraus, J.; Linek, J. Collect. Czech. Chem. Commun. 1971, 36, 2547-67 - . . .. . (4) Zharov, V. T.; Malegina, N. D.; Morachevsky, A. G. Zh. Prikl. Khim. 1985. 38. 2132-4. (5) Brown, I.: Smith, F. Aust. J. Chem. 1955, 8, 62-7. (6) Palmer, D. A.; Smith, B. D. J. Chem. Eng. Data 1972, 77, 71-6. (7) Werner, G.; Schuberth, H. J. Prakt. Chem. 1968, 37, 225-336. (8) Nagata, I.: Katoh, K.; Koyabu, J. Thermochim. Act8 1981, 4 7 , 225-33. (9) Scatchard, G.; Wood, S.E.; Mochel, J. M. J. Am. Chem. SOC. 1946, 68, 1957-60. (10) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A,; Eckert, C. A,; Hsieh, R.; O'Connell, J. P. "Computer Calculations for Multicomponent VaporLiquid and Liquid-Liquid Equilibria"; hentice-Hall: Englewood Cliffs, NJ, 1980; Chapters 3 and 4, Appendix D. (11) Fredensiund, A.; Gmehling, J.; Rasmussen, P. "Vapor-Liquid Equilibria Using UNIFAC"; Elsevier: Amsterdam, 1977; Chapter 5. (12) Gmehiing, J.; Rasmussen, P.; Fredensiund, A. Ind. Eng. Chem. Process Des. Dev. 1882, 27, 118-27. (13) SkjoidJ~rrgensen,S.; Kolbe, E.; Gmehllng, J.; Rasmussen, P. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 714-22. (14) Boublik, T.; Benson, G. C. Csn. J . Chem. 1989, 4 7 , 539-42. (15) Hayden, J. 0.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 74, 209-16. (16) Spencer, C. F.; Danner, R. P. J. Chem. Eng. Data 1972, 77, 236-41. (17) Anderson, T. F.; Prausnltz, J. M. Ind. Eng. Chem. Process Des. Dev. 1978, 77, 552-61. (18) Christiansen, L. J.; Fredenslund, A. AIChE J. 1975, 27, 49-57. (19) Gmehiing, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMain, 1977; Vol. I , Part 1. (20) Gmehling, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1977; Voi. I , Part 28. (21) Gmehling, J.; Onken. U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collectlon"; DECHEMA: Frankfurt/Main, 1978; Vol. I, Part 2b. (22) Gmehllng, J.; Onken, U.; Ark, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMaln, 1979; Vol. I , Parts 3 and 4, pp 285-7, 293. (23) Gmehling, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMain, 1980; Vol. I, Part 6a. (24) Gmehllng, J.; Onken, U.; Arit, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMain, 1980; Vol. I, Part 6b. (25) Gmehiing, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMain, 1980; Voi. I, Part 7, pp 122, 126, 131. (26) Gmehling, J.; Onken, U.; Ark, W. "Vapor-Liquid Equilibrlum Data Collection"; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part la. (27) Gmehling, J.; Onken, U.; Ark, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: FrankfurtlMain, 1982; Voi. I,Part 2c. (28) Riddick, J. A.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wlley-Interscience: New York, 1970; pp 107, 145, 243, 399. (29) Brown, I.; Smith, F. Aust. J. Chem. 1954, 7 , 269-72. Received for review July 2, 1982. Revised manuscript received January 3, 1983. Accepted April 9. 1983.

Ultrasonic Velocity in Binary Mixtures of Alkylbenzenes at 25 O C G. Vitall" and 0. Glola Lobbla Dipartimento di Scienze Chimiche, Universiti degli Studi, 62032 Camerino, Italy

Den* and ultrasonk veloclty values In the frequency range 2.5-15 MHr at 25 O C were measured for binary mixtures of ethylbenzene, o -xylene, m -xylene, and p-xylene. Our data were discussed and compared, where possbk, wlth those found In the Aerature. Introductlon Ultrasonic velocity data are of increasing interest in physical chemistry because, as described in the literature (1-7), they are the basis of structural studies of liquids. I n fact, quantities such as internal pressure and adiabatic compressibility depend 0021-9568/83/ 1728-0402501 5010

on the liquid structure, the extent of molecular interaction ( 8 ) , and the intermolecular free path (5)and they may be calculated by using ultrasonic velocity data (9). Compressibility is one of the fundamental measurements for calculating reduction parameters in the state equation according to Flory statistics ( l , 7, 10, 1 7 ) . I n the course of physicochemical investigations of organic systems belng carrled out in this department ( 7 , 72, 13),we measured the ultrasonic velocities of mixtures of alkylbenzenes, for use in successive physicochemical studies.

Experlmental Sectlon The interferometric method employed for the measurement of ultrasonic velocity is described elsewhere (3,4). The 0 1983 American Chemical Society

Journal of Chemical and Engineering Data, Vol. 28, No. 4, 1983 403

Table I. Values of U (m s-l) as a Function of the Mole Fraction X, ethylbenzene (1)-0-xylene (2) Xl

1.0000 0.8927 0.7979 0.6916 0.5971 0.4968 0.3971 0.2921 0.1978 0.0932 0.0000

U 1297 1299 1301 1305 1306 1307 1312 1317 1322 1324 1328

ethylbenzene (1)-m-xylene (2) Xl

1.0000 0.8945 0.8006 0.6960 0.6007 0.5069 0.4010 0.2959 0.2002 0.0970 0.0000

U

Xl

1.0000 0.8946 0.8017 0.7062 0.6010 0.5084 0.4019 0.2976 0.2012 0.0979

1297 1298 1297 1299 1298 1297 1298 1299 1299 1298 1300

0.0000

Table 11. Values of U (m s - l ) as a Function of the Mole Fraction X, o-xylene (1)-m-xylene (2) o-xylene (1)-p-xylene (2) Xl

1.0000 0.8965 0.8027 0.7077 0.6038 0.5100 0.4034 0.2997 0.2026 0.0989 0.0000

U 1328 1325 1322 1319 1315 1313 1307 1304 1303 1299 1300

Xl

1.0000 0.8958 0.8028 0.7088 0.6050 0.5116 0.4051 0.3004 0.2031 0.0992 0.0000

ethylbenzene (1)-p-xylene (2)

U 1297 1296 1292 1290 1291 1289 1288 1287 1289 1289 1290

m-xylene (1)-p-xylene (2)

U 1328 1324 1319

Xl 1.0000 0.8938 0.8003 0.7048 0.6014 0.5073 0.4010 0.2962 0.2003 0.0972

1321 1314 1307 1303 1299 1295 1291 1290

0.0000

U 1300 1297 1294 1296 1294 1295 1290 1287 1288 1289 1290

Table 111. Values of Density (g mL-l) as a Function of the Mole Fraction X, ethylbenzene (1)-0-xylene (2) ethylbenzene (1)-m-xylene (2) xi d Xl d

(1)-p-xylene (2) -ethylbenzene Xl d

1.0000 0.8927 0.7979 0.6916 0.5971 0.4968 0.3971 0.2921 0.1978 0.0932 0.0000

0.8630 0.8645 0.8653 0.8665 0.8677 0.8688 0.8700 0.8713 0.8726 0.8739 0.8751

1.0000 0.8945 0.8006 0.6960 0.6007 0.5069 0.4010 0.2959 0.2002 0.0970 0.0000

0.8630 0.8626 0.8621 0.8617 0.8613 0.8609 0.8605 0.8602 0.8600 0.8596 0.8596

Table IV. Values of Density (g mL-’ ) as a Function of the Mole Fraction X, o-xylene (1)-m-xylene (2) o-xylene (1)-p-xylene (2) Xl

d

1.-000 0

0.8751 0.8735 0.8719 0.8704 0.8689 0.8674 0.8658 0.8641 0.8627 0.8611 0.8596

0.8965 0.8027 0.7077 0.6038 0.5100 0.4034 0.2997 0.2026 0.0989 0.0000

x,

1.0000 0.8958 0.8028 0.7088 0.6050 0.5116 0.4051 0.3004 0.2031 0.0992 0.0000

equipment was built in the “Instytut of Fundamental Thecnokgical Research” of the Polish Academy of Sciences (Warsaw). The Fiuka puriss. p.a. products were used without further purification: the purity was guaranteed to be >99.0%. Temperature control within 0.1 O C was obtained by means of a Lauda ultrathermostat, for velocity measurements. The mixtures were prepared as w/w solutions. The ultrasonic equipment can be used in the frequency range 2.5-15 MHz and in this range, within the experimental precision reported (3)(1 m s-’), relaxation phenomena are not observed.

1.0000 0.8946 0.8017 0.7062 0.6010 0.5084 0.4019 0.2976 0.2012 0.0979 0.0000

m-xylene (1)-p-xylene (2)

d

0.8751 0.8732 0.8713 0.8695 0.8677 0.8659 0.8639 0.8621 0.8601 0.8582 0.8564

0.8630 0.8625 0.8618 0.8613 0.8604 0.8599 0.8591 0.8584 0.8577 0.8570 0.8564

XI

1.0000 0.9838 0.8003 0.7048 0.6014 0.5073 0.4010 0.2962 0.2003 0.0972 0.0000

d

0.8596 0.8591 0.8589 0.8587 0.8583 0.8580 0.8578 0.8574 0.8571 0.8567 0.8564

This has also been reported by Linde (14) for the whole ultrasonic range. Probably a relaxation phenomenon exists in the hypersonic range ( 75, 76). Results and Dlscumion The ultrasonic velocities at 25 O C , as a function of mole fraction, are given in Tables I and 11. These results are independent of the frequency within the range 2.5-15 MHz. I n Tables 111 and I V the density values at 25 O C of the different

404 Journal of Chemical and Engineering Data, Voi. 28, No. 4, 1983

A

u t

8.W

1

68

64

68 64 72

u t

6

pt

u 0 1330

0.5

1

Xt

Figure 2. Adiabatic compressibility vs. the mole fraction X I : (a) ethylbenzene (l)-o-xyIene (2), (b) ethylbenzene (1)-m-xylene (2), (c) ethylbenzene (l)-p-xylene (2), (d) o-xylene (1)-m-xylene (2), (e) oxylene (1)-p-xylene (2), (f) m-xylene (1)-p-xylene (2).

1310 1290

rL

r 0

0.5

*

1

X,

Figure 1. Ultrasonic velocity vs. the role fraction X , : (a) ethylbenzene (l)-o-xylene (2). (b) ethylbenzene (1)-m-xylene (2), (c) ethylbenzene (1)-p-xylene (2), (d) o-xylene (1)-m-xylene (2), (e) o-xylene (l)-pxylene (2), (f) m-xylene (1)-p-xylene (2). mixtures are given; they were obtained by a conventional pycnometric technique. A reliability of *I X lo4 g mL-’ was obtained. The adiabatic compressibility (p,), ultrasonic velocity (U), and density ( d )are related by the equation (9)

p, = (u2d)-‘

(1)

The data in Tables I - I V allow us to evaluate the adiabatic compressibility. The trend of ultrasonic velocity end compressibility, as a function of the mixture composition, Is shown in Figures 1 and 2. Padmini et at. (17) calculated a molar sound velocity, R, of 1348 and 1351 m s-’ for ethylbenzene and o-xylene, respectively. From these data it is possible to derive velocities of 1315.,and 1380.8m s-’,by using our density data at 25 O C . Nath et ai. ( 8 )gave a value of 1288.8 m s-’for the p-xylene at 30 O C . Reddy et ai. (6) give 1335 m s-’ for o xylene at 29.4OC, 1308 m s-‘ for m-xylene at 28 OC, and 1310 m s-l for p-xylene at 29.5 OC. Prasad (5)gives 1367 m s-’ for o-xylene at 23 O C . Takagi (78)gives 1292.5 m s-’at 30 OC and 0.1 MPa for the p-xylene, and 1303.8 m s-’at 30 O C and 0.1 MPa for the m-xylene. Because of the differences in the experimental conditions, a rigorous comparison between literature and experimental results cannot be made, but in general it is possible to note a fairly good agreement. We have not found any data for mixtures containing the isomers of akylbenzenes as used by us. The trend U (ultrasonic velocity) vs. X (mole fraction) is linear, within the experimental sensitivity, for the ethylbenzene-m-xylene, o -xylenem-xylene, o -xylene+ -xylene mixtures, while the ethylbenzene-o-xylene, ethylbenzene-p-xylene, m-xylene-p-xylene systems show a negative deviation from the additlve rule, more

pronounced in the ethylbenzene-p -xylene system. Obviously analogous behavior, that is, positive deviations, exists for the compressibility. I n order to elucidate this trend the research needs to be continued, especially with the application of Flory statistics, and therefore the expansion coefficient, a,must be measured.

Acknowledgment We thank V. Amici for technical assistance. Roglstry No. Ethylbenzene, 100-41-4; o-xylene, 95-47-6; m-xylene, 108-38-3; p-xylene, 106-42-3.

Literature Cited Vltali, G.; Berchlesi, G.: Gbla Lobbla, G.; Fanelii, E. J . Chem. Res.. Mlhlprlnt 1981. 8362-90. Vltali. G.: Berchlesi, G.: Berchiesi, M. A.; Oloia Lobbla, 0. J . Chim. Phys. Phys.-Chlm. Bkl. 1980, 77. 865-8. Berchlesi, G.; Berchlesi. M. A.; Vltail, G.; Valentl, V. Can. J . Chem . 1979. 57, 2010-2. Vkli, G.; Berchlesi, G.; Berchiesi, M. A.; Valentl, V. Gau.Chim. Ita/. 1979, 709, 291. Prasad, N.; Prakash, S. J . Chem. Eng. Data 1977, 22, 49-50. Reddy, K. C.; Subrahmanyam, S. V.; Bhimasenachar, J. J . Vans. Faraday Soc. 1082, 58, 2352-7. Reddy. K. S.; Sreenivasuiu. M.; Naidu, P. R. 2. Phys. Chem. 1981, 124, 149-54. Nath, J.; Dubey, S. N. J . Phys. Chem. 1980, 84, 2166-70. BJandamer, M. J. “Introduction to Chemical Ultrasonics”; Acahmic Press: London, 1973: p 12. Fbry, P. J. J . Am. Chem. Soc. 1965, 87, 1833-8. Abe. A.; Flory, P. J. J . Am. Chem. SOC. 1985. 87, 1838-46. Gbla Lobbla, G.; Vltali, 0.; Berchiesi, M. A.; Berchiesi, G. Ber. Bunsenges. Phys. Chem. 1981, 85. 628-31. &la Lobbla, 0.;Vltali, G.; Berchiesi, G. Thermochhn. Acta 1982, 57, 5-11. Linde. 8.; Sliwinski, A. Acowt. Lett. 1978, 2 , 65-8. Zinov’ev, 0. 1.; Shakhparonov, M. 1.; Parryan, V. A.; Prikhod’ko, A. Ya.; Karshibaev, A. K. chem.Abstr. 1976, 8 4 , 958658. Sukhotlna, G. 0.; Shakhparonov, M. I. Chem. Abstr. 1986, 65, 3028~. Padmini. p. R. K.; Subba Reo, K.; Ramanchandra Rao, B. Trans. Faraday SOC. 1960, 56, 1404-8. 1981, 73, 291-9. Takagi. T. J . Chem. 77w-n. Rec&ed for revlew November 8, 1982. Revised manuscript received April 4, 1983. Accepted April 29, 1983. Thanks are due to C.N.R. of Rome for flnanicai support.